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Abstract: This paper serves as a support for the plenary address given by the second author during the conference. In
this paper we present an approach to on-line diagnosis of discrete event systems based on labeled Petri nets,
that are a particular class of Petri nets where some events are undistinguishable, i.e., events that produce an
output signal that is observable, but that is common to otherevents. Our approach is based on the notion of
basis markings and justifications and it can be applied both to bounded and unbounded Petri nets whose unob-
servable subnet is acyclic. Moreover it is shown that, in thecase of bounded Petri nets, the most burdensome
part of the procedure may be moved off-line, computing a particular graph that we callBasis Reachability
Graph.
Finally we present a diagnosis MATLAB toolbox with some examples of application.

1 INTRODUCTION

Failure detection and isolation in industrial systems
is a subject that has received a lot of attention in the
past few decades. A failure is defined to be any devia-
tion of a system from its normal or intended behavior.
Diagnosis is the process of detecting an abnormality
in the system behavior and isolating the cause or the
source of this abnormality.

Failures are inevitable in today’s complex indus-
trial environment and they could arise from several
sources such as design errors, equipment malfunc-
tions, operator mistakes, and so on. As technology
advances, as we continue to build systems of increas-
ing size and functionality, and as we continue to place
increasing demands on the performance of these sys-
tems, then so do we increase the complexity of these
systems. Consequently (and unfortunately), we en-
hance the potential for systems to fail, and no matter
how safe our designs are, how improved our quality
control techniques are, and how better trained the op-
erators are, system failures become unavoidable.

Given the fact that failures are inevitable, the need
for effective means of detecting them is quite apparent
if we consider their consequences and impacts not just
on the systems involved but on the society as a whole.
Moreover we note that effective methods of failure
diagnosis can not only help avoid the undesirable ef-
fects of failures, but can also enhance the operational

goals of industries. Improved quality of performance,
product integrity and reliability, and reduced cost of
equipment maintenance and service are some major
benefits that accurate diagnosis schemes can provide,
especially for service and product oriented industries
such as home and building environment control, office
automation, automobile manufacturing, and semicon-
ductor manufacturing. Thus, we see that accurate and
timely methods of failure diagnosis can enhance the
safety, reliability, availability, quality, and economy
of industrial processes.

The need of automated mechanisms for the timely
and accurate diagnosis of failures is well understood
and appreciated both in industry and in academia. A
great deal of research effort has been and is being
spent in the design and development of automated di-
agnostic systems, and a variety of schemes, differing
both in their theoretical framework and in their design
and implementation philosophy, have been proposed.

In diagnosis approach two different problems can
be solved: the problem of diagnosis and the problem
of diagnosability.

Solving a problem of diagnosis means that we as-
sociate to each observed string of events a diagno-
sis state, such as “normal” or “faulty” or “uncertain”.
Solving a problem of diagnosability is equivalent to
determine if the system is diagnosable, i.e., to deter-
mine if, once a fault has occurred, the system can de-
tect its occurrence in a finite number of steps.
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The diagnosis of discrete event systems (DES) is
a research area that has received a lot of attention in
the last years and has been motivated by the practical
need of ensuring the correct and safe functioning of
large complex systems. As discussed in the next ses-
sion the first results have been presented within the
framework of automata. More recently, the diagno-
sis problem has also been addressed using Petri nets
(PNs). In fact, the use of Petri nets offers significant
advantages because of their twofold representation:
graphical and mathematical. Moreover, the intrinsi-
cally distributed nature of PNs where the notion of
state (i.e., marking) and action (i.e., transition) is lo-
cal reduces the computational complexity involved in
solving a diagnosis problem.

In this paper we summarize our main contribu-
tions on diagnosis of DES using PNs (Giua and
Seatzu, 2005; Cabasino et al., 2008; Lai et al., 2008;
Cabasino et al., 2009). In particular, we focus on arbi-
trary labeled PNs where the observable events are the
labels associated to transitions, while faults are mod-
eled as silent transitions. We assume that there may
also be transitions modeling a regular behavior, that
are silent as well. Moreover, two or more transitions
that may be simultaneously enabled may share the
same label, thus they are undistinguishable. Our diag-
nosis approach is based on the definition of four diag-
nosis states modeling different degrees of alarm and
it applies to all systems whose unobservable subnet
is acyclic. Two are the main advantages of our proce-
dure. First, we do not need an exhaustive enumeration
of the states in which the system may be: this is due
to the introduction of basis markings. Secondly, in
the case of bounded net systems we can move off-line
the most burdensome part of the procedure building a
finite graph called basis reachability graph.

The paper is organized as follows. In Section 2
the state of art of diagnosis for discrete event systems
is illustrated. In Section 3 we provide a background
on PNs. In Sections 4 and 5 are introduced the defini-
tions of minimal explanations, justifications and basis
markings, that are the basic notions of our diagnosis
approach. In Section 6 the diagnosis states are de-
fined and a characterization of them in terms of basis
markings and j-vectors is given. In Section 7 we show
how the most burdensome part of the procedure can
be moved offline in the case of bounded PNs. In Sec-
tion 8 we present the MATLAB toolbox developed
by our group for PNs diagnosis and in Section 9 we
present some numerical results obtained applying our
tool to a parametric model of manufacturing system.
In Section 10 we draw the conclusions.

2 LITERATURE REVIEW

In this section we present the state of art of diagnosis
of DES using automata and PNs.

2.1 Diagnosis of DES using Automata

In the contest of DES several original theoretical ap-
proaches have been proposed usingautomata.

In (Lin, 1994) and (Lin et al., 1993) a state-based
DES approach to failure diagnosis is proposed. The
problems of off-line and on-line diagnosis are ad-
dressed separately and notions of diagnosability in
both of these cases are presented. The authors give
an algorithm for computing a diagnostic control, i.e.,
a sequence of test commands for diagnosing system
failures. This algorithm is guaranteed to converge if
the system satisfies the conditions for on-line diag-
nosability.

In (Sampath et al., 1995) and (Sampath et al.,
1996) the authors propose an approach to failure diag-
nosis where the system is modeled as a DES in which
the failures are treated as unobservable events. The
level of detail in a discrete event model appears to
be quite adequate for a large class of systems and for
a wide variety of failures to be diagnosed. The ap-
proach is applicable whenever failures cause a dis-
tinct change in the system status but do not neces-
sarily bring the system to a halt. In (Sampath et al.,
1995) a definition of diagnosability in the framework
of formal languages is provided and necessary and
sufficient conditions for diagnosability of systems are
established. Also presented in (Sampath et al., 1995)
is a systematic approach to solve the problem of diag-
nosis using diagnosers.

In (Sampath et al., 1998) the authors present an
integrated approach to control and diagnosis. More
specifically, authors present an approach for the de-
sign of diagnosable systems by appropriate design
of the system controller and this approach is called
active diagnosis. They formulate the active diagno-
sis problem as a supervisory control problem. The
adopted procedure for solving the active diagnosis
problem is the following: given the non-diagnosable
language generated by the system of interest, they first
select an “appropriate” sublanguage of this language
as the legal language. Choice of the legal language
is a design issue and typically depends on considera-
tions such as acceptable system behavior (which en-
sures that the system behavior is not restricted more
than necessary in order to eventually make it diagnos-
able) and detection delay for the failures. Once the
appropriate legal language is chosen, they then design
a controller (diagnostic controller), that achieves a
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closed-loop language that is within the legal language
and is diagnosable. This controller is designed based
on the formal framework and the synthesis techniques
that supervisory control theory provides, with the ad-
ditional constraint of diagnosability.

