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Abstract: Early fault detection, which reduces the possibility of catastrophic damage, is possible by detecting the 
change of characteristic features of the signals. The aim of this article is to detect faults in complex 
industrial systems, like the Tennessee Eastman Challenge Process, through on-line monitoring. The faults 
that are concerned correspond to a change in frequency components of the signal. The proposed approach 
combines the filters bank technique, for extracting frequency and energy characteristic features, and the 
Dynamic Cumulative Sum method (DCS), which is a recursive calculation of the logarithm of the likelihood 
ratio between two local segments. The method is applied to detect the perturbations that disturb the 
Tennessee Eastman Challenge Process and may lead the process to shut down. 

1 INTRODUCTION 

The fault detection and isolation (FDI) methods are 
of particular importance in industry as long as the 
early fault detection in industrial systems reduces the 
personal damages and economical losses. Basically, 
model-based and data-based methods can be 
distinguished for diagnosis purposes. Model-based 
diagnosis requires a sufficiently accurate 
mathematical model of the process and compares the 
measured data with the knowledge, provided by the 
model of the considered system, in order to detect 
and isolate the faults that disturb the process. Parity 
space approach, observers design and parameters 
estimators are well known examples of model-based 
methods (Blanke and al., 2003; Patton and al., 2000). In 
contrast, non-model-based diagnosis requires a lot of 
process measurements and can also be divided into 
signal processing methods and artificial intelligence 

approaches. This study continues our research in 
frequency domain, concerning fault detection by 
means of filters bank (Mustapha and al., 2007; 
Mustapha and al., 2007b). The aim of this article is to 
propose a method for the on-line detection of 
changes applied after a filters bank decomposition 
that is needed to explore the frequency and energy 
components of the signal. The Moving Average 
(MA) and Auto Regressive Moving Average 
(ARMA) band pass filters are used to explore the 
frequency components. The motivation is that the 
filters bank modeling can transform the frequency 
changes into energy changes. Then, the Dynamic 
Cumulative Sum detection method (Khalil and 
Duchêne, 2000) is applied to the filtered signals (sub-
signals) in order to detect any change in the signal. 
Filters bank is preferred in comparison with wavelet 
transform (Mustapha and al., 2007) because it could be 
directly implemented as a real time method.   
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2 PROBLEM STATEMENT 

This work is originated from the analysis and 
characterization of random signals. In our case, the 
recorded signals can be described by a random 
process x(t) as x(t) = x1(t) before the point of change 
tr and x(t) = x2(t) after the point of change tr where tr 
is the real time of detection. x1(t) and x2(t) can be 
considered as random processes where the statistical 
features are unknown but assumed to be identical for 
each segment 1 or 2. Therefore we assume that the 
signals x1(t) and x2(t) have Gaussian distributions. 
We will suppose also that the appearance times of 
the changes are unpredictable. We also suppose that 
the frequency distribution is an important factor for 
discriminating between the successive events.  

Knowing that the signals from industrial systems 
are considered as slowly varying non-stationary 
ones, each change could be identified by its 
frequency content; our approach assumes piecewise 
stationary signals and the statistical parameters are 
the same for the two segments before and after the 
change. The application of any sequential detection 
algorithm directly on the original signal will 
decrease the probability of detection. However, after 
filters bank decomposition, the frequency change 
will be transformed into energy change and the 
detectability of the sequential detection algorithm 
will be improved.  After decomposition of x(t) into 
N components : y(m)(t), m = 1,..,N, the problem of 
detection can be transformed to an hypothesis test: 
H0 : y(m)(t), t ∈ {1,…, tr}

 
has a probability density 

function f0 and H1 : y(m)(t), t ∈ { tr + 1,…, n}

 
 has a 

probability density function f1. 

3 FILTERS BANK TECHNIQUE 

In order to explore the frequency and energy 
components of the original signal, an important pre-
processing step is required before detection, feature 
extraction and classification. At a discrete time t, the 
signal is first decomposed by using an N-channels 
band-pass filters bank whose central frequency 
moves from lowest frequency f1 up to the highest 
frequency fN. Each component m ∈ {1, …, N} is the 
result of filtering the original signal x(t) by a band-
pass filter centered on fm. The frequency response 
curves of the filters bank is shown in figure 1. fN 
must satisfy the condition fN  ≤  fs /2, fs is the 
sampling frequency of the original signal x(t), N is 
the number of channels used. The choice of the 
filters bank depends on the original signal and its 

frequency band. The number of filters N depends on 
the details that we have to extract from the signal 
and to the events that must be distinguished. 

