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Abstract: A recursive (adaptive) algorithm for the identification of dynamical linear errors-in-variables systems in the
case of coloured output noise is developed. The input measurement noise variance as well as the auto-
covariance elements of the coloured output noise sequence are determined via two separate Newton algo-
rithms. The model parameter estimates are obtained by a recursive bias-compensating instrumental variables
algorithm with past noisy inputs as instruments, thus allowing the compensation for the explicitly computed
bias at each discrete-time instance. The performance of thedeveloped algorithm is demonstrated via simula-
tion.

1 INTRODUCTION

Linear time-invariant (LTI) errors-in-variables (EIV)
models are characterised by an exact linear relation-
ship between input and output signals where both
quantities are assumed to be corrupted by additive
measurement noise (Söderström, 2007b). An EIV
model representation can be advantageous, if the aim
is to gain a better understanding of the underlying
process rather than prediction. One interesting ap-
proach for the identification of dynamical systems
within this framework is the so-called Frisch scheme
(Beghelli et al., 1990), which yields estimates of the
model parameters as well as the measurement noise
variances. The dynamic Frisch scheme presented in
(Beghelli et al., 1990; Söderström, 2007a) assumes
that the additive disturbances on the system input and
output are white. Such an assumption, however, can
be rather restrictive since the output noise often not
solely consists of measurement uncertainties, but also
aims to account for process disturbances, which are
usually correlated in time. In order to overcome this
shortcoming, the Frisch scheme has recently been ex-
tended to the coloured output noise case (Söderström,
2008). This paper develops a recursive (adaptive) for-
mulation of the algorithm developed in (Söderström,
2008), which allows the estimates to be calculated
online as new data arrives. Recursive algorithms for
the white noise case have been considered in (Linden
et al., 2008; Linden et al., 2007).

The paper is organised as follows. Section 2
presents the EIV identification problem and intro-
duces some notational conventions. Section 3 reviews

the offline Frisch scheme procedure for the white
noise as well as the coloured noise case. Section 4
develops the recursive algorithm and Section 5 pro-
vides a numerical example. Conclusions are given in
Section 6.

2 PROBLEM STATEMENT AND
NOTATION

In this paper, a discrete-time, LTI single-input single-
output (SISO) EIV system is considered, which is de-
scribed by

A(q−1)y0i = B(q−1)u0i , (1)

wherei is an integer valued time index and

A(q−1) , 1+a1q
−1 + ...+anaq

−na, (2a)

B(q−1) , b1q−1 + ...+bnbq
−nb (2b)

are polynomials in the backward shift operatorq−1,
which is defined such thatxiq−1 = xi−1. The noise-
free inputu0i and outputy0i are unknown and only
the measurements

ui = u0i + ũi, (3a)

yi = y0i + ỹi (3b)

are available, where ˜ui and ỹi denote input and out-
put measurement noise, respectively. Such a setup is
depicted in Figure 1. The following assumptions are
introduced:
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A1. The dynamic system (1) is asymptotically sta-
ble, i.e. A(q−1) has all zeros inside the unit
circle.

A2. All system modes are observable and control-
lable, i.e. A(q−1) andB(q−1) have no com-
mon factors.

A3. The polynomial degreesna andnb are known
a priori with nb ≤ na.

A4. The true inputu0i is a zero-mean ergodic pro-
cess and is persistently exciting of sufficiently
high order.

A5a. The sequence ˜ui is a zero-mean, ergodic, white
noise process with unknown varianceσũ.

A5b. The sequence ˜yi is a zero-mean, ergodic noise
process with unknown auto-covariance se-
quence{rỹ(0), rỹ(1), · · · }.

A6. The noise sequences ˜ui andỹi are mutually un-
correlated and uncorrelated withu0i .

The auto-covariance elements in A5b are defined by

rỹ(τ) , E [ỹkỹk−τ] , (4)

where E[·] denotes the expected value operator.
Within this paper covariance matrices of two column
vectorsvk andwk are denoted

Σvw , E
[

vkw
T
k

]

, Σv , E
[

vkv
T
k

]

, (5)

whilst vectors consisting of covariance elements are
denoted

ξvc , E [vkck] (6)

with ck being a scalar. The corresponding estimated
sample covariance elements are denoted in a similar
manner

Σ̂k
vw ,

1
k

k

∑
i=1

vkw
T
k , Σ̂k

v ,
1
k

k

∑
i=1

vkv
T
k , ξ̂k

vc ,
1
k

k

∑
i=1

vkck.