In (Debouk et al., 2000) is addressed the problem
of failure diagnosis in DES with decentralized infor-
mation. Debouket al. propose a coordinated decen-
tralized architecture consisting of two local sites com-
municating with a coordinator that is responsible for
diagnosing the failures occurring in the system. They
extend the notion of diagnosability, originally intro-
duced in (Sampath et al., 1995) for centralized sys-
tems, to the proposed coordinated decentralized ar-
chitecture. In particular, they specify three protocols
that realize the proposed architecture and analyze the
diagnostic properties of these protocols.

In (Boel and van Schuppen, 2002) the authors
address the problem of synthesizing communication
protocols and failure diagnosis algorithms for decen-
tralized failure diagnosis of DES with costly commu-
nication between diagnosers. The costs on the com-
munication channels may be described in terms of
bits and complexity. The costs of communication and
computation force the trade-off between the control
objective of failure diagnosis and that of minimiza-
tion of the costs of communication and computation.
The results of this paper is an algorithm for decentral-
ized failure diagnosis of DES for the special case of
only two diagnosers.

In (Zad et al., 2003) a state-based approach for on-
line passive fault diagnosis is presented. In this frame-
work, the system and the diagnoser (the fault detec-
tion system) do not have to be initialized at the same
time. Furthermore, no information about the state or
even the condition (failure status) of the system be-
fore the initiation of diagnosis is required. The design
of the fault detection system, in the worst case, has
exponential complexity. A model reduction scheme
with polynomial time complexity is introduced to re-
duce the computational complexity of the design. Di-
agnosability of failures is studied, and necessary and
sufficient conditions for failure diagnosability are de-
rived.

2.2 Diagnosis of DES using Petri Nets

Among the first pioneer works dealing with PNs, we
recall the approach of Prock. In (Prock, 1991) the au-
thor proposes an on-line technique for fault detection
that is based on monitoring the number of tokens re-
siding into P-invariants: when the number of tokens
inside P-invariants changes, then the error is detected.

In (Sreenivas and Jafari, 1993) the authors em-

ploy time PNs to model the DES controller and back-
firing transitions to determine whether a given state
is invalid. Later on, time PNs have been employed
in (Ghazel et al., 2005) to propose a monitoring ap-
proach for DES with unobservable events and to rep-
resent the “a priori” known behavior of the system,
and track on-line its state to identify the events that
occur.

In (Hadjicostis and Veghese, 1999) the authors use
PN models to introduce redundancy into the system
and additional P-invariants allow the detection and
isolation of faulty markings.

Redundancy into a given PN is used in (Wu and
Hadjicostis, 2005) to enable fault detection and iden-
tification using algebraic decoding techniques. In
this paper Wu and Hadjicostis consider two types of
faults: place faults that corrupt the net marking, and
transition faults that cause a not correct update of the
marking after event occurrence. Although this ap-
proach is general, the net marking has to be period-
ically observable even if unobservable events occur.
Analogously, in (Lefebvre and Delherm, 2007) the
authors investigate on the determination of the set of
places that must be observed for the exact and imme-
diate estimation of faults occurrence.

In (Ruiz-Beltràn et al., 2007) Interpreted PNs are
employed to model the system behavior that includes
both events and states partially observable. Based
on the Interpreted PN model derived from an on-line
methodology, a scheme utilizing a solution of a pro-
gramming problem is proposed to solve the problem
of diagnosis.

Note that, all papers in this topic assume that faults
are modeled by unobservable transitions. However,
while the above mentioned papers assume that the
marking of certain places may be observed, a series
of papers have been recently presented that are based
on the assumption that no place is observable (Basile
et al., 2008; Benveniste et al., 2003; Dotoli et al.,
2008; Genc and Lafortune, 2007).

In particular, in (Genc and Lafortune, 2007) the
authors propose a diagnoser on the basis of a modu-
lar approach that performs the diagnosis of faults in
each module. Subsequently, the diagnosers recover
the monolithic diagnosis information obtained when
all the modules are combined into a single module
that preserves the behavior of the underlying modular
system. A communication system connects the differ-
ent modules and updates the diagnosis information.
Even if the approach does not avoid the state explo-
sion problem, an improvement is obtained when the
system can be modeled as a collection of PN modules
coupled through common places.

The main advantage of the approaches in (Genc
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and Lafortune, 2007) consists in the fact that, if the
net is bounded, the diagnoser may be constructed off-
line, thus moving off-line the most burdensome part
of the procedure. Nevertheless, a characterization of
the set of markings consistent with the actual observa-
tion is needed. Thus, large memory may be required.

An improvement in this respect has been given in
(Benveniste et al., 2003; Basile et al., 2008; Dotoli
et al., 2008).

In particular, in (Benveniste et al., 2003) a net
unfolding approach for designing an on-line asyn-
chronous diagnoser is used. The state explosion is
avoided but the on-line computation can be high due
to the on-line building of the PN structures by means
of the unfolding.

In (Basile et al., 2008) the diagnoser is built on-
line by defining and solving Integer Linear Program-
ming (ILP) problems. Assuming that the fault transi-
tions are not observable, the net marking is computed
by the state equation and, if the marking has neg-
ative components, an unobservable sequence is oc-
curred. The linear programming solution provides the
sequence and detects the fault occurrences. Moreover,
an off-line analysis of the PN structure reduces the
computational complexity of the ILP problem.

In (Dotoli et al., 2008), in order to avoid the re-
design and the redefinition of the diagnoser when the
structure of the system changes, the authors propose a
diagnoser that works on-line. In particular, it waits for
an observable event and an algorithm decides whether
the system behavior is normal or may exhibit some
possible faults. To this aim, some ILP problems are
defined and provide eventually the minimal sequences
of unobservable transitions containing the faults that
may have occurred. The proposed approach is a gen-
eral technique since no assumption is imposed on the
reachable state set that can be unlimited, and only few
properties must be fulfilled by the structure of the PN
modeling the system fault behavior.

We also proposed a series of contributions deal-
ing with diagnosis of PNs (Giua and Seatzu, 2005;
Cabasino et al., 2008; Lai et al., 2008; Cabasino et al.,
2009). Our main results are summarized in the rest of
the paper.

Note that none of the above mentioned papers re-
garding PNs deal withdiagnosability, namely none
of them provide a procedure to determine a priori if a
system isdiagnosable, i.e., if it is possible to recon-
struct the occurrence of fault events observing words
of finite length.

In fact, whereas this problem has been extensively
studied within the framework of automata as dis-
cussed above, in the PN framework very few results
have been presented.

The first contribution on diagnosability of PNs
was given in (Ushio et al., 1998). They extend a nec-
essary and sufficient condition for diagnosability in
(Sampath et al., 1995; Sampath et al., 1996) to un-
bounded PN. They assume that the set of places is
partitioned into observable and unobservable places,
while all transitions are unobservable in the sense that
their occurrences cannot be observed. Starting from
the PN they build a diagnoser calledsimpleω diag-
noserthat gives them sufficient conditions for diag-
nosability of unbounded PNs.

