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Abstract: This paper serves as a support for the plenary address gyverelsecond author during the conference. In
this paper we present an approach to on-line diagnosis ofedésevent systems based on labeled Petri nets,
that are a particular class of Petri nets where some eveatsnalistinguishable, i.e., events that produce an
output signal that is observable, but that is common to athients. Our approach is based on the notion of
basis markings and justifications and it can be applied lmltotinded and unbounded Petri nets whose unob-
servable subnet is acyclic. Moreover it is shown that, indh&e of bounded Petri nets, the most burdensome
part of the procedure may be moved off-line, computing ai@aer graph that we caBasis Reachability
Graph
Finally we present a diagnosis MATLAB toolbox with some exd@s of application.

1 INTRODUCTION goals of industries. Improved quality of performance,
product integrity and reliability, and reduced cost of
Failure detection and isolation in industrial systems €duipment maintenance and service are some major
is a subject that has received a lot of attention in the PeNefits that accurate diagnosis schemes can provide,
past few decades. A failure is defined to be any devia- €SPecially for service and product oriented industries
tion of a system from its normal or intended behavior. such as home and building environment control, office
Diagnosis is the process of detecting an abnormality @Utomation, automobile manufacturing, and semicon-

in the system behavior and isolating the cause or theductor manufacturing. Thus, we see that accurate and
source of this abnormality. timely methods of failure diagnosis can enhance the

Failures are inevitable in today’s complex indus- safety, reliability, availability, quality, and economy

trial environment and they could arise from several ©f industrial processes. _ .
sources such as design errors, equipment malfunc- ~ The need of automated mechanisms for the timely
tions, operator mistakes, and so on. As technology and accurate diagnosis of failures is well understood
advances, as we continue to build systems of increas-and appreciated both in industry and in academia. A
ing size and functionality, and as we continue to place 9reat deal of research effort has been and is being
increasing demands on the performance of these sys-Spentin the design and development of automated di-
tems, then so do we increase the complexity of these@gnostic systems, and a variety of schemes, differing
systems. Consequently (and unfortunately), we en- both_in theirtheor_etical framework and in their design
hance the potential for systems to fail, and no matter and implementation philosophy, have been proposed.
how safe our designs are, how improved our quality  In diagnosis approach two different problems can
control techniques are, and how better trained the op-be solved: the problem of diagnosis and the problem
erators are, system failures become unavoidable. of diagnosability.

Given the fact that failures are inevitable, the need Solving a problem of diagnosis means that we as-
for effective means of detecting them is quite apparent sociate to each observed string of events a diagno-
if we consider their consequences and impacts not justsis state, such as “normal” or “faulty” or “uncertain”.
on the systems involved but on the society as a whole. Solving a problem of diagnosability is equivalent to
Moreover we note that effective methods of failure determine if the system is diagnosable, i.e., to deter-
diagnosis can not only help avoid the undesirable ef- mine if, once a fault has occurred, the system can de-
fects of failures, but can also enhance the operationaltect its occurrence in a finite number of steps.
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The diagnosis of discrete event systems (DES) is2 LITERATURE REVIEW
a research area that has received a lot of attention in
the last years and has been motivated by the practically this section we present the state of art of diagnosis
need of ensuring the correct and safe functioning of of DES using automata and PNss.
large complex systems. As discussed in the next ses-
sion the first results have been presented within the
framework of automata. More recently, the diagno-
sis problem has also been addressed using Petri nets o i
(PNs). In fact, the use of Petri nets offers significant In the contest of DES several onglnal theoretical ap-
advantages because of their twofold representation:Proaches have been proposed usingppmata
graphical and mathematical. Moreover, the intrinsi- __In (Lin, 1994) and (Lin et al., 1993) a state-based
cally distributed nature of PNs where the notion of PES approach to failure diagnosis is proposed. The
state (i.e., marking) and action (i.e., transition) is lo- Problems of off-line and on-line diagnosis are ad-
cal reduces the computational complexity involved in dressed separately and notions of diagnosability in
solving a diagnosis problem. both of t.hese cases are prese_nted. The author§ give
In this paper we summarize our main contribu- an algorithm for computing a dlagno_stlc Cor_1trol, i.e.,
tions on diagnosis of DES using PNs (Giua and @ Seduence of test.commands for diagnosing system
Seatzu, 2005: Cabasino et al., 2008: Lai et al., 2008;fa|lures. This algorithm is guaranteed to converge if
Cabasino etal., 2009). In particular, we focus on arbi- he System satisfies the conditions for on-line diag-
trary labeled PNs where the observable events are the"osability.
labels associated to transitions, while faults are mod- !N (Sampath et al., 1995) and (Sampath et al.,