(7)

In addition, the parameter vectors are formed by

θ ,
[

aT bT
]T

=
[

a1 ... ana b1 ... bnb

]T
,

(8a)

θ̄ ,
[

āT bT
]T

=
[

1 θT
]T

, (8b)

u0i y0i yi

ỹi
ũi ui

system

Figure 1: Errors-in-variables setup.

which gives an alternative description of (1)-(3) by

ϕ̄T
0i

θ̄ = 0, (9a)

ϕ̄i = ϕ̄0i + ˜̄ϕi, (9b)

where the regression vector is given by

ϕi ,
[

ϕT
yi

ϕT
ui

]T
(10)

, [−yi−1 ... −yi−na ui−1 ... ui−nb]
T
,

ϕ̄i ,
[

ϕ̄T
yi

ϕT
ui

]T
, [−yi ϕT

i ]T . (11)

The noise-free regression vectorsϕ0i , ϕ̄0i and the vec-
tors containing the noise contributionsϕ̃i , ˜̄ϕi are de-
fined in a similar manner. The identification problem
is now given by:

Problem 1. Given k samples of noisy input-output
data {u1,y1, ...,uk,yk}, determine an estimate of the
augmented parameter vector

ϑ ,
[

a1 ... ana b1 ... bnb σũ

rỹ(0) · · · rỹ(na)
]T

. (12)

Throughout this paper, the convention is made that
estimated quantities are marked by a ˆ whilst time de-
pendent quantities have a sub- or superscriptk, e.g.
Σ̂k

ϕ for a sample covariance matrix corresponding to
Σϕ.

3 FRISCH SCHEME

3.1 White Noise Case

If the least squares (LS) estimator is directly applied
to estimate the parameters of the EIV system (1)-(3),
the estimates will generally be biased (Söderström,
2007a). However, if the statistical nature of the noise
sequences is known, it is possible to compensate for
the bias. The Frisch scheme belongs to the class of
such bias-compensating LS techniques. The compen-
sated normal equations are given by

(

Σ̂k
ϕ − Σ̂k

ϕ̃

)

θ̂k = ξ̂k
ϕy, (13)

whereΣ̂k
ϕ and ξ̂k

ϕy are defined by (7). In the case of

white noise sequences the compensating matrixΣ̂k
ϕ̃ is

diagonal and given by
[

r̂k
ỹ(0)Ina 0

0 σ̂k
ũInb

]

, (14)

whereIn denotes the identity matrix of dimensionn.
Within the Frisch scheme, the variancesσ̂k

ũ, r̂k
ỹ(0) of

input and output measurement noise, respectively, are
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determined such that the extended compensated nor-
mal equations equate to zero

0 =
(

Σ̂k
ϕ̄ − Σ̂k

˜̄ϕ

)

ˆ̄θk (15)

=

([

Σ̂k
ϕ̄y

Σ̂k
ϕ̄yϕu

Σ̂k
ϕuϕ̄y

Σ̂k
ϕu

]

−

[

r̂k
ỹ(0)Ina+1 0

0 σ̂k
ũInb

]

)

ˆ̄θk,

i.e. such that̂Σk
ϕ̄ − Σ̂k

˜̄ϕ is singular. By utilising the
Schur complement, the input noise variance can be
expressed as a nonlinear function of the output noise
variance and vice versa (Beghelli et al., 1990)

r̂k
ỹ(0) = λmin

(

Σ̂k
ϕ̄y
− Σ̂k

ϕ̄yϕu

[

Σ̂k
ϕu

−σũInb

]−1
Σ̂k

ϕuϕ̄y

)

,

(16a)

σ̂k
ũ = λmin

(

Σ̂k
ϕu
− Σ̂k

ϕuϕ̄y

[

Σ̂k
ϕ̄y
− rỹ(0)Ina+1

]−1
Σ̂k

ϕ̄yϕu

)

,

(16b)

whereλmin denotes the minimum eigenvalue operator.
Equation (16) together with (15) defines a whole set
of possible solutions depending on the choice ofσũ
or rỹ(0), respectively. In order to uniquely solve the
identification problem, another equation is required.
Several choices are discussed in (Hong et al., 2007).