 
H(jf) in dB

f

fs/2N

f 1 f m fN  
Figure 1: Responses of the filters bank. 

The procedure of decomposing x(t) into signals 
y(m)(t), m = 1,..,N, allows us to explore all frequency 
components of the signal. y(1)(t) gives the low 
frequency components and y(N)(t) gives the high 
frequency ones. Therefore, the points of change of 
each component give information about the 
frequency and energy contents and will be used to 
detect any changes in frequency and energy in the 
original signal.  

For each component m, and at any discrete time 
t, the sample y(m)(t) of an ARMA-type filter is on-
line computed according to the original signal x(t) 
and using the parameters ai

(m) and bi
(m) of the 

corresponding band-pass filter according to the 
difference equation (1):  

 
( ) ( ) ( ) ( )

0 1

( ) ( ) ( ) ( ) ( )
p q

m m m m

i i

y t b i x t i a i y t i
= =

= − − −∑ ∑  (1) 

 
where x(t) is the input signal of the filter, y(m)(t) is 
the output signal from the filter m, a(m)(i) and b(m)(i) 
are the numerator / denominator coefficients of the 
filter at level m, a(m)(0) = 1, m=1,…,N, and p and q 
are the orders of the filter for a given level m, and 
they are assumed to be identical at any level, for 
simplicity. 

The result of detection depends on the number of 
the band pass filters used, the central frequencies 
and the bandwidth of each channel. In practice, 
filters are uniformly chosen between zero Hertz and 
the half of the sampling frequency (fs/2). For real 
applications, the choice of the band pass filters are 
done after comparing the spectral density of two 
segments (signals x1(t) and x2(t)).  We start with N 
filters and then reject the filters that do not give 
energy changes in sub-signals. The technique of 
comparing the frequency content (deciles or 
percentiles) is used by many authors to select the 
best filters (Falou, 2002). 
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4 SEQUENTIAL ALGORITHMS 
OF DETECTION 

4.1 Cumulative Sum Method 

The Cumulative Sum algorithm (CUSUM) is based 
on a recursive calculation of the logarithm of the 
likelihood ratios (Basseville and Nikiforov, 1993; 
Nikiforov, 1986). Let x1,x2,x3,…,xt be a sequence of 
observations. Let us assume that the distribution of 
the process X depends on parameter θ0 until time tr 
and depends on parameter θ1 after the time tr. At 
each time t we compute the sum of logarithms of the 
likelihood ratios as follows: 
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where, ƒθ is the probability density function. The 
importance of this sum comes from the fact that its 
sign changes after the point of change. The real 
point of change tr can be estimated by tc: 

 
tc = max {t : S1

(t,m) – min{i : S1
(i,m) } = 0}.   (3) 

4.2 Dynamic Cumulative Sum Method  

The Dynamic Cumulative Sum method (DCS) is 
based on the local dynamic cumulative sum, around 
the point of change tr, and can be used when the 
parameters of the signal are unknown (Khalil and 
Duchêne, 2000). It is based on the local cumulative 
sum of the likelihood ratios between two local 
segments estimated at the current time t. These two 
dynamic segments )(t

aS (after t) and )(t
bS  (before t) 

are estimated by using two windows of width W 
(figure 2) before and after the instant t as follows: 
• }1,...,{i ;:)( −−= tWtxS i

t
b  follows a 

probability density function ( )ixf
bθ  

• },...,1{i ;:)( WttxS i
t

a ++=  follows a 
probability density function ( )ixf

aθ  

The parameters 
)(^ t

bθ  of the segment )(t
bS , are 

estimated using W points before the instant t and the 

parameters 
)(^ t

aθ  of the segment )(t
aS , are estimated 

using W points after the instant t.  At a time t, and 
for each level m, the DCS is defined as the sum of 
the logarithm of likelihood ratios from the beginning 
of the signal up to the time t: 
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(Khalil, 1999) proves that the DCS function 

reaches its maximum at the point of change tr. The 
detection function used to estimate the point of 
change is: 
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The instant at which the procedure is stopped is ts 

= min {t : g(m)
t ≥ h}, where h is the detection 

threshold. The point of change is estimated as 
follows: 

 
tc = max {t>1 : g(m)

t = 0} (6) 
 

Figure 2: Application of the DCS on a signal of abrupt 
change. a) Original signal; b) DCS function; c) Detection 
function g(t). 

