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Abstract: With the development of automation, multi-scale data fusion has become a hot research topic, however, 
limited by the constraint that signal to implement wavelet transform must have the length of

q2 , multi-scale 
data fusion problem involved with non-

n2  sampled observation data still hasn’t been efficiently solved. In 
this paper, we develop a hybrid wavelet-Kalman filter multiscale sequential fusion method. First, we 
develop the hybrid wavelet-Kalman filter multiscale estimation method which combines the advantage of 
wavelet and Kalman filter to obtain the real time, recursive, multiscale estimation of the dynamic system. 
Then, a multiscale sequential fusion method is presented. Under the hybrid wavelet-Kalman filter multiscale 
estimation frame, we can easily fuse information from multiple sensors sequentially without designing other 
complex fusion algorithm. The multiscale sequential fusion method can fuse non-

n2  sampled data just by 
analyzing the possible observation structure to design the observation model of the stacked dynamic system. 
Simulation result of three sensors with sampling interval 1, 2 and 3 shows the efficiency of this method.  

1 INTRODUCTION 

In many fields, such as, automatic control, 
aerospace, communication, navigation and 
production industry, more than one sensor is used to 
gather complete information of the object or process. 
According to the mechanism of each sensor, they 
can be placed on different scales and the sampling 
rate of these sensors may also be different. The 
research of multi-sensor data fusion for dynamic 
system is significant both in practice and 
theoretically (Wen 2002a, Wen 2002b, Lang 
Hong1994). Especially, in many cases, the sampling 
interval may not equal to n2 , thus it is inconvenient 
for us to fuse information provided by these sensors. 
Therefore the tracking or estimation accuracy may 
be strongly reduced. 

The main technique used in multi-scale data 
fusion is Kalman filter and wavelet analysis. Kalman 
filter can result in real-time, recursive and optimal 
estimate while it doesn’t take the multi-scale 
character of the object into account. Wavelet 
transform can implement multi-scale analysis and 
estimation of the dynamic system, but the estimate is 
neither real time nor recursive (Wen 2002a). 

Using Kalman filter, data fusion algorithm for 
multi-sensor sampling at same rate has been 
successfully developed. Coporating with multi-scale 
theory, multi-scale data fusion algorithm for multi-
sensor sampling at n2  interval has also been 
developed. Limited by the fact that signals to 
implement wavelet transform must have the length 
of q2 , the method mentioned in (Wen 2002b, Lang 
Hong1994) can’t solve the data fusion problem 
when the sensors used are not sampling at n2  
interval.  

We find that once the dynamic system is stacked 
in a given length q2 , sensors not sampled at interval 

n2  has different observation structure on each block, 
that is, the length of the observation vector on each 
block may be different, and the sampling rule on 
each observation block is also different. 

Based on the hybrid wavelet and Kalman filter 
sequential fusion method developed in (Wen 2006a, 
Zhou 2007), we are intend to develop a sequential 
fusion scheme by designing the stacked observation 
model to fuse the observation data coming from 
those sensors sampling at non- n2  interval. 
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2 MANUSCRIPT PREPARATION 

2.1 Dynamic System 

Considering a system involving K  sensors 
)()()()1( kwkxkAkx +=+                     (1) 

)()()()( iiiiiii kvkxkCkz += Ki ,,2,1=   (2)  

where Nk ∈ , kdk ii = , Ndi ∈  is the sampling 

interval of each sensor, nRkx ∈)( is the object’s 

state, nnRkA ×∈)( is the system matrix. 

The System’s process noise nRkw ∈)(  is the 
Gaussian white noise with the following statistics 

0)}({ =kwE                  (3) 

lk
T kQlwkwE ,)()}()({ δ=   0, ≥lk     (4) 

)(kQ  is a nonnegative matrix. 

The observation noise )( ii kv is also Gaussian 
white noise 

0)}({ =ii kvE               (5) 

lkjij
T
jii kQlvkvE ,,)()}()({ δδ=  Kji ,,2,1, =  

(6) 
)0(x is the initial state of the system, 

0)}0({ xxE =                (7) 

000 }])0(][)0({[ PxxxxE T =−−      (8) 

)0(x , )(kw and )( ii kv is independent.  