3.2 Coloured Noise Case

Now assume that ˜yk is no longer white, i.e. it is corre-
lated or coloured. For this case, the matricesΣ̂k

ϕ̄ and

Σ̂k
˜̄ϕ in (15) can be expressed in block form as

Σ̂k
ϕ̄ =







× × ×

−ξ̂k
ϕyy Σ̂k

ϕy
Σ̂k

ϕyϕu

−ξ̂k
ϕuy Σ̂k

ϕuϕy
Σ̂k

ϕu






, (17a)

Σ̂k
˜̄ϕ =





× × ×

−ξ̂k
ϕ̃yỹ Σ̂k

ϕ̃y
0

0 0 σ̂ũIk
nb



 , (17b)

where the first row consists of arbitrary entries× and

Σ̂k
ϕ̃y

=







r̂k
ỹ(0) · · · r̂k

ỹ(na−1)
...

. . .
...

r̂k
ỹ(na−1) · · · r̂k

ỹ(0)






(18)

is a dense matrix, whilst the remaining entries in (17)
are in accordance with (7). Consequently, thena +nb
compensated normal equations in the case of corre-
lated output noise are given by
([

Σ̂k
ϕy

Σ̂k
ϕyϕu

Σ̂k
ϕuϕy

Σ̂k
ϕu

]

−

[

Σ̂k
ϕ̃y

0

0 σ̂k
ũInb

])

θ̂k =

[

ξ̂k
ϕyy− ξ̂k

ϕ̃yỹ

ξ̂k
ϕuy

]

.

(19)

Now consider the Frisch equation (16b) which be-
comes

σ̂k
ũ = λmin(Bk) , (20)

with

Bk , Σ̂k
ϕu
− Σ̂k

ϕuϕ̄y

[

Σ̂k
ϕ̄y
− Σ̂k

ϕ̃y

]−1
Σ̂k

ϕ̄yϕu
(21)

and it remains to specifyna +1 equations for the de-
termination the auto-covariance elements

ρ̂k
y ,

[

r̂k
ỹ(0) r̂k

ỹ(1) · · · r̂k
ỹ(na)

]T
. (22)

In (Söderström, 2008) several possibilities to obtain
the remaining equations are discussed. It is shown
that a covariance-matching criterion, as used in (Di-
versi et al., 2003), as well as correlating the residuals
with past outputs, which corresponds to an instrumen-
tal variable (IV) -like approach with outputs as instru-
ments, cannot be successful since it always leads to
more unknowns than equations. However, by corre-
lating the residuals, denotedεk, with past inputs, the
remaining equations are obtained for the asymptotic
case via

E
[

ζ̄kεk
]

= 0, (23)

where the instruments are given by

ζ̄k =
[

uk−nb−1 · · · uk−nb−l
]T

(24)

and the residuals are obtained via

εk = A(q−1)yk−B(q−1)uk = yk−ϕT
k θ. (25)

This yields

ξζ̄y−Σζ̄ϕθ = 0, (26)

which can be expressed in block form, and using sam-
ple statistics, as

[

Σ̂k
ζ̄ϕy

Σ̂k
ζ̄ϕu

]

θ̂k = ξ̂k
ζ̄y

, (27)

where the lengthl of the instrument vector̄ζk must
satisfy l ≥ na + 1 in order to obtain at leastna + 1
additional equations for the determination ofρ̂k

y.
In (Söderström, 2008), two algorithms have been

proposed to solve the resulting (nonlinear) estima-
tion problem. Here, the two step algorithm, which
makes use of the separable LS technique is consid-
ered. Whilst in the white noise case the estimate of
θ is obtained from the compensated normal equations
after the noise variances have been determined, this
approach is conceptually different as outlined in the
remainder of this Section.
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3.2.1 Step 1