In (Chung, 2005) the authors, in contrast with
Ushio’s paper, assumes that part of the transitions
of the PN modelling is observable and shows as the
additional information from observed transitions in
general adds diagnosability to the analysed system.
Moreover starting from the diagnoser he proposes an
automaton calledverifier that allows a polynomial
check mechanism on diagnosability but for finite state
automata models.

In (Wen and Jeng, 2005) the authors propose an
approach to test diagnosability by checking the struc-
ture property of T-invariant of the nets. They use
Ushio’s diagnoser to prove that their method is cor-
rect, however they don’t construct a diagnoser for the
system to do diagnosis. In (Wen et al., 2005) they also
present an algorithm, based on a linear programming
problem, of polynomial complexity in the number of
nodes for computing a sufficient condition of diagnos-
ability of DES modeled by PN.

3 BACKGROUND

In this section we recall the formalism used in the pa-
per. For more details on PNs we refer to (Murata,
1989).

A Place/Transition net(P/T net) is a structureN =
(P,T,Pre,Post), whereP is a set ofm places;T is a
set ofn transitions;Pre : P×T → N andPost : P×
T → N are thepre– and post– incidence functions
that specify the arcs;C = Post−Pre is the incidence
matrix.

A marking is a vectorM : P → N that assigns to
each place of aP/T net a non–negative integer num-
ber of tokens, represented by black dots. We denote
M(p) the marking of placep. A P/T systemor net
system〈N,M0〉 is a netN with an initial markingM0.
A transition t is enabled atM iff M ≥ Pre(· , t) and
may fire yielding the markingM′ = M +C(· , t). We
write M [σ〉 to denote that the sequence of transitions
σ = t j1 · · · t jk is enabled atM, and we writeM [σ〉 M′

to denote that the firing ofσ yieldsM′. We also write
t ∈ σ to denote that a transitiont is contained inσ.
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The set of all sequences that are enabled at the ini-
tial markingM0 is denotedL(N,M0), i.e.,L(N,M0) =
{σ ∈ T∗ | M0[σ〉}.

Given a sequenceσ ∈ T∗, we callπ : T∗ → Nn the
function that associates toσ a vectory ∈ Nn, named
thefiring vectorof σ. In particular,y = π(σ) is such
thaty(t) = k if the transitiont is containedk times in
σ.

A markingM is reachablein 〈N,M0〉 iff there ex-
ists a firing sequenceσ such thatM0 [σ〉 M. The set
of all markings reachable fromM0 defines thereach-
ability setof 〈N,M0〉 and is denotedR(N,M0).

A PN having no directed circuits is calledacyclic.
A net system〈N,M0〉 is boundedif there exists a posi-
tive constantk such that, forM ∈R(N,M0), M(p)≤ k.

A labeling functionL : T → L∪ {ε} assigns to
each transitiont ∈ T either a symbol from a given al-
phabetL or the empty stringε.

We denote asTu the set of transitions whose label
is ε, i.e.,Tu = {t ∈ T | L (t) = ε}. Transitions inTu
are calledunobservableor silent. We denote asTo the
set of transitions labeled with a symbol inL. Tran-
sitions inTo are calledobservablebecause when they
fire their label can be observed. Note that in this paper
we assume that the same labell ∈ L can be associated
to more than one transition. In particular, two tran-
sitionst1, t2 ∈ To are calledundistinguishableif they
share the same label, i.e.,L (t1) = L (t2). The set of
transitions sharing the same labell are denoted asTl .

In the following we denote asCu (Co) the restric-
tion of the incidence matrix toTu (To) and denote as
nu andno, respectively, the cardinality of the above
sets. Moreover, given a sequenceσ∈T∗, Pu(σ), resp.,
Po(σ), denotes the projection ofσ overTu, resp.,To.

We denote asw the word of events associated to
the sequenceσ, i.e.,w = Po(σ). Note that the length
of a sequenceσ (denoted|σ|) is always greater than
or equal to the length of the corresponding wordw
(denoted|w|). In fact, if σ containsk′ transitions inTu
then|σ| = k′ + |w|.

Definition 3.1 (Cabasino et al., 2009).Let 〈N,M0〉
be a labeled net system with labeling functionL : T →
L∪{ε}, whereN = (P,T,Pre,Post) andT = To∪Tu.
Let w∈ L∗ be an observed word. We define

S (w) = {σ ∈ L(N,M0) | Po(σ) = w}

the set of firing sequencesconsistentwith w∈ L∗, and

C (w) = {M ∈Nm | ∃σ ∈ T∗ : Po(σ) = w ∧M0[σ〉M}

the set of markingsconsistentwith w∈ L∗. �

In plain words, given an observationw, S (w) is the
set of sequences that may have fired, whileC (w) is the
set of markings in which the system may actually be.
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Figure 1: A PN system modeling.

Example 3.2. Let us consider the PN in Figure 1.
Let us assumeTo = {t1, t2, t3, t4, t5, t6, t7} and Tu =
{ε8,ε9,ε10, ε11,ε12,ε13}, where for a better under-
standing unobservable transitions have been denoted
εi rather thanti . The labeling function is defined
as follows: L (t1) = a, L (t2) = L (t3) = b, L (t4) =
L (t5) = c, L (t6) = L (t7) = d.

First let us considerw = ab. The set of fir-
ing sequences that is consistent withw is S (w) =
{t1t2, t1t2ε8, t1t2ε8ε9, t1t2ε8ε9ε10, t1t2ε8ε11}, and the
set of markings consistent withw is C (w) =
{[0 0 1 0 0 0 0 1 0 0 0]T , [0 0 0 1 0 0 0 1 0 0 0]T ,
[0 0 0 0 1 0 0 1 0 0 0]T , [0 1 0 0 0 0 0 1 0 0 0]T ,
[0 0 0 0 0 1 0 1 0 0 0]T}.

If we consider w = acd the set of firing se-
quences that are consistent withw is S (w) =
{t1t5t6, t1t5ε12ε13t7}, and the set of markings consis-
tent with w is C (w) = {[0 1 0 0 0 0 0 1 0 0 0]T}.
Thus two different firing sequences may have fired
(the second one also involving silent transitions), but
they both lead to the same marking. �

4 MINIMAL EXPLANATIONS
AND MINIMAL E-VECTORS

In this section we present the notions of minimal ex-
planations and minimal e-vectors for labeled PNs.
First we introduce notions of explanations for unla-
beled PNs, secondly we define when an explanation
is minimal and finally we extend these concepts to la-
beled PN.

Definition 4.1 (Cabasino et al., 2008). Given a
marking M and an observable transitiont ∈ To, we
define

Σ(M, t) = {σ ∈ T∗
u | M[σ〉M′, M′ ≥ Pre(·, t)}

the set ofexplanationsof t atM, and

Y(M, t) = π(Σ(M, t))
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thee-vectors(or explanation vectors), i.e., firing vec-
tors associated to the explanations. �

ThusΣ(M, t) is the set of unobservable sequences
whose firing atM enablest. Among the above se-
quences we want to select those whose firing vector
is minimal. The firing vector of these sequences are
calledminimal e-vectors.

