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Abstract: The paper deals with the predictive control for linear systems subject to constraints, technique which leads 
to nonlinear (piecewise affine) control laws. The main goal is to reduce the sensitivity of these schemes with 
respect to the model uncertainties and avoid in the same time a fastidious on-line optimisation which may 
reduce the range of application. In this idea a two stage predictive strategy is proposed, which synthesizes in 
a first instant an analytical (continuous and piecewise linear) control law based on the nominal model and 
secondly robustify the central controller (the controller obtained when no constraint is active). This 
robustification is then expanded to all the space of the piecewise structure by means of its corresponding 
noise model. 

1 INTRODUCTION 

The model predictive control (MPC) laws are 
optimization based techniques which allow 
constraints handling from the design stage. The 
analytical formulation of the optimum and its on-line 
evaluation avoids a challenging optimization from 
the point of view of the real-time control 
environment. Solutions in this direction exist at least 
for two important classes of problems (linear and 
quadratic) subject to linear constraints due to the 
Abadie constraint qualification (Goodwin et al., 
2004). It must be said that these are in fact a part of 
a larger class of multiparametric convex programs 
(Bemporad et al., 2002b) for which exact or 
approximate algorithms exist (TØndel et al., 2003, 
Seron et al, 2003, Olaru and Dumur, 2004; 
Bemporad and Filippi, 2006). 

In the case of robust predictive control laws, the 
model uncertainties and the disturbances can be 
taken into account at the design stage. A popular 
technique in this sense is the use of a min-max 
criterium (in the case when the extreme combination 
of disturbances or uncertainties are known) 
(Kerrigan and Maciejowski, 2004; Bemporad et al., 
2002a) which comes finally to the resolution of a 
single multiparametric linear program. The structure 
of this ultimate optimization is however quite 
complex and large prediction horizons cannot be 
handled due to the exponential growth of 

disturbances realization to be taken into account. In 
a slightly different manner, by constructing an 
estimation mechanism (Goodwin et al., 2004) for the 
constrained variables, one can obtain alternatively a 
robust control structure, but the multiparametric 
optimization remains intricate. 

A first study on the robustness improvements for 
the explicit affine feedback policy constructed upon 
constrained predictive control strategies was 
presented in (Olaru and Rodriguez-Ayerbe, 2006). 
The simplest way to proceed is to consider an 
observer of the state variables (Goodwin et al., 
2004), the dimension of the state space being 
preserved and  the piece-wise structure of controller 
unchanged. The same observer can be used for all 
feasible regions and can be viewed as noise 
characterisation of the model. Nevertheless, the 
observer does not describe the entire class of 
stabilizing controllers. The present paper presents an 
improved result based on the Youla-Kučera 
parametrization which spans the space of stabilizing 
controllers. For a two-degree of freedom controller, 
one has access to all the stabilizing controllers that 
preserve the same input/output behavior, so the 
Youla-Kučera parameter offers more degrees of 
freedom than the use of an observer. 

The robustification is made such that the state 
space dimension of the controller is augmented. The 
main contribution here is the reconstruction of the 
noise model induced by the central Youla-Kučera 
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parameter, in order to use it to generate the 
corresponding robust piece-wise controller. 

In the following, section 2 briefly recalls the 
predictive control and the Youla-Kučera 
parametrization. Section 3 details the explicit 
formulation of the control laws obtained in the 
constrained case. Section 4 contains the main 
contribution: the noise model of the Youla-Kučera 
parameter and the numerical examples are presented 
in section 5 and the final conclusions in section 6. 

2 PREDICTIVE CONTROL 

The Generalized Predictive Control (GPC) strategy, 
introduced in (Clarke et al., 1987), uses for the 
prediction a CARIMA plant model: 
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with u, y the input and output, ξ  a white noise, A 
and B polynomials in the backward shift operator of 
degrees an  and bn  respectively, and 

11 1)( −− −=Δ qq the difference operator. The C 
polynomial is the model argument taking into 
account the noise influence on the system. In the 
GPC case the cost function to be minimized over a 
receding horizon is quadratic:  
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where 21, NN  are the costing horizons, uN  the 
control horizon, jλ  the control weighting factor and 
w the set-point. 

Using the model (1) and the solution of some 
Diophantine equations (Clarke et al., 1987), this 
control strategy leads to two-degrees of freedom 
RST controller, implemented through a difference 
equation (Figure 1): 
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Figure 1: Two-degrees of freedom GPC controller. 

In (Yoon and Clarke, 1995) the relation between 
the RST controller obtained with C=1 and 1≠C  is 
studied. Considering TSR ′′′ ,,  the controller 
obtained with C=1 and TSR ,,  whose obtained with 

1≠C , the following relations are obtained: 
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∑
=

− −′=
2

1

)()( 1
N

Ni
ii

i
i EECqqM α  (4) 

 

[ ]21 NN αα K=m  (5) 
 

m  being the first row of T1T )( GΛGG −+ . 
 