Note thatρ̂k
y only appears in the firstna equations of

(19) and by combining the lastnb equations of the LS
normal equations (19) with thena + 1 IV equations
(27), one can express

[

Σ̂k
ϕuϕy

Σ̂k
ϕu
− σ̂k

ũInb

Σ̂k
ζ̄ϕy

Σ̂k
ζ̄ϕu

]

θ̂k =

[

ξ̂k
ϕuy

ξ̂k
ζ̄y

]

. (28)

which constitutena +nb +1 equations inna +nb +1
unknowns (̂θ andσ̂k

ũ). Equation (28) is an overdeter-
mined system of normal equations with its first part
obtained from the bias compensated LS and the sec-
ond part given by the IV estimator, which uses de-
layed inputs. Moreover, it is nonlinear due to the mul-
tiplication of θ̂k with σ̂k

ũ.
In order to estimateθ and σũ, (28) can be re-

expressed as
(

Σ̂k
δ̄ϕ − σ̂k

ũJ̄
)

θ̂k = ξ̂k
δ̄y

, (29)

whereΣ̂k
δ̄ϕ andξ̂k

δ̄y
are defined by (7) with

δ̄i ,
[

ϕT
ui

ζ̄T
i

]T

=
[

ui−1 ... ui−nb ui−nb−1 ... ui−nb−l
]T

,

(30)

whilst J̄ is given by

J̄ ,

[

0 Inb

0 0

]

. (31)

Note that (29) can be interpreted as a bias-
compensated IV approach, where the instrument vec-
tor δ̄i is constructed from past measured inputs. Intro-
ducing for convenience

Ĝk , Σ̂k
δ̄ϕ − σ̂k

ũJ̄, (32)

the estimates forσk
ũ andθk are obtained by minimis-

ing the (nonlinear) LS costfunction

min
θ̂k,σ̂k

ũ

∣

∣

∣

∣

∣

∣
Ĝkθ̂k− ξ̂k

δ̄y

∣

∣

∣

∣

∣

∣

2
(33)

which is minimised w.r.t.σk
ũ andθk. If σ̂k

ũ is assumed
to be fixed, an explicit expression forθ̂k is given by
the well-known LS solution

θ̂k = Ĝ†
kξ̂k

δ̄y
, (34)

whereĜ†
k , (ĜT

k Ĝk)
−1ĜT

k denotes the Moore-Penrose
pseudo inverse. Using the separable LS approach
(Ljung, 1999, p. 335), the problem is reduced to an

optimisation in one variable only by substituting (34)
in (33). Consequently,̂σk

ũ can be obtained via

σ̂k
ũ = argmin

σ̂k
ũ

Vk (35)

with

Vk =
∣

∣

∣

∣

∣

∣
ĜkĜ

†
kξ̂k

δ̄y
− ξ̂k

δ̄y

∣

∣

∣

∣

∣

∣

2

=
[

ξ̂k
δ̄y

]T
ξ̂k

δ̄y
−
[

ξ̂k
δ̄y

]T
Ĝk
[

ĜT
k Ĝk

]−1
ĜT

k ξ̂k
δ̄y

. (36)

Onceσ̂k
ũ is obtained,θ̂k is given by (34). Since the

solution of (35) should satisfyVk = 0, the value of
Vk indicates whether the optimisation algorithm has
converged to a global or local minimum (Söderström,
2008).

3.2.2 Step 2

In order to determine the estimates for the auto-
correlation sequencêρk

y the remainingna normal
equations

[

Σ̂k
ϕy
− Σ̂k

ϕ̃y
Σ̂k

ϕyϕu

]

θ̂k = ξ̂k
ϕyy− ξ̂k

ϕ̃yỹ (37)

together with the Frisch equation (20) are considered.
Equation (37) can be expressed as

Σ̂k
ϕ̃y

âk− ξ̂k
ϕ̃yỹ =

[

Σ̂k
ϕy

Σ̂k
ϕyϕu

]