4.3 DCS Algorithm Combined with 
MA-type Filters Bank 
Decomposition 

The detection is improved when the DCS method is 
applied after ARMA or MA modeling, especially 
when the signal presents no abrupt change, and the 
direct application of the DCS algorithm leads to 
ambiguous results that are sometimes difficult to 
interpret for accurate fault detection. In case of MA 
modeling, (i.e. ai = 0), equation (2) leads to (7): 
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In (Mustapha and al., 2007b), the detectability of 
the DCS algorithm after MA – type filters bank is 
proved. The basic idea is to prove that a change in a 
parameter is equivalent to a change of the sign of the 
expectation of the logarithm of the likelihood ratio: 

before the instant of change, 0)(
~

>tSE and after 

instant of change 0)(
~

<tSE  where : 
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and )()( t

aσ  stands for the variance of the segment 
)(t

aS  and )()( t
bσ for the variance of the segment )(t

bS . 
For MA filter and assuming that the successive 
samples of x(t) are independent, (8) leads to (9): 
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For t <  tr - W, )(t

aS  and )(t
bS  are identical and have 

the same characteristics so, 
~

( ) 0tE S = . For tr - W < t 

< tr, )(t
aS  and )(t

bS  are no longer identical and 

0)(
~

>tSE , and for tr < t < tr + W we have 0)(
~

<tSE . 

Finally for t >  tr + W, )(t
aS  and )(t

bS  are identical 

again and 
~

( ) 0tE S = . 

This demonstrates that 
~

tS  increases before tr, rea-
ches a maximum at tr then decreases. So, in order to 
detect the point of change tr, we search to detect the 

maximum of 
~

tS  by using the detection function gt. 

5 FUSION TECHNIQUE 

Because the detection algorithm is applied 
individually to each frequency component, it is 
important to apply a fusion technique to the resulting 
times of change in order to get a single value for a 
given fault in the system. The fusion technique is 
achieved as follows: 

-Each point of change at a given level is 
considered as an interval [tc-a, tc+a], where a is 
an arbitrary number of points taken before and 
after the point of change. 

-All the time intervals that have a common time 
area are considered to correspond to the same 
fault. 
-The resulting point of change tf is calculated as 
the center of gravity (or mean) of the 
superimposed intervals. 

6 APPLICATION TO TECP 

In this section, the method, based on filters bank 
decomposition and DCS algorithm, is applied to 
detect disturbances on the Tennessee Eastman 
Challenge Process (TECP; Downs and Vogel, 1993). 
The TECP is a multivariable non-linear, high 
dimensionality, unstable open-loop chemical reactor, 
that is a simulation of a real chemical plant provided 
by the Eastman company. There are 20 disturbances 
IDV1 through IDV20 that could be simulated 
(Downs and Vogel, 1993; Singhal, 2000). The 
sampling period for measurements is 60 seconds.  

The TECP offers numerous opportunities for 
control and fault detection and isolation studies. In 
this work, we use a robust adaptive multivariable (4 
inputs and 4 outputs) RTRL neural networks 
controller (Leclercq and al., 2005; Zerkaoui and al., 
2007) This controller compensates all perturbations 
IDV1 to IDV 20 excepted IDV1, IDV6 and IDV7. 

The figure 3 illustrates the advantage of our 
method to detect changes for real world FDI 
applications. Measurements of the reactor 
temperature (figure 3a) are decomposed into 3 
components and according a 3 – channels band pass 
filters bank (figure 3c, d, e). The sampling frequency 
of this signal is 0.0167 Hz and the normalized 
central frequencies of the filters are: fc1 = 0.64,  
fc2 = 0.74, fc3 = 0.77. From time tr = 600 hours, the 
unknown perturbation IDV16 modifies the dynamic 
behavior of the system. The detection functions 
applied on the 3 components (figure 3f, g, h) can be 
compared with the detection function applied 
directly on the measurement of pressure (figure 3b).  