The set of all stabilizing controllers for the system 
shown in Figure 1 is given by the Youla-Kučera 
parametrization as follows (Maciejowski, 1989): 
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where )( 1−qQ is a stable transfer function. 
The choice of the Q parameter is a complex 

problem on its own but it is not the subject of the 
current paper. The methods presented in (Rodriguez 
and Dumur, 2005; Rossiter 2003; Ansay et al., 1998; 
Yoon and Clarke, 1995; Kouvaritakis et al., 1992) 
can be used for the choice of this parameter. 

Comparing (3) and (6) it turns out that the 
controller for 1≠C  is obtained for Q=M/C. As M 
depends of C as shown by (4), the robustification by 
the C polynomial has less degrees of freedom than 
the robustification by Youla-Kučera parameter 
(Yoon and Clarke, 1995). 

3 EXPLICIT CONSTRAINED 
GPC LAWS 

In the case when the GPC law is subject to 
constraints, the optimization has to be solved with 
respect to a feasible domain. If the considered 
constraints are stated on the control action, on the 
control increment, on the plant outputs or any other 
signal related by a CARIMA model to the control 
signal, then one can restate them in a form 
depending only on the control increment, leading to 
a set of linear constraints (Ehrlinger et al., 1996): 
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involving the optimization argument )(tuk  and the 
vector of context parameters: 

 

{ }[ ]TTTT wΔuγyp pastpastpastt =  (8) 
 

which regroups a finite sequence of past inputs Δu , 
future setpoints w , past outputs y and present and 
future values of the signals under constraints (noted 
for short pastγ ). 

It is interesting to observe that this set of 
constraints characterizes in fact a parameterized 
polyhedron (Olaru and Dumur, 2004) in the 
optimization argument space. The optimum will lie 
on a combination of its parameterized vertices and 
thus one can construct the explicit solution for the 
multiparametric optimization: 

The use of a dual representation of the feasible 
domain and projection mechanisms (see Olaru and 
Dumur, 2004 and 2005) can be advantageous in 
order to express the optimality conditions if there 
exist unbounded feasible directions. 
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Subsequently, the predictive control law can be 
described explicitly upon the solution of (9) as a 
piecewise affine function of the vector of parameters 
(Seron et al, 2003; Bemporad et al., 2002; Olaru and 
Dumur, 2004). 
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with CRi, critical regions in the space of context 
parameters, The GPC subjet to constraints has a 
piecewise RST polynomial form: 
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The structure of such a piecewise controller is 
shown in Figure 2. Once the look-up table of local 
polynomial RST laws is available, an efficient 
positioning mechanism (based on a search tree) can 
be constructed such that the on-line evaluation 
routine can find the optimal control action according 
to the GPC philosophy (TØndel et al., 2003).  

4 ROBUSTIFICATION 

At this stage, it is assumed that the design of initial 
controller has been performed with 1N , 2N , uN , λ 
adjusted to satisfy the required input/output 
behavior. The resulting picewise two-degrees of 
freedom RST controller will be denoted iii TSR ′′′ ,, , in 
the following sections. 

The observer based robustification corresponds 
to the consideration of an observer of the state. In 
the case of GPC, this corresponds to a choice of a C 
polynomial. The roots of this polynomial correspond 
to the poles of the observer. The obtained piecewise 
controller can be implemented as in Figure 2, see 
also (Olaru and Rodriguez-Ayerbe, 2006, Camacho 
and Bordons, 2004 ; Bitmead et al.,1990).  
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Figure 2: Piecewise RST formulation for the GPC law 
under constraints and robustification using the C 
polynomial. 

The Youla-Kučera parameter based robusti-
fication has more degrees of freedom than the use of 
an observer. It allows to access the entire space of 
stabilizing controllers. The idea is thus to robustify 
the central RST law of the piecewise controller, that 
is, the law where the constraints are not activated, 
and to expand this robustification to the others RST 
laws of the initial piecewise controller. The choice 
of this parameter can be done using stability 
robustness and nominal performance specifications, 
see (Rodriguez and Dumur, 2005; Rossiter 2003; 
Ansay et al., 1998; Yoon and Clarke, 1995; 
Kouvaritakis et al., 1992). In the following the 
selection will be done according to these principles.  

As the use of an observer corresponds to the 
consideration of a C polynomial for the noise 
influence on the CARIMA model (1), the idea is to 
find the corresponding noise model of the Youla-
Kučera parameter. To do this, an extra polynomial is 
added in the model of the system. A )( 1−qD  
polynomial will appear as following: 
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With this new model, Diophantine equations are: 
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Finding the relation between the controller 
obtained for C=D=1 and the one obtained for 1≠C  
and 1≠D , we obtain something similar to (3). 
Considering TSR ′′′ ,,  the controller obtained with 
C=D=1 and TSR ~,~,~  whose obtained with 1≠C  and 

1≠D , the following relations are obtained: 
 

CTTMBqCSSMACRR ′=−′=Δ+′= − ~~~~~ 1  (14) 
 

With, (see Appendix for structural details) : 
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So, the D polynomial corresponding to the 
considered Youla-Kučera parameter must verify: 
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Once the corresponding noise model has been 

obtained, it can be used to regenerate the piecewise 
affine controller. The same input/output behaviour 
as for the initial one is assured, in the ideal case of 
no model errors. A modified close loop behaviour 
will be observed with respect to disturbance 
rejection, robustness, etc. 