θ̂k− ξ̂k
ϕyy, (38)

where only the left hand side depends onρ̂k
y. In addi-

tion, (38) is affine inρ̂k
y, hence it can be re-expressed

as

Hkρ̂k
y = hk, (39)

whereHk is a na × na + 1 matrix built up from ele-
ments of ˆ̄ak andhk is a vector of lengthna given by
the right hand side of (38). This is a system of equa-
tions with more unknowns than equations, but the set
of all possible solutions can be formalised as

ρk
y = αkN(Hk)+H†

k hk, (40)

whereN(·) denotes the nullspace andαk is a scalar
factor. It is necessary to distinguish between the input
measurement noise variance obtained by (35) in step
1, and the quantity which would be obtained by the
Frisch equation (20). Therefore, introduce

ς̂k , λmin(Bk (αk)) , (41)

where the matrixBk is now a function ofαk. Using
(41) it is possible to search for thatαk which is in best
agreement with the previously determinedσ̂k

ũ, i.e.

α̂k = arg min
αk

||Jk||
2
2 , (42)

ICINCO 2008 - International Conference on Informatics in Control, Automation and Robotics

166



where the cost function

Jk , σ̂k
ũ− ς̂k (43)

measures the distance between the input noise vari-
ance estimatêσk

ũ determined in Step 1 and the input
noise variance estimatêςk which is obtained using
thena normal equations (37) together with the Frisch
equation (41) depending on the choice ofαk. Onceα̂k
is determined, it is substituted in (40) to obtainρ̂k

y, the
searched estimate of the auto-covariance elements of
the coloured output measurement noise ˜yk.

4 RECURSIVE SCHEME

4.1 Step 1

4.1.1 Recursive Update of Covariance Matrices

In order to satisfy the requirements of a recursive al-
gorithm to store all data in a finite dimensional vector,
the covariance matrices are updated via

Σ̂k
ϕ̄ = Σ̂k−1

ϕ̄ + γk

(

ϕ̄kϕ̄T
k − Σ̂k−1

ϕ̄

)

, Σ̂0
ϕ̄ = 0, (44a)

Σ̂k
ζ̄ϕ̄ = Σ̂k−1

ζ̄ϕ̄
+ γk

(

ζ̄kϕ̄T
k − Σ̂k−1

ζ̄ϕ̄

)

, Σ̂0
ζ̄ϕ̄ = 0, (44b)

where the normalising gainγk is given by

γk ,
γk−1

λ + γk−1
, γ0 = 1 (45)

with 0 < λ ≤ 1 being the forgetting factor giving ex-
ponential forgetting. From (44), the block matrices
required in (28) and (37) are readily obtained.

4.1.2 Recursive Update of σ̂k
ũ

For the determination of̂σk
ũ, an iterative optimisation

procedure can be utilised to minimise (36) where it
is iterated once at each step, leading to a recursive
scheme (Ljung and Söderström, 1983; Ljung, 1999).
Here, an iterative Newton method is utilised for this
purpose, however other choices are also possible. The
Newton method given by (Ljung, 1999, p. 326) is

σk
ũ = σk−1

ũ −
[

V ′′
k

]−1
V ′

k, (46)

whereV ′
k andV ′′

k denote the first and second order
derivative ofVk with respect toσk

ũ evaluated atσk−1
ũ .

The formulas for the derivatives are given in Appen-
dices A and B, respectively.

Remark 1. In order to stabilise the algorithm, it
might be advantageous to restrict the search for the
input measurement noise variance to the interval

0≤σũ ≤ σmax
ũ , (47)

whereσmax
ũ is the maximal admissible value forσũ,

which can be computed from the data as discussed
in (Beghelli et al., 1990). Alternatively, a positive
constant can be chosen for the maximum admissible
value, if such a-priori knowledge is available.

4.1.3 Recursive Update of θ̂k

In order to obtain a recursive expression forθ̂k, an ap-
proach is adopted here, similar to that in (Ding et al.,
2006), where the bias of the recursive LS estimate is
compensated at each time stepk.