Definition 4.2 (Cabasino et al., 2008). Given a
markingM and a transitiont ∈ To, we define

Σmin(M, t) = {σ ∈ Σ(M, t) | ∄ σ′ ∈ Σ(M, t) :
π(σ′) � π(σ)}

the set ofminimal explanationsof t at M, and we de-
fine

Ymin(M, t) = π(Σmin(M, t))

the corresponding set ofminimal e-vectors. �

In (Corona et al., 2004) we proved that, if the un-
observable subnet is acyclic and backward conflict-
free, then|Ymin(M, t)| = 1.

Different approaches can be used to compute
Ymin(M, t), e.g., (Boel and Jiroveanu, 2004; Jiroveanu
and Boel, 2004). In (Cabasino et al., 2008) we sug-
gested an approach that terminates finding all vectors
in Ymin(M, t) if applied to nets whose unobservable
subnet is acyclic. It simply requires algebraic manip-
ulations, and is inspired by the procedure proposed
in (Martinez and Silva, 1982) for the computation of
minimal P-invariants. For the sake of brevity, this al-
gorithm is not reported here.

In the case of labeled PNs what we observe are
symbols inL. Thus, it is useful to compute the fol-
lowing sets.

Definition 4.3 (Cabasino et al., 2009). Given a
markingM and an observationl ∈ L, we define the
set ofminimal explanations of l at Mas

Σ̂min(M, l) = ∪t∈Tl ∪σ∈Σmin(M,t) (t,σ),

i.e., the set of pairs (transition labeledl ; correspond-
ing minimal explanation), and we define the set of
minimal e-vectors of l at Mas

Ŷmin(M, l) = ∪t∈Tl ∪e∈Ymin(M,t) (t,e),

i.e., the set of pairs (transition labeledl ; correspond-
ing minimal e-vector). �

Thus, Σ̂min(M, l) is the set of pairs whose first
element is the transition labeledl and whose sec-
ond element is the corresponding minimal explana-
tion σ ∈ Σmin(M, t), namely the corresponding se-
quence of unobservable transitions whose firing atM
enablesl and whose firing vector is minimal. More-
over,Ŷmin(M, l) is the set of pairs whose first element
is the transition labeledl and whose second element

is the firing vectore∈Ymin(M, t) corresponding to the
second element in̂Σmin(M, l).

Obviously,Σ̂min(M, l) andŶmin(M, l) are a gener-
alization of the sets of minimal explanations and min-
imal e-vectors introduced for unlabeled PNs with un-
observable transitions. Moreover, in the above sets
Σ̂min(M, l) andŶmin(M, l) different sequencesσ and
different e-vectorse, respectively, are associated in
general to the samet ∈ Tl .

5 BASIS MARKINGS AND
J-VECTORS

In this section we introduce the definitions of basis
markings and justifications that are the crucial notions
of our diagnosis approach.

In particular, given a sequence of observed events
w∈ L∗, a basis markingMb is a marking reached from
M0 with the firing of the observed wordw and of
all unobservable transitions whose firing is necessary
to enablew. Note that, in general several sequences
σo ∈ T∗

o may correspond to the samew, i.e., there are
several sequences of observable transitions such that
L (σo) = w that may have actually fired. Moreover,
in general, to any of such sequencesσo a different se-
quence of unobservable transitions interleaved with it
is necessary to make it firable at the initial marking.
Thus we need to introduce the following definition of
pairs (sequence of transitions inTo labeledw; corre-
spondingjustification).

Definition 5.1 (Cabasino et al., 2009).Let 〈N,M0〉
be a net system with labeling functionL : T → L∪
{ε}, whereN = (P,T,Pre,Post) andT = To∪Tu. Let
w∈ L∗ be a given observation. We define

Ĵ (w) = { (σo,σu), σo ∈ T∗
o , L (σo) = w, σu ∈ T∗

u |
[∃σ ∈ S (w) : σo = Po(σ), σu = Pu(σ)]∧
[6 ∃σ′ ∈ S (w) : σo = Po(σ′), σ′

u = Pu(σ′)∧
π(σ′

u) � π(σu)]}

the set of pairs (sequenceσo ∈ T∗
o with L (σo) = w;

correspondingjustificationof w). Moreover, we de-
fine

Ŷmin(M0,w) = {(σo,y), σo ∈ T∗
o ,L (σo) = w,y∈ Nnu |

∃(σo,σu) ∈ Ĵ (w) : π(σu) = y}

the set of pairs (sequenceσo ∈ T∗
o with L (σo) = w;

correspondingj-vector). �

In simple words,Ĵ (w) is the set of pairs whose
first element is the sequenceσo ∈ T∗

o labeledw and
whose second element is the corresponding sequence
of unobservable transitions interleaved withσo whose
firing enablesσo and whose firing vector is minimal.
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The firing vectors of these sequences are calledj-
vectors.

Definition 5.2 (Cabasino et al., 2009).Let 〈N,M0〉
be a net system with labeling functionL : T → L∪
{ε}, whereN = (P,T,Pre,Post) andT = To∪Tu. Let
w be a given observation and(σo,σu) ∈ Ĵ (w) be a
generic pair (sequence of observable transitions la-
beledw; corresponding minimal justification). The
marking

Mb = M0 +Cu ·y+Co ·y
′, y = π(σu), y′ = π(σo),

i.e., the marking reached firingσo interleaved with the
minimal justificationσu, is calledbasis markingand
y is called itsj-vector(or justification-vector). �

Obviously, because in general more than one jus-
tification exists for a wordw (the set̂J (w) is generally
not a singleton), the basis marking may be not unique
as well.

Definition 5.3 (Cabasino et al., 2009).Let 〈N,M0〉
be a net system with labeling functionL : T → L∪
{ε}, whereN = (P,T,Pre,Post) andT = To∪Tu. Let
w∈ L∗ be an observed word. We define

M (w) = {(M,y) | (∃σ ∈ S (w) : M0[σ〉M) ∧
(∃(σo,σu) ∈ Ĵ (w) : σo = Po(σ),

σu = Pu(σ), y = π(σu))}

the set of pairs (basis marking; relative j-vector) that
areconsistentwith w∈ L∗. �

Note that the setM (w) does not keep into account
the sequences of observable transitions that may have
actually fired. It only keeps track of the basis mark-
ings that can be reached and of the firing vectors rela-
tive to sequences of unobservable transitions that have
fired to reach them. Indeed, this is the information re-
ally significant when performing diagnosis. The no-
tion of M (w) is fundamental to provide a recursive
way to compute the set of minimal explanations.

Proposition 5.4 (Cabasino et al., 2009).Given a
net system〈N,M0〉 with labeling functionL : T →
L∪{ε}, whereN = (P,T,Pre,Post) andT = To∪Tu.
Assume that the unobservable subnet is acyclic. Let
w = w′l be a given observation.

The setŶmin(M0,wl) is defined as:

Ŷmin(M0,wl) = {(σo,y) | σo = σ′
0t ∧y = y′ +e :

(σ′
o,y

′) ∈ Ŷmin(M0,w),
(t,e) ∈ Ŷmin(M′

b, l) andL (t) = l},

whereM′
b = M0 +Cu ·y′ +Co ·σ′

o.