2.2 Stacked System  

Rewrite the dynamic model (1) and (2) as a stacked 
system with block length M  

)()()()1( mWmXmAmX +=+        (9) 

)()()()( mVmXmCmZ iii +=  Ki ,2,1=   (10) 

where 
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where )(mZi

 is the observation of m th block 
observed by sensor i . )(mCi in equa.(14) is the 

observation matrix, ii dMmmr mod)1()( −= , 

)(ae  is the unit vector whose a th element is 1, 
while other elements are all 0.  
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Section 4.2 shows the detailed designing of )(mCi . 

)(mVi is the observation noise with statistics 

{ } 0),( =smVE i               (15) 
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where )(mSi
is the length of the observation vector 

on the m th block. )(mW  is the process noise 
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TMMmQMmQdiagmQ )]12)1((,),1)1(([)(~

−+−+−=  (22) 
in equations (14)-(22), ],,,[ ZYXdiag is the 
blocked diagonal matrix. 

2.3 Multiscale Stacked System 

Implementing wavelet transform on equation (9) 
)()()()1( mWWmXmAWmXW XXX +=+   (23) 

That is 

)()()()1( mmmAm w μγγ +=+      (24) 
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where XW is the operator matrix of wavelet transform, 
satisfying[Wen 2002 a, Lang Hong1994] 

IWW XX =*  

)()( mXWm X=γ                      (25) 

)()( mWWm X=μ                     (26) 
*)()( XXw WmAWmA =                (27) 
*)()( XXw WmQWmQ =                (28) 

It is easy to prove that the process noise of the 
new stacked system (24) is statistically independent, 
that is 0)( =mQw , which is also one of the 
advantages of hybrid wavelet-Kalman filter: de-
correlating the correlation between blocks (Wen 
2006a). 

With the orthogonality of XW , we can rewrite the 
observation equation as 

)()()()( * mVmXWWmCmZ iXXii +=        (29) 

)()()()( * mVmWmCmZ iXii += γ  Ki ,,2,1=   (30)  

)()( mXWm X=γ                  (31) 
That is 

)()()()( * mVmWmCmZ iXii += γ   Ki ,,2,1=    (32) 

3 HYBRID WAVELET-KALMAN 
FILTER MULTI-SCALE 
ESTIMATION FOR A SINGLE 
SENSOR 

The following state transition equation and the 
observation equation of the wavelet transform 
coefficient of the m th block can be 
established(Tong 2000)  

),(),()1,( smwsmsm +=+ γγ , 1,,2,1,0 1 −= Ss  (33) 

),(),(),(),( 11 smVsmsmHsmZ += γ ,  1,,2,1 Ss =   (34) 

where ),( smZ is the observation at time s of block 
m . In equa.(34), 

TWmCmH )()( ≡                   (35) 
where ),( smH  is the s th row of the matrix )(mH . 

The main idea of hybrid wavelet-Kalman filter 
method includes two steps (Wen 2006 a, Wen 2006 
b, Zhou 2007): 

(1) Wavelet transform coefficients prediction 
based on stacked dynamic system 

)1|1(ˆ)()1|(ˆ −−=− mmmAmm w γγ . 

(2) Use each observation on this block to update 
the estimation of wavelet transform coefficient. 

Implement Kalman filter on the system given by 
equa. (33) and (34). In each block, the original state 
can be derived by a  prediction process 

)1|1(ˆ)()(ˆ
0|0 −−= mmmAm w γγ           (36) 
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T
www
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(37) 
The filter process follows as 
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)()]1,()1([)( |11|1 mPsmHsKImP ssss +++ ++−=  (43)  
This filter process is essentially the gradually 

updating of the prediction )(ˆ
0|0 mγ .The final 

updating as the estimation of this block 
)(ˆ)|(ˆ

11| mmm SSγγ =                  (44) 

)()|(
11| mPmmP SSw =                  (45) 

The whole process of hybrid wavelet-Kalman 
filter method can be shown in figure 1. 

 
 
 
 
 
 
 
 
Figure 1: Hybrid wavelet-Kaman filter Algorithm. 

4 NON- n2 SAMPLED DATA’S 
SEQUENTIAL FUSION 

4.1 Sequential Fusion based on Hybrid 
Wavelet-Kalman Filter 

To fuse the observation data coming from multiple 
sensors we can simply cascade these data 
sequentially. Then use the cascaded data to update 
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the prediction )(ˆ
0|0 mγ  more times than only one 

sensor case. The total updating times is 

∑
=

=
K

i
iSS

1

                             (46) 

This S times updating is the fusion estimation of 
the wavelet transform coefficient. The sequential 
fusion process can be shown in fig.2. 