Ignoring the influence of̂σk
ũ in (28), the uncom-

pensated overdetermined IV normal equations can be
expressed as

1
k

k

∑
i=1

[

ϕui

ζ̄i

]

[

ϕT
yi

ϕT
ui

]

θ̂IV
k =

1
k

k

∑
i=1

[

ϕui

ζ̄i

]

yi , (48)

whereθ̂IV
k denotes the uncompensated (biased) esti-

mate ofθ. Since one unknown, namelŷσk
ũ, has al-

ready been obtained, it is sufficient to considerna+nb
equations only1, by disregarding the last equation of
(48). Thus the uncompensated IV estimate is given as

θ̂IV
k =

[

1
k

k

∑
i=1

δiϕT
i

]−1
1
k

k

∑
i=1

δiyi , (49)

whereδi is obtained by deleting the last entry ofδ̄i . In
order to obtain an explicit expression for the bias, the
linear regression formulation

yi = ϕT
i θ+ei (50)

is substituted in (49) which gives

θ̂IV
k =

[

1
k

k

∑
i=1

δiϕT
i

]−1
1
k

k

∑
i=1

δi
(

ϕT
i θ+ei

)

= θ+

[

1
k

k

∑
i=1

δiϕT
i

]−1
1
k

k

∑
i=1

δiei (51)

By substitutingei = −ϕ̃iθ+ ỹi it follows that

θ̂IV
k = θ+

[

1
k

k

∑
i=1

δiϕT
i

]−1
1
k

k

∑
i=1

δi ỹi

−

[

1
k

k

∑
i=1

δiϕT
i

]−1
1
k

k

∑
i=1

δiϕ̃T
i θ. (52)

The vectorδi is uncorrelated with ˜yi which means that
the middle part of the sum in (52) diminishes in the

1This corresponds to a basic IV estimator where the
number of unknowns is equal to the length of the instru-
ment vector.
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asymptotic case, whereas

lim
k→∞

1
k

k

∑
i=1

[

ϕui

ζi

]

[

ϕ̃T
yi

ϕ̃T
ui

]T
=

[

0 σũInb

0 0

]

. (53)

Consequently, fork→ ∞ (52) becomes

θIV = θ−σũΣ−1
δϕ Jθ, (54)

whereJ is obtained by deleting the last row of̄J in
(31). Equation (54) gives rise to the recursive bias
compensation update equation forθ̂k

θ̂k = θ̂IV
k + σ̂k

ũ

[

Σ̂k
δϕ

]−1
Jθ̂k−1, (55)

where the uncompensated parameter estimateθ̂IV
k can

be recursively computed via a recursive IV (RIV) al-
gorithm (Ljung, 1999, p. 369) given by

θ̂IV
k = θ̂IV

k−1 +Lk
[

yk−ϕT
k θ̂IV

k−1

]

, (56a)

Lk =
Pk−1δk

1−γk
γk

+ ϕT
k Pk−1δk

, (56b)

Pk =
1

1− γk

[

Pk−1−
Pk−1δkϕT

k Pk−1
1−γk

γk
+ ϕT

k Pk−1δk

]

. (56c)

with the only difference being thatPk is scaled such
that

[

Σ̂k
δϕ

]−1
= Pk. (57)

This avoids the matrix inversion in (55) by substitut-
ing (57) in (55).

4.2 Step 2

In order to solve (42) recursively, the Newton method
is applied where it is iterated once as new data arrives.
Consequently, the first and second order derivative of
the cost functionJk in (43) are to be determined w.r.t.
αk, which are denotedJ′k andJ′′k , respectively. These
are given by

J′k = −2
(

σ̂k
ũ− ς̂k

)

ς̂′k, (58a)

J′′k = ς̂′k, (58b)

where ς̂′k denotes the derivative of̂ςk w.r.t. αk and
for which an approximation is derived in Appendix
C. The recursive update forα̂k is therefore given by

α̂k = α̂k−1−
[

J′′k
]−1

J′k, (59)

whilst

ρ̂k
y = α̂kN(Hk)+H†

k hk. (60)
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Figure 2: Recursive estimates forθ and σũ using the
recursive Frisch scheme (RFS) and the biased recursive
instrumental-variables (RIV) solution of the uncompen-
sated normal equations.