Example 5.5.Let us consider the PN in Figure 1 pre-
viously introduced in Example 3.2.

Let us assumew = acd. The set of justifica-
tions is Ĵ (w) = {(t1t5t6,ε),(t1t5t7,ε12ε13)} and the

set of j-vectors isŶmin(M0,w) = {(t1t5t6,~0),(t1t5t7,
[0 0 0 0 1 1]T)}. The above j-vectors lead to the same
basis markingMb = [0 1 0 0 0 0 0 1 0 0 0]T thus
M (w) = {(Mb,~0),(Mb, [0 0 0 0 1 1]T)}.

Now, let us considerw = ab. In this casêJ (w) =

{(t1t2,ε)}, Ŷmin(M0,w) = {(t1t2,~0)} and the basis
marking is the same as in the previous case, namely
Mb = [0 1 0 0 0 0 0 1 0 0 0]T , thusM (w) = {(Mb,~0)}.

�

Under the assumption of acyclicity of the unob-
servable subnet, the setM (w) can be easily con-
structed as follows.

Algorithm 5.6 (Computation of the basis mark-
ings and j-vectors).

1. Let w = ε.
2. LetM (w) = {(M0,~0)}.
3. Wait until a new labell is observed.
4. Let w′ = w andw = w′l .
5. LetM (w) = /0.
6. For all M′ such that(M′,y′) ∈M (w′) , do

6.1. for all t ∈ Tl , do
6.1.1.for all e∈Ymin(M′, t), do
6.1.1.1.let M = M′ +Cu ·e+C(·, t),
6.1.1.2.for all y′ such that(M′,y′) ∈M (w′), do

6.1.2.1.let y = y′ +e,
6.1.2.2.letM (w) =M (w)∪{(M,y)}.

7. Goto step 3.

�

In simple words, the above algorithm can be ex-
plained as follows. We assume that a certain wordw
(that is equal to the empty string at the initial step)
has been observed. Then, a new observablet fires
and we observe its labelL (t) (e.g., l ). We consider
all basis markings at the observationw′ before the fir-
ing of t, and we select among them those that may
have allowed the firing of at least one transitiont ∈ Tl ,
also taking into account that this may have required
the firing of appropriate sequences of unobservable
transitions. In particular, we focus on the minimal
explanations, and thus on the corresponding mini-
mal e-vectors (step 6.1.1). Finally, we update the set
M (w) including all pairs of new basis markings and
j-vectors, taking into account that for each basis mark-
ing atw′ it may correspond more than one j-vector.

Let us now recall the following result.

Definition 5.7 (Cabasino et al., 2008).Let 〈N,M0〉
be a net system whereN = (P,T,Pre,Post) andT =
To ∪ Tu. Assume that the unobservable subnet is
acyclic. Letw∈ T∗

o be an observed word. We denote

M basis(w) = {M ∈ Nm | ∃y∈ Nnu and (M,y) ∈M (w)}
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the set of basis markings atw. Moreover, we denote
as

M basis=
⋃

w∈T∗
o

M basis(w)

the set of all basis markings for any observationw. �

Note that if the net system is bounded then the set
M basisis finitebeing the set of basis markings a subset
of the reachability set.

Theorem 5.8 (Cabasino et al., 2008).Let us con-
sider a net system〈N,M0〉 whose unobservable sub-
net is acyclic. For anyw∈ L∗ it holds that

C (w) = {M ∈ Nm | M = Mb +Cu ·y :
y≥~0 and Mb ∈M basis(w)}.

6 DIAGNOSIS USING PETRI
NETS

Assume that the set of unobservable transitions is par-
titioned into two subsets, namelyTu = Tf ∪Treg where
Tf includes all fault transitions (modeling anomalous
or fault behavior), whileTreg includes all transitions
relative to unobservable but regular events. The setTf
is further partitioned intor different subsetsT i

f , where
i = 1, . . . , r, that model the different fault classes.

The following definition introduces the notion of
diagnoser.

Definition 6.1 (Cabasino et al., 2009).A diagnoser
is a function∆ : L∗ ×{T1

f ,T2
f , . . . ,T r

f } → {0,1,2,3}
that associates to each observationw∈ L∗ and to each
fault classT i

f , i = 1, . . . , r, adiagnosis state.

• ∆(w,T i
f ) = 0 if for all σ ∈ S (w) and for allt f ∈ T i

f
it holdst f 6∈ σ.
In such a case theith fault cannot have occurred,
because none of the firing sequences consistent
with the observation contains fault transitions of
classi.

• ∆(w,T i
f ) = 1 if:

(i) there existσ∈ S (w) andt f ∈T i
f such thatt f ∈σ

but
(ii) for all (σo,σu) ∈ Ĵ (w) and for all t f ∈ T i

f it
holds thatt f 6∈ σu.
In such a case a fault transition of classi may have
occurred but is not contained in any justification
of w.

• ∆(w,T i
f ) = 2 if there exist (σo,σu),(σ′

o,σ′
u) ∈

Ĵ (w) such that
(i) there existst f ∈ T i

f such thatt f ∈ σu;

(ii) for all t f ∈ T i
f , t f 6∈ σ′

u.
In such a case a fault transition of classi is con-
tained in one (but not in all) justification ofw.

• ∆(w,T i
f ) = 3 if for all σ∈ S (w) there existst f ∈T i

f
such thatt f ∈ σ.
In such a case theith fault must have occurred,
because all firable sequences consistent with the
observation contain at least one fault inT i

f . �

Example 6.2. Let us consider the PN in Figure 1
previously introduced in Example 3.2. LetTf =
{ε11,ε12}. Assume that the two fault transitions be-
long to different fault classes, i.e.,T1

f = {ε11} and

T2
f = {ε12}.

Let us observew = a. Then ∆(w,T1
f ) =

∆(w,T2
f )= 0, beingĴ (w) = {(t1,ε)} andS (w)= {t1}.

In words no fault of both fault classes can have oc-
curred.

Let us observew = ab. Then ∆(w,T1
f ) = 1

and ∆(w,T2
f ) = 0, being Ĵ (w) = {(t1t2,ε)} and

S (w) = {t1t2, t1t2ε8, t1t2ε8ε9, t1t2ε8ε9ε10, t1t2ε8ε11}.
This means that a fault of the second fault class may
have occurred (e.g.t1t2ε8ε11) but it is not contained
in any justification ofab, while no fault of the first
fault class can have occurred.

Now, let us considerw = abb. In this
case ∆(w,T1

f ) = 2 and ∆(w,T2
f ) = 0, being

Ĵ (w) = {(t1t2t2,ε8ε9ε10),(t1t2t3,ε8ε11)} andS (w) =
{t1t2ε8ε9ε10t2, t1t2ε8ε9ε10t2ε8, t1t2ε8ε9ε10t2ε8ε9,
t1t2ε8ε9ε10t2ε8ε9ε10, t1t2ε8ε9ε10t2ε8ε11}. This means
that no fault of the first fault class can have occurred,
while a fault of the second fault class may have
occurred since one justification does not containε11
and one justification contains it.