The resolution of (16) is a non linear problem 
that can be undertaken with standard optimization 
methods. Nevertheless, is not always possible to 
guarantee a real solution. The resolution of (16) and 
its limitations are raising interesting questions, 
research being currently conducted on this subject. 
From a practical point of view, any such limit case 
can be avoided by retuning the initial predictive 
control parameters or the robustification 
specification. 

5 EXAMPLE 

Consider the position control of an induction motor, 
with 1.0724 ms as sampling period
 

)998.01)(1(
)8206.0821.0(10

)(
)()( 11

214

1
ref

1
1

−−

−−−

−

−
−

−−
+==

qq
qq

q
qqH

τ
θ  (17) 

 

Constraints in control amplitude are considered: 
],[ maxmaxref τττ −∈  and 8.1max =τ . An initial 

GPC controller is designed with 1== DC  with the 
following tuning parameters: ,11 =N  ,162 =N  

0001.0=λ  and 2=uN . The position of the motor 
is obtained through an encoder of 14400 points per 
rotation, and the highs dynamics of the system 
(current loop, inverter dynamic, mechanic dynamics 
in high frequency) have been not identified. 

This initial controller is obtained with (9). A 
piecewise linear controller with 9 regions is 
obtained. The central region corresponds to the case 
where no constraint is active. This controller will be 
noted 000 ,, TSR . 

To robustify off-line this piecewise controller, 
the idea is to robustify the central one ( 000 ,, TSR ) 
and expand this robustification to other regions. In 
this way a Youla-Kučera parameter has been 
obtained by method described in (Rodriguez and 
Dumur, 2005). The following parameter is 
considered. 
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With (6), we obtain the controller QQQ TSR 000 ,, . 
Solving (16) with denQC = , the following D 

polynomial is obtained: 
 

4321 426.0018.0472.0873.01 −−−− +−+−= qqqqD  (19) 
 
This value has been obtained by available 

optimization methods (classical Matlab routines in 
occurrence) as long as (16) represents a set of non 
linear equations difficult to solve analytically. 

With this D polynomial, the optimization 
problem (9) can be solved but this time with 
matrices obtained from (13) for denQC =  and D as 
in (19). The solution of this new optimization 
problem leads to a new piecewise controller with 9 
regions, as the initial one. The central controller of 
this piecewise controller correspond to QQQ TSR 000 ,, .  

Figures 3 and 4 show the obtained simulations 
results for a filtered step reference considering a 
second order neglected dynamic in high frequency 
of the following characteristics: srad /10000 =ω  

3.0=ξ . 
In these figures we can observe that the obtained 

behaviour is stable in the case of robustified 
controller and instable in the case of initial 
controller. So, the robustified controller has better 
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behaviour towards uncertainties in high frequency 
and the continuity between regions is guaranteed. 
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Figure 3: Position reference, position error, control signal 
and active region for the initial controller and uncertain 
model. 
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Figure 4: Position reference, position error, control signal 
and active region for the robustified controller and 
uncertain model. 

6 CONCLUSIONS 

The paper investigated the robustification methods 
for the control laws obtained in a constrained 
predictive control framework. The idea is to design 
in a first instance a piecewise polynomial controller 
which satisfy the basic demands in terms of tracking 
performances. In a second stage, the same predictive 
control structure (prediction horizon, weightings, 
etc.) is robustified using the model arguments 
accounting for the noise influence. The idea is 
similar to that of using a fixed observer, but 
exploring all the class of stabilizing controllers of 
the unconstrained system. This increases the number 
of degrees of freedom.  

The robustification of initial unconstrained 
controller is made using the Youla-Kučera 

parametrization, and then this robustification is 
expanded to all the piecewise structure of the 
controller. For this, the noise model corresponding 
to the Youla-Kučera parameter is found, and use to 
regenerate the robust piecewise controller by 
preserving the same input/output behavior but being 
more robust. 

The limitations of the method are in the existence 
of the corresponding noise model of the Youla-
Kučera parameter. This is transparent in the 
resolution of a non linear equation system. The 
robustification being done off-line, any infeasibility 
can be handled by retuning the GPC parameters.  
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APPENDIX 

By solving the first Diophantine equation of (13) for 
C=D=1 and 1≠C , 1≠D , a relationship between 
the R′  polynomial obtained for C=D=1 and the R~  
obtained for 1≠C , 1≠D is obtained:  
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With the same development, the corresponding 

expression for S~  of (14) is obtained. Solving (16) 
comes to the identification of a D polynomial 
corresponding to )( 1−qQnum . It must be noted that 
the first i coefficients of 1+iE  are the same than 
those of iE  polynomials. ( iE  is a polynomial of 
degree i-1.) With this, the solution of D for the 
numerical example has been obtained solving the 
following non linear equations: 
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(21) 

 
With )~~( 1514321 eedddd L=x , the 

following problem has been solved: 
0)( =xF  

With F defined by the matrix relations (20) and 
(21), and using a standard optimization routine. 
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