5 SIMULATION

To compare the results of the recursive Frisch scheme
(RFS) with the non-recursive algorithm, the system is
chosen similar to that of Example 2 in (Söderström,
2008), i.e. a LTI SISO system withna = nb = 1, and
characterised, using (12), by

ϑ =
[

−0.8 2 1 1.96 1.37
]T

. (61)

The values forrỹ(0) andrỹ(1) arise by generating the
output noise by the auto-regressive model

ỹk =
1

1−0.7q−1vk, (62)

wherevk is a zero-mean white process with unity vari-
ance. The system is simulated for 10,000 samples us-
ing a zero mean, white and Gaussian distributed input
signal of unity variance. The corresponding signal-to-
noise ratio for input and output is given by 10.60dB
and 39.12dB, respectively.

Choosingλ = 1, the results for Step 1 are shown
in Figure 2. The first subplot shows that the New-
ton method is able to recursively estimate the input
measurement noise varianceσũ. The remaining two
subplots compare the RIV solutionθ̂IV

k of the uncom-
pensated normal equations with the recursively com-
pensated Frisch scheme estimateθ̂k. As expected, the
RIV is biased whilst the the RFS successfully com-
pensates for this.

Figure 3 shows the estimates ofρy obtained in
Step 2 for both the RFS as well as the off-line case.
In contrast to the results obtained in Step 1, the qual-
ity of the estimates obtained in Step 2 forρ̂k

y is in-
ferior. This is in agreement with the results re-
ported in (Söderström, 2008), where a Monte-Carlo
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Figure 3: Recursive estimates forrỹ(0) andrỹ(1) using the
recursive Frisch scheme (RFS).

analysis shows poor performance forρ̂k
y in the non-

recursive case. The important observation to note here
is that the recursively obtained estimates ofrỹ(0) and
rỹ(0) coincide with their off-line counterparts after
k = 10,000 recursions. It is also observed that the
values of ˆrk

ỹ(0) (the estimated variance of the output
measurement noise) occasionally exhibits a negative
sign during the first 500 recursion steps. This could
be avoided by projecting the estimates, such that

0 < Σ̂k
˜̄ϕy

< Σ̂k
ϕ̄y
− Σ̂k

ϕ̄yϕu

[

Σ̂k
ϕu

]−1
Σ̂k

ϕuϕ̄y
(63)

is satisfied (Söderström, 2008).

6 CONCLUSIONS

The Frisch scheme for the coloured output noise case
has been reviewed and a recursive algorithm for its
adaptive implementation has been developed. The pa-
rameter vector is estimated utilising a recursive bias-
compensating instrumental variables approach, where
the bias is compensated at each time step. The input
measurement noise variance and the output measure-
ment noise auto-covariance elements are obtained via
two (distinct) Newton algorithms. A simulation study
illustrates the performance of the proposed algorithm.

Further work could concern computational as-
pects of the algorithm as well as its extension to the
bilinear case.
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APPENDIX

A First Order Derivative of Vk

Denoting(·)′ the derivative w.r.t.̂σk
ũ and introducing

fk , ĜT
k ξ̂k

δ̄y
, Fk , ĜT

k Ĝk, (64)

it holds that

f ′k = −

[

0
ξ̂k

ϕuy

]

, (65a)

F ′
k =

[

0 Σ̂k
ϕuϕy

T

Σ̂k
ϕuϕy

2σ̂k−1
ũ Inb −2Σ̂k

ϕu

]

, (65b)

F−1
k

′
= −F−1

k F ′
kF−1

k (65c)

and the first order derivative is given by

V ′
k = −

(

f T
k F−1

k fk
)′

= − f ′k
T F−1

k fk− f T
k F−1

k
′
fk− f T

k F−1
k f ′k. (66)
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B Second Order Derivative of Vk

Utilising the product rule, the second order derivative
is given by

V ′′
k = − f ′k

T F−1
k

′
fk− f ′k

T F−1
k f ′k

− f ′k
T F−1

k
′
fk− f T

k F−1
k

′′
fk− f T

k F−1
k

′
f ′k

− f ′k
T F−1

k f ′k− f T
k F−1

k
′
f ′k

= −2 f ′k
T F−1

k
′
fk−2 f ′k

T F−1
k f ′k

− f T
k F−1

k
′′

fk−2 f T
k F−1

k
′
f ′k (67)

with

F−1
k

′′
= − F−1

k
′
F ′

kF−1
k −F−1

k F ′′
k F−1

k −F−1
k F ′

k F−1
k

′
,

(68a)