Finally, let us considerw = abbccc. In this
case ∆(w,T1

f ) = 1 and ∆(w,T2
f ) = 3. In fact

sinceĴ (w) = {(t1t2t3t5t4t4,ε8ε11),(t1t2t3t4t5t4,ε8ε11),
(t1t2t3t4t4t5,ε8ε11),(t1t2t3t4t4t4,ε8ε11)} a fault of the
first fault class must have occurred, while a fault
of the second fault class may have occurred (e.g.
t1t2ε8ε11t3t4t4t5ε12) but it is not contained in any jus-
tification ofw. �

The following proposition presents how the di-
agnosis states can be characterized analyzing basis
markings and justifications.

Proposition 6.3 (Cabasino et al., 2009).Consider
an observed wordw∈ L∗.

• ∆(w,T i
f )∈ {0,1} iff for all (M,y) ∈M (w) and for

all t f ∈ T i
f it holdsy(t f ) = 0.

• ∆(w,T i
f ) = 2 iff there exist(M,y) ∈ M (w) and

(M′,y′) ∈M (w) such that:
(i) there existst f ∈ T i

f such thaty(t f ) > 0,

(ii) for all t f ∈ T i
f , y′(t f ) = 0.
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• ∆(w,T i
f ) = 3 iff for all (M,y) ∈M (w) there exists

t f ∈ T i
f such thaty(t f ) > 0.

The following proposition shows how to distin-
guish between diagnosis states 0 and 1.

Proposition 6.4 (Cabasino et al., 2009).For a PN
whose unobservable subnet is acyclic, letw ∈ L∗ be
an observed word such that for all(M,y) ∈ M (w) it
holdsy(t f ) = 0 ∀ t f ∈ T i

f . Let us consider the con-
straint set

T (M) =















M +Cu ·z≥~0,

∑
t f ∈T i

f

z(t f ) > 0,

z∈ Nnu.

(1)

• ∆(w,T i
f ) = 0 if ∀ (M,y) ∈M (w) the constraint set

(1) is not feasible.
• ∆(w,T i

f )= 1 if ∃ (M,y)∈M (w) such that the con-
straint set (1) is feasible.

On the basis of the above two results, if the un-
observable subnet is acyclic, diagnosis may be car-
ried out by simply looking at the setM (w) for any
observed wordw and, should the diagnosis state be
either 0 or 1, by additionally evaluating whether the
corresponding integer constraint set (1) admits a so-
lution.

Example 6.5. Let us consider the PN in Figure 1
whereT1

f = {ε11} andT2
f = {ε12}.

Let w = ab. In this caseM (w) = {(M1
b,

~0)},
whereM1

b = [0 1 0 0 0 0 0 1 0 0 0]T . BeingT (M1
b) fea-

sible only for the fault classT1
f it holds∆(w,T1

f ) = 1

and∆(w,T2
f ) = 0.

Let w = abb. It isM (w) = {(M1
b, [1 1 1 0 0 0]T),

(M2
b, [1 0 0 1 0 0]T)}, where M2

b =

[0 0 0 0 0 0 1 1 0 0 0]T . It is ∆(w,T1
f ) = 2 and

∆(w,T2
f ) = 0 being bothT (M1

b) and T (M2
b) not

feasible.
Let w = abbccc. In this case M (w) =

{(M3
b, [1 1 1 0 0 0]T),(M4

b, [1 1 1 0 0 0]T)}, where
M3

b = [0 0 0 0 0 0 1 1 0 0 0]T and M4
b =

[0 0 0 0 0 0 1 0 1 0 0]T . It is ∆(w,T1
f ) = 3 and be-

ing T (M4
b) feasible for the second fault classT2

f it

holds∆(w,T2
f ) = 1. �

7 BASIS REACHABILITY GRAPH

Diagnosis approach described in the previous section
can be applied both to bounded and unbounded PNs.
The proposed approach is an on-line approach that for

each new observed event updates the diagnosis state
for each fault class computing the set of basis mark-
ings and j-vectors. Moreover if for a given fault class
is necessary to distinguish between diagnosis states
0 and 1, it is also necessary to solve for each basis
markingMb the constraint setT (Mb).

In this section we show that if the considered net
system is bounded, the most burdensome part of the
procedure can be moved off-line defining a graph
calledBasis Reachability Graph(BRG).

Definition 7.1. The BRG is a deterministic graph that
has as many nodes as the number of possible basis
markings.

To each node is associated a different basis mark-
ing M and a row vector with as many entries as the
number of fault classes. The entries of this vector
may only take binary values: 1 ifT (M) is feasible,
0 otherwise.

Arcs are labeled with observable events inL and
e-vectors. More precisely, an arc exists from a node
containing the basis markingM to a node containing
the basis markingM′ if and only if there exists a tran-
sition t for which an explanation exists atM and the
firing of t and one of its minimal explanations leads to
M′. The arc going fromM to M′ is labeled(L (t),e),
wheree∈Ymin(M, t) andM′ = M +Cu ·e+C(·, t). �

Note that the number of nodes of the BRG is al-
ways finite being the set of basis markings a subset
of the set of reachable markings, that is finite being
the net bounded. Moreover, the row vector of binary
values associated to the nodes of the BRG allows us
to distinguish between the diagnosis state 1 or 0.

The main steps for the computation of the BRG in
the case of labeled PNs are summarized in the follow-
ing algorithm.

Algorithm 7.2 (Computation of the BRG).

1. Label the initial node(M0,x0) where∀i = 1, . . . , r,

x0(T i
f ) =

{

1 if T (M0) is feasible,
0 otherwise.

Assign no tag to it.
2. While nodes with no tag exist

select a node with no tag and do
2.1. let M be the marking in the node(M,x),
2.2. for all l ∈ L

2.2.1.for all t : L(t) = l ∧Ymin(M,t) 6= /0, do
• for all e∈Ymin(M,t), do
• let M′ = M +Cu ·e+C(·,t),
• if ∄ a node(M,x) with M = M′, do
• add a new node to the graph containing
(M′,x′) where∀i = 1, . . . , r,

x′(T i
f ) =

{

1 if T (M′) is feasible,
0 otherwise.

and arc(l ,e) from (M,x) to (M′,x′)
• else
• add arc(l ,e) from (M,x) to (M′,x′)
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if it does not exist yet
2.3. tag the node ”old”.

3. Remove all tags.

�

The algorithm constructs the BRG starting from
the initial node to which it corresponds the initial
marking and a binary vector defining which classes
of faults may occur atM0. Now, we consider all
the labelsl ∈ L such that there exists a transitiont
with L(t) = l for which a minimal explanation atM0
exists. For any of these transitions we compute the
marking resulting from firingt at M0 +Cu ·e, for any
e∈Ymin(M0, t). If a pair (marking, binary vector) not
contained in the previous nodes is obtained, a new
node is added to the graph. The arc going from the
initial node to the new node is labeled(l ,e). The pro-
cedure is iterated until all basis markings have been
considered. Note that, our approach always requires
to enumerate a state space that is a strict subset of the
reachability space. However, as in general for diag-
nosis approaches, the combinatory explosion cannot
be avoided.

Example 7.3. Let us consider the PN in Figure 1,
whereTo = {t1, t2, t3, t4, t5, t6, t7}, Tu = {ε8,ε9,ε10,ε11,
ε12,ε13}, T1

f = {ε11} andT2
f = {ε12}. The labeling

function is defined as follows:L (t1) = a, L (t2) =
L (t3) = b, L (t4) = L (t5) = c, L (t6) = L (t7) = d.