eled as silent transitions. We assume that there may1996) the authors propose an approach to failure diag-
also be transitions modeling a regular behavior, that N0sis Where the system is modeled as a DES in which

that may be simultaneously enabled may share thelevel (_)f detail in a discrete event model appears to
same label, thus they are undistinguishable. Our diag-P€ quite adequate for a large class of systems and for
nosis approach is based on the definition of four diag- & Wide variety of failures to be diagnosed. The ap-
nosis states modeling different degrees of alarm andProach is applicable whenever failures cause a dis-
it applies to all systems whose unobservable subnettinct change in the system status but do not neces-
is acyclic. Two are the main advantages of our proce- Sarily bring the system to a halt. In (Sampath et al.,
dure. First, we do not need an exhaustive enumeration1995) a definition of diagnosability in the framework
of the states in which the system may be: this is due ©f formal languages is provided and necessary and
to the introduction of basis markingS. Second'y, in SUﬁ|C|?nt conditions for d|agnlosab|l|ty of SyStemS are
the case of bounded net systems we can move off-line€stablished. Also presented in (Sampath et al., 1995)
the most burdensome part of the procedure building aiS @ Systematic approach to solve the problem of diag-
finite graph called basis reachability graph. nosis using diagnosers.

The paper is organized as follows. In Section 2 In (Sampath et al., 1998) the authors present an
the state of art of diagnosis for discrete event systemsintegrated approach to control and diagnosis. More
is illustrated. In Section 3 we provide a background Specifically, authors present an approach for the de-
on PNs. In Sections 4 and 5 are introduced the defini- Sign of diagnosable systems by appropriate design
tions of minimal explanations, justifications and basis ©f the system controller and this approach is called
markings, that are the basic notions of our diagnosis active diagnosis. They formulate the active diagno-
approach. In Section 6 the diagnosis states are de-SiS problem as a supervisory control problem. The
fined and a characterization of them in terms of basis adopted procedure for solving the active diagnosis
markings and j-vectors is given. In Section 7 we show Problem is the following: given the non-diagnosable
how the most burdensome part of the procedure canlanguage generated by the system of interest, they first
be moved offline in the case of bounded PNs. In Sec- select an “appropriate” sublanguage of this language
tion 8 we present the MATLAB toolbox developed as the legal language. Choice of the legal language
by our group for PNs diagnosis and in Section 9 we is @ design issue and typically depends on considera-
present some numerical results obtained applying ourtions such as acceptable system behavior (which en-

tool to a parametric model of manufacturing System_ sures that the system behavior is not restricted more
In Section 10 we draw the conclusions. than necessary in order to eventually make it diagnos-

able) and detection delay for the failures. Once the
appropriate legal language is chosen, they then design
a controller (diagnostic controller), that achieves a