F ′′
k =

[

0 0
0 2Inb

]

. (68b)

C Derivative of ς̂k

The idea is to linearise the Frisch equation (20) us-
ing perturbation theory, in order to approximate the
derivative ofς̂k w.r.t. αk. The derivation here is con-
ceptually similar to that given in Appendix II.B of
(Söderström, 2007a), but with the linearisation car-
ried out around̂ϑk−1 rather than the ‘true’ parameters.

Assume that at time instancek−1, ϑ̂k−1 satisfies
the extended compensated normal equations
[

Σ̂k−1
ϕ̄y

− Σ̂k−1
ϕ̃y

Σ̂k−1
ϕ̄yϕu

Σ̂k−1
ϕuϕ̄y

Σ̂k−1
ϕu

− σ̂k−1
ũ Inb

]

[

ˆ̄ak−1

b̂k−1

]

= 0 (69)

which are rewritten for ease of notation as
[

A−B C

CT D− σ̂k−1
ũ I

][

a

b

]

= 0. (70)

Similarly, introduce the notation at time instancek as
[

A −B C

C T D − σ̂k
ũI

][

a

b

]

= 0. (71)

Let σ̂k
ũ denote the estimate obtained via (35). Alterna-

tively, if Σ̂k
ϕ̃y

is known, the input measurement noise
could be obtained using (20) and denote this quantity
ςk. Using perturbation theory for eigenvalues yields

ςk = λmin{Bk(αk)} = λmin{Bk−1(αk−1)+ ∆Bk}

≈ ςk−1 +
bT∆Bkb

bTb
, (72)

where the perturbation is given by (cf. (21))

∆Bk = Bk(αk)−Bk−1(αk−1)

= D − C T [A −B ]−1
C −D+CT [A−B]−1

C

= D − C T
F

−1
C −D+CTF−1C (73)

with F , [A −B ] andF , [A−B]. Substituting (73)
in (72) yields

ςk− ςk−1 ≈
bT

bTb

(

D −D+CTF−1C− C T
F

−1
C
)

b

=
bT

bTb
(D −D)b+

bTXb

bTb
, (74)

whereX can be expressed as

X = CTF−1C− C T
F

−1
C

+CT
F

−1
C −CT

F
−1
C

+CTF−1
C −CTF−1

C

=
(

CT − C T)
F

−1
C +CTF−1(C− C )

−CTF−1 (F− F )F −1
C (75)

and by combining (74) and (75), it holds that

bTb

(

ςk− ςk−1
)

≈ bT (D −D)b

+bT (CT − C T)
F

−1
C b

+bTCTF−1 (C− C )b

−bTCTF−1 (F− F )F −1
C b.

(76)

Now, the first row of (70) gives

a = −F−1Cb (77)

and by assuming thatF −1C b ≈ −a, (76) finally sim-
plifies to

bTb

(

ςk− ςk−1
)

≈ bT (D −D)b

−bT (CT − C T)a

−aT (C− C )b

−aT (F− F )a, (78)

whereF is the only element depending onαk. There-
fore,

dςk

dαk
≈

d
dαk

(

aT (A −B )a

bTb

)

= −
aT dB

dαk
a

bTb
(79)

or equivalently

d
dαk

λmin{Bk(αk)} ≈ −
ˆ̄aT
k−1

b̂T
k−1b̂k−1

d
dαk

Σ̂k
˜̄ϕy

ˆ̄ak−1.

(80)

SinceΣk
˜̄ϕy

consists of the quantities ˆrk
ỹ(0), ..., r̂k

ỹ(na), it

remains to determine
d

dαk
ρ̂k

y =
[

d
dαk

r̂k
ỹ(0) · · · d

dαk
r̂k
ỹ(na)

]T
(81)

which, due to (40), is given by

d
dαk

ρ̂k
y = N(Hk). (82)
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