The BRG is shown in Figure 2. The notation used
in in this figure is detailed in Tables 1 and 2. Each
node contains a different basis marking and a binary
row vector of dimension two, being two the number
of fault classes. As an example, the binary vector[0 0]
is associated toM0 becauseT (M0) is not feasible for
both fault classes. From nodeM0 to nodeM1 there is
one arc labeleda and with the null vector as minimal
explanation. The node containing the basis marking
M2 has binary vector[0 1], becauseT (M2) is feasible
only for T2

f . Node(M2, [0 1]) has two output arcs both
labeled withd and both directed to node(M1, [0 0])
with two different minimal explanations~0 ande1, re-
spectively, plus another output arc(b,~0) directed to
node(M4, [1 1]). �

The following algorithm summarizes the main
steps of the on-line diagnosis carried out by looking
at the BRG.

Algorithm 7.4 (Diagnosis using the BRG).
1. Let w = ε.
2. LetM (w) = {(M0,~0)}.
3. Wait until a new observable transition fires.

Let l be the observed event.
4. Let w′ = w andw = w′l .
5. LetM (w) = /0, [Computation of M (w)]
6. For all nodes containingM′ : (M′,y′) ∈M (w′), do

M0, [0 0] 

a,0 

M1, [0 0] 

M2, [0 1] 

d,0 
c,0 

M6, [0 1] 

d,e1 

b, e3 
 

M3, [1 0] 

M4, [1 1] 

b,0 

b,e2 

b,0 

M5, [0 0] 
b, e3 

b,e2 

d,0 

c,0 

c,0 

c,0 
d,e1 

c,0 

d,0 d,e1 

Figure 2: The BRG of the PN in Figure 1.

6.1. for all arcs exiting from the node withM′, do
6.1.1.let M be the marking of the output node

ande be the minimal e-vector on the edge
from M′ to M,

6.1.2.for all y′ such that(M′,y′) ∈M (w′), do
6.1.2.1. let y = y′ +e,
6.1.2.2. letM (w) =M (w)∪{(M,y)},

7. for all i = 1, . . . , r, do
[Computation of the diagnosis state]

7.1. if ∀ (M,y) ∈M (w) ∧ ∀t f ∈ T i
f it is y(t f ) = 0, do

7.1.1.if ∀ (M,y) ∈M (w) it holdsx(i) = 0,
wherex is the binary vector in nodeM, do

7.1.1.1.let ∆(w,T i
f ) = 0,

7.1.2.else
7.1.2.1.let ∆(w,T i

f ) = 1,
7.2. if ∃ (M,y) ∈M (w) and(M′,y′) ∈M (w) s.t.:

(i) ∃t f ∈ T i
f such thaty(t f ) > 0,

(ii) ∀t f ∈ T i
f , y′(t f ) = 0, do

7.2.1.let ∆(w,T i
f ) = 2,

7.3. if ∀ (M,y) ∈M (w) ∃t f ∈ T i
f : y(t f ) > 0, do

7.3.1.let ∆(w,T i
f ) = 3.

8. Goto step 3.

�

Steps 1 to 6 of Algorithm 7.4 enables us to com-
pute the setM (w). When no event is observed,
namelyw= ε, thenM (w) = {(M0,~0)}. Now, assume
that a labell is observed. We include in the setM (l)
all couples(M,y) such that an arc labeledl exits from
the initial node and ends in a node containing the ba-
sis markingM. The corresponding value ofy is equal
to the e-vector in the arc going fromM0 to M, being
~0 the j-vector relative toM0. In general, ifw′ is the
actual observation, and a new event labeledl fires, we
consider all couples(M′,y′) ∈ M (w′) and all nodes
that can be reached fromM′ with an arc labeledl . Let
M be the basis marking of the generic resulting node.
We include inM (w) = M (w′t) all couples(M,y),
where for anyM, y is equal to the sum ofy′ plus the
e-vector labeling the arc fromM′ to M.

Step 7 of Algorithm 7.4 computes the diagnosis
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Table 1: The markings of the BRG in Figure 2.

M0 [ 1 0 0 0 0 0 0 0 0 0 0 ]T

M1 [ 0 1 0 0 0 0 0 1 0 0 0 ]T

M2 [ 0 1 0 0 0 0 0 0 1 0 0 ]T

M3 [ 0 0 1 0 0 0 0 1 0 0 0 ]T

M4 [ 0 0 1 0 0 0 0 0 1 0 0 ]T

M5 [ 0 0 0 0 0 0 1 1 0 0 0 ]T

M6 [ 0 0 0 0 0 0 1 0 1 0 0 ]T

Table 2: The e-vectors of the BRG in Figure 2.

ε8 ε9 ε10 ε11 ε12 ε13

e1 0 0 0 0 1 1
e2 1 1 1 0 0 0
e3 1 0 0 1 0 0

state. Let us consider the genericith fault class. If
∀(M,y) ∈ M (w) and∀t f ∈ T i

f it holdsy(t f ) = 0, we
have to check theith entry of all the binary row vec-
tors associated to the basis markingsM, such that
(M,y) ∈ M (w). If these entries are all equal to 0,
we set∆(w,T i

f ) = 0, otherwise we set∆(w,T i
f ) = 1.

On the other hand, if there exists at least one pair
(M,y) ∈ M (w) with y(t f ) > 0 for any t f ∈ T i

f , and
there exists at least one pair(M′,y′) ∈ M (w) with
y(t f ) = 0 for all t f ∈ T i

f , then∆(w,T i
f ) = 2. Finally, if

for all pairs(M,y) ∈M (w) y(t f ) > 0 for anyt f ∈ T i
f ,

then∆(w,T i
f ) = 3.

The following example shows how to perform di-
agnosis on-line simply looking at the BRG.

Example 7.5.Let us consider the PN in Figure 1 and
its BRG in Figure 2. Letw = ε. By looking at the
BRG we establish that∆(ε,T1

f ) = ∆(ε,T2
f ) = 0 being

both entries of the row vector associated toM0 equal
to 0.

Now, let us considerw = ab. In such a case
M (w) = {(M3,~0)}. It holds ∆(ab,T1

f ) = 1 and

∆(ab,T2
f ) = 0 being the row vector in the node equal

to [1 0].
Finally, for w = abbc it holds ∆(abbc,T1

f ) =

2 and ∆(abbc,T2
f ) = 1. In fact M (w) =

{(M4,y1),(M5,y2)}, wherey1 = e2, y2 = e2 +e3, and
the row vectors associated toM4 andM5 are respec-
tively [1 1] and[0 0]. �

8 MATLAB TOOLBOX

Our group at the University of Cagliari has developed
a MATLAB toolbox for PNs.

In this section we illustrate how it can be used for
the diagnosis of labeled PNs. In particular, we con-
sider the function that given a bounded labeled PN
builds the basis reachability graph.