The detection results are considerably improved 
by using the filters bank as a -preprocessing. In that 
case, the DCS applied on original signal is not 
suitable to detect the perturbation whereas the DCS 
combined with 3- channels band pass filters bank 
can detect the perturbation. After fusion, the 
estimated instant of change is tf = 669 hours that 
include a large delay to detection of 69 hours. 

 

FAULT DETECTION BY MEANS OF DCS ALGORITHM COMBINED WITH FILTERS BANK - Application to the
Tennessee Eastman Challenge Process

105



Table 1: Detection delays for several perturbations in TECP.  

Disturbance Significance T° Pr sepL StrL 
IDV 2 B composition, A/C ratio constant (step) 599/677 601/ 665 510/ 535 502/518 
IDV 3 D feed temperature (step) 665/680 X X X 
IDV 4 Reactor cooling water inlet temperature (step) 602/603 X X X 
IDV 8 A, B, C feed composition (random variation) 650/660 650/660 513/634 343/353 
IDV 9 D feed temperature (random variation) 279/287 X X X 
IDV 11 Reactor cooling water inlet temperature (random 

variation) 607/608 X X X 

IDV 16 Unknown 647/670 X X X 
IDV 17 Unknown 660/850 X X X 

 
Figure 3: Analysis of the reactor temperature 
measurements (°C) for TECP with robust adaptive control 
and for IDV 16 perturbation from tr = 600. a) Original 
signal  b) DCS applied directly on the original signal  
c) d) e)Decomposition using band pass filters(m = 1,2,3)  
f) g) h) Detection functions applied on the filtered signals 
(c, d, e). 

The diagnosis of numerous perturbations has 
been investigated with our method in order to show 
the efficiency of the approach. All perturbations 
have been simulated starting from time tr = 600 
hours. The table 1 shows the results obtained with 
various measured signals and various perturbations. 
Two studies have been considered: 
• For perturbations IDV 2 – 3 – 4 – 8 – 9 – 11 –16 

–17, the detection has been investigated in a 
systematic way from the measurements of 
temperature in reactor. 

• For perturbations IDV 2 and IDV 9, the 
detection has been compared depending on the 
measured variable (T, Pr, StrL, SepL). 
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Figure 4: Analysis of the reactor separator level (%) for 
TECP with robust adaptive control and for IDV 2 
perturbation from tr = 600. a) Original signal b) DCS 
applied directly on the original signal  
c) d) e)Decomposition using band pass filters  
(m = 1,2,3) f) g) h) Detection functions applied on the 
filtered signals (c, d, e). 

Table 1 shows the minimal and maximal values 
of tc obtained over the three components. The 
detection of changes was satisfactory in most cases 
depending on the measured signals and the filters 
that have been used. It is already important to notice 
that IDV 2, that consists in a step in B composition, 
cannot be detected with Y3 and Y4 (dark grey cells). 
This perturbation corresponds to a modification of 
the mean value that can be detected with other 
methods (figure 4). IDV 8 and IDV 9 also present 
some difficulties with some measured variable. But 
an adaptation of threshold h used with detection 
function and an adaptation of the central 
decomposition frequencies will lead to acceptable 
results. One can also notice the large dispersion of 
the detection times in some cases. 

tf=523 
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7 CONCLUSIONS 

The aim of our work is to detect the point of change 
of statistical parameters in signals issued from 
complex industrial processes. This method uses a 
band-pass filters bank combined with DCS to 
characterize and classify the parameters of a signal 
in order to detect any variation of the statistical 
parameters due to any change in frequency and 
energy. The proposed algorithm provides good 
results for the detection of frequency changes in the 
signal and can be used to detect the perturbation of 
chemical processes as the TECP under stable closed 
loop control. The results illustrate the interest of the 
approach for on – line detection and real world 
applications. Changes due to faults are easily 
separated from changes due to input variations by 
the comparative analysis of  input and output 
signals. 

In the future, we will investigate detectability in 
case of abrupt variations of the mean (figure 4). We 
will also consider multiple faults investigation and 
fault isolation based on signatures table of faults. 
Fault isolation can be studied according to the 
classification of the changes that are detected and 
can certainly be improved by increasing the number 
of considered filters and adapting their central 
frequencies. We will also study the automatic 
adaptation of the detection threshold h and complete 
the diagnosis with faults identification. 
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