The main advantage of this sequential fusion is 
that the fusion estimate process uses the same 
mechanism with that of the hybrid wavelet-Kalman 
filter in one single sensor case without designing a 
new complex fusion rule. 

 
 
 
 

Figure 2: Hybrid wavelet-Kalman filter Sequential fusion.  

This sequential fusion algorithm doesn’t require 
that the sampling interval of the observation is 

n2 .Thus we can manage to process the fusion 
problem involving non- n2  sampling data  

4.2 Blocked Observation Model for   
Non- n2  Sampling Case 

One crucial step in hybrid wavelet-Kalman filter is 
to determine the structure of the stacked observation 
matrix )(mCi  especially for the non- n2  sampling 
case since the observation structure and observation 
vector of each block are different. 

By analyzing, we find that )(mCi  varies 
periodically with m .The varying rule is determined 
by the sampling interval id  and the block length 
M . The varying period is the minimum common 
multiple of M and id .  

For clarity, we display the observation structure 
in the case 4=M and 3=id , 8=M  and 3=id  

for the system 1=n , AkA =)( , iii CkC =)( .  

For 4=M and 3=id , the period of 

)(mCi is 12, that is 3 blocks. In these 3 blocks, 
sensor i samples 4 observation data in total. 
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where semicolon denotes another row in the matrix. 
Equation (59) means that in the 23 −= jm  block, 
sensor i sampled 1 observation data; in the 

13 −= jm  block, sensor i sampled 1 observation 
data; in the jm 3=  block, sensor i sampled 2 
observation data. 

For the case 8=M and 3=id , the period of 

)(mCi is 24, that is 8 data blocks. In these 8 blocks, 
sensor i samples 8 observation data in total. The 
resulted stacked observation matrix is 
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in the 23 −= jm  block, sensor i sampled 2 
observation data; in the 13 −= jm and jm 3=  
block sensor i sampled 3 observation data. 

More generally, for qM 2=  and id without 

Nu∈  s.t. u
id 2= , the structure of )(mCi  is 
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where )(mSi  is the number of matrix rows which 
is the maximum integer s.t.  

mMmrdmS iii ≤− )]()([  

5 SIMULATION 

This section gives the simulation of the algorithm 
developed in this paper to demonstrate its validity.  
Multiscale sequential fusion result of 3 sensors 
whose sampling interval are respectively 1,2 and 3 
are compared with that of one single sensor using 
Kalman filter method. 

The parameters used in the simulation 
are 96.0)( =kA , 1)( =kQ , the initial state is 

10 =x , 10 =P .Stacking the system with block 
length 4=M , then use the Haar wavelet to 
implement wavelet transform. The observation 
parameters are 41 )( ImC = and 5.01 =R ; 

]1000;0010[5.0)(2 ⋅=mC  and 1.02 =R  ; 
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Figure 3: Sequential fusion result via single sensor 
estimate. 
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Figure 4: Sequential fusion error via single sensor estimate 
error. 

It is easy to see that using the method mentioned 
in section 4 to design the stacked observation model 
can realize the multiscale sequential fusion of non-

n2  sampling data. Compare the fusion estimate 
using this multiscale sequential fusion method and 
one single sensor estimate using Kalman filter,we 
conclude that it is an efficient method to process 
fusion problem with non- n2 sampling observation 
data, which is an obstacle of multi-scale data fusion. 

The mean of absolute error (MAE) displayed in 
table 1 compare the estimate error accuracy based on 
one single sensor 1 using Kalman filter method and 
that based on sensor multi-sensor using the 
multiscale sequential fusion. We find that the 
estimation accuracy improved 2.53 times. 

Table 1: MAE of sequential fusion and single KF. 

 

6 CONCLUSIONS 

Hybrid wavelet-Kalman filter method can obtain the 
real time multi-scale estimate of dynamic system. 
The multiscale sequential fusion algorithm based on 
it can easily fuse information from multiple sensors 
sequentially without designing other complex fusion 
algorithm. In addition, the hybrid wavelet-Kalman 
filter multiscale sequential fusion method can used 
to fuse non- n2  sampled data just by designing the 
periodically varied stacked observation matrix.  
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 MAE 

single sensor Kalman filter 0.2169 
3 sensor sequential fusion 0.0857 
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