The input of the MATLAB function BRG.m are:

• the structure of the net, i.e., the matricesPre and
Post;

• the initial markingM0;

• a cell arrayF that has as many rows as the number
of fault classes, that contains in each row the fault
transitions that belong to the corresponding fault
class;

• a cell arrayL that has as many rows as the car-
dinality of the considered alphabet, that contains
in each row the observable transitions having the
same label;

• a cell arrayE that contains in each row a string of
characters, each one corresponding to a different
label in the considered alphabet. Obviously, the
cell arrayE is ordered according toL.

The output of the MATLAB function BRG.m is
a cell arrayT that univocally identifies the resulting
BRG. It has as many rows as the number of nodes of
the BRG. A different row is associated to each node
and contains the following information:

• an identifier number of the node;

• a matrix whose rows are equal to the transpose of
the basis markings associated to the node;

• a matrix with as many rows as the number of ba-
sis markings associated to the node and as many
columns as the number of fault classes: thejth
element in theith row (corresponding toMi

b) is

equal toxi(T
j
f ) evaluated atMi

b. Thus,xi(T
j
f ) = 0

is T (Mi
b) is not feasible with respect toT f

j , 1 oth-
erwise;
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• the transitions enabled at node;

• the identifier number of the nodes that are reached
firing an enabled transition and the corresponding
j-vector.

9 NUMERICAL SIMULATIONS

Let us consider the Petri net in Figure 3 (Lai et al.,
2008), where thick transitions represent observable
event and thin transitions represent unobservable
events. It models a family of manufacturing systems
characterized by three parameters:n, m andk.

— n is the number of production lines.
— m is the number of units of the final product

that can be simultaneously produced. Each unit of
product is composed ofn parts.

— k is the number of operations that each part
must undergo in each line.

To obtain one unit of final productn orders are
sent, one to each line; this is represented by observ-
able eventts. Each line will produce a part (all parts
are identical) and put it in its final buffer. An assembly
station will take one part from each buffer (observable
eventte) to produce the final product.

The part in linei (i = 1, . . . ,n) undergoes a series
of k operations, represented by unobservable events
εi,1,εi,2, · · · ,εi,k.

After this series of operations two events are pos-
sible: either the part is regularly put in the final buffer
of the line, or a fault may occur.

— Putting the part in the final buffer of line 1 cor-
responds to unobservable eventε1,k+1, while putting
the part in the final buffer of linei (i = 2, . . . ,n) corre-
sponds to observable eventti,k+1.

— There aren− 1 faults, represented by unob-
servable eventsfi (i = 1, . . . ,n− 1). Fault fi moves
a part from linei to line i + 1. Note that on linei
(i = 1, . . . ,n−1) the fault may only occur when the
part has finished processing and is ready to be put in
its final buffer; the part goes to the same processing
stage in linei +1.

In this section we present the results of the compu-
tation of the BRG for several numerical simulations.
Results obtained for different values ofn, k andmare
summarized in Tables 3, 4 and 5.

Note that for the sake of simplicity we assumed
that all faults belong to the same class.

In these tables we also detail the cardinality of
the reachability setR. This is an extremely important
parameter to appreciate the advantage of using basis
markings. The value of|R| has been computed using
a function we developed in MATLAB. For complete-
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Figure 3: A manufacturing system.

ness we also reported the time necessary to compute
it.

Let us observe that some boxes of the above tables
contain the non numerical values o:t: (out of time),
that denotes that the corresponding value has not been
computed within 6 hours.

All simulations have been run on a PC Athlon 64,
4000+ processor.

— Columns 1 and 2 show the values ofn andk.
— Column 3 shows the number of nodes|R| of the

reachability graph.
— Column 4 shows the timetR in seconds we

spent to compute the reachability graph.
— Column 4 shows the number of nodes|BRG| of

the BRG.
— Column 5 shows the timetBRG in seconds we

spent to compute the BRG using the function BRG.m.
Tables 3, 4 and 5 show that the time spent to com-

pute the reachability graph highly increases with the
dimension of the net, namely withn andk, and with
the number of productsm.

On the contrary, the time spent to compute the
BRG is always reasonable even for high values ofn,
k andm.

Tables 3, 4 and 5 also show that the number of
nodes of the BRG only depends onn andm, while it
is invariant with respect tok. On the other hand,|R|
also highly increases withk.
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Table 3: Numerical results in the case ofm = 1.

n k |R| tR [sec] |BRG| tBRG [sec]

2 1 15 0.031 5 0.062
2 2 24 0.031 5 0.062
2 3 35 0.047 5 0.062
2 4 48 0.062 5 0.07
2 5 63 0.078 5 0.07
2 6 80 0.094 5 0.07
3 1 80 0.094 17 0.101
3 2 159 0.25 17 0.101
3 3 274 0.672 17 0.109
3 4 431 1.72 17 0.117
3 5 636 3.938 17 0.125
3 6 895 8.328 17 0.132

4 1 495 2.375 69 0.375
4 2 1200 16.969 69 0.43
4 3 2415 77.828 69 0.477
4 4 4320 272.53 69 0.531
4 5 7119 824.69 69 0.594
4 6 11040 2122.4 69 0.664
5 1 3295 155.81 305 4.345
5 2 9691 1615.7 305 4.765
5 3 22707 10288 305 5.25
5 4 o.t. o.t. 305 5.75
5 5 o.t. o.t. 305 6.897
5 6 o.t. o.t. 305 7.894

Table 4: Numerical results in the case ofm = 2.

n k |R| tR [sec] |BRG| tBRG [sec]

2 1 96 0.11 17 0.086
2 2 237 0.469 17 0.094
2 3 496 2.078 17 0.1

3 1 1484 24.204 140 0.78
3 2 5949 486.39 140 0.844
3 3 18311 5320.9 140 0.906

4 1 28203 14006 1433 73.5
4 2 o.t. o.t. 1433 76.5
4 3 o.t. o.t. 1433 76.5

For the considered Petri net, on the basis of the
above simulations, we can conclude that the diagno-
sis approach here presented is suitable from a com-
putational point of view. In fact, thanks to the basis
markings the reachability space can be described in a
compact manner.

Table 5: Numerical results in the case ofm = 3.

n k |R| tR [sec] |BRG| tBRG [sec]

2 1 377 1.203 39 0.145
2 2 1293 17.203 39 0.145
3 1 12048 2113.9 553 8.219
3 2 o.t. o.t. 553 9.016
4 1 o.t. o.t. 9835 4095.06
4 2 o.t. o.t. 9835 4095.06

10 CONCLUSIONS AND FUTURE
WORK

This paper presents a diagnosis approach for labeled
PNs using basis markings. This enables us to avoid an
exhaustive enumeration of the reachability set. This
approach applies to all bounded and unbounded Petri
net systems whose unobservable subnet is acyclic.
However, if we consider bounded net systems the
most burdensome part of the procedure may be moved
off-line computing the Basis Reachability Graph. Fi-
nally, we have presented a tool for the diagnosis of
labeled bounded PNs and we have shown the simula-
tion results using as diagnosis benchmark a family of
manufacturing systems.

We have also studied the problem of diagnosabil-
ity of bounded and unbounded PNs giving for both
cases necessary and sufficient conditions for diagnos-
ability. These results are not reported here, but they
have been already submitted to an international con-
ference.

Our future work will be that of studying the di-
agnosis problem for distributed systems investigating
the possibility of extending the approach here pre-
sented to this case.
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