2.1 Diagnosis of DES using Automata
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closed-loop language that is within the legal language ploy time PNs to model the DES controller and back-
and is diagnosable. This controller is designed basedfiring transitions to determine whether a given state
on the formal framework and the synthesis techniquesis invalid. Later on, time PNs have been employed
that supervisory control theory provides, with the ad- in (Ghazel et al., 2005) to propose a monitoring ap-
ditional constraint of diagnosability. proach for DES with unobservable events and to rep-
In (Debouk et al., 2000) is addressed the problem resent the “a priori” known behavior of the system,
of failure diagnosis in DES with decentralized infor- and track on-line its state to identify the events that
mation. Deboulet al. propose a coordinated decen- occur.
tralized architecture consisting of two local sites com- In (Hadjicostis and Veghese, 1999) the authors use
municating with a coordinator that is responsible for PN models to introduce redundancy into the system
diagnosing the failures occurring in the system. They and additional P-invariants allow the detection and
extend the notion of diagnosability, originally intro- isolation of faulty markings.
duced in (Sampath et al., 1995) for centralized Sys- Redundancy into a given PN is used in (Wu and
tems, to the proposed coordinated decentralized ar-Hadjicostis, 2005) to enable fault detection and iden-
chitecture. In particular, they specify three protocols tification using algebraic decoding techniques. In
that realize the prOpOSEd architecture and analyze the[h|s paper Wu and Hadjicostis consider two WPeS of
diagnostic properties of these protocols. faults: place faults that corrupt the net marking, and
In (Boel and van Schuppen, 2002) the authors transition faults that cause a not correct update of the
address the problem of synthesizing communication marking after event occurrence. Although this ap-
protocols and failure diagnosis algorithms for decen- proach is general, the net marking has to be period-
tralized failure diagnosis of DES with costly commu- ically observable even if unobservable events occur.
nication between diagnosers. The costs on the com-Analogously, in (Lefebvre and Delherm, 2007) the
munication channels may be described in terms of authors investigate on the determination of the set of
bits and complexity. The costs of communication and places that must be observed for the exact and imme-
computation force the trade-off between the control diate estimation of faults occurrence.
objective of failure diagnosis and that of minimiza- | (Ruiz-Beltran et al., 2007) Interpreted PNs are
tion of the COStS'Of communlcatlon'and computation. employed to model the system behavior that includes
The results of this paper is an algorithm for decentral- poth events and states partially observable. Based
ized failure diagnosis of DES for the special case of gp the Interpreted PN model derived from an on-line
only two diagnosers. methodology, a scheme utilizing a solution of a pro-
In (Zad et al., 2003) a state-based approach for on- gramming problem is proposed to solve the problem
line passive fault diagnosis is presented. In this frame- of diagnosis.
work, the system and the diagnoser (the fault detec-  \qte that, all papers in this topic assume that faults
tion system) do not have to be initialized at the same 516 modeled by unobservable transitions. However,
time. Furthermore, no information about the state or \,hiie the above mentioned papers assume that the
even the condition (failure status) of the system be- marking of certain places may be observed, a series
fore the initiation of diagnosis is required. The design ¢ papers have been recently presented that are based

of the fault detection system, in the worst case, has 4, the assumption that no place is observable (Basile
exponential complexity. A model reduction scheme ot o1 2008: Benveniste et al.. 2003 Dotoli et al.

with polynomial time complexity is introduced to re-  540g- Genc and Lafortune 2007).
duce the_qomputa_ltionallcompl_exity of the design. Di- In particular, in (Genc and Lafortune, 2007) the
agnosability of failures is studied, and necessary and authors propose a diagnoser on the basis of a modu-

gufficient conditions for failure diagnosability are de- lar approach that performs the diagnosis of faults in
rived. :
each module. Subsequently, the diagnosers recover
) ] ) ] the monolithic diagnosis information obtained when
2.2 Diagnosis of DES using Petri Nets all the modules are combined into a single module
that preserves the behavior of the underlying modular
Among the first pioneer works dealing with PNs, we system. A communication system connects the differ-
recall the approach of Prock. In (Prock, 1991) the au- ent modules and updates the diagnosis information.
thor proposes an on-line technique for fault detection Even if the approach does not avoid the state explo-
that is based on monitoring the number of tokens re- sion problem, an improvement is obtained when the
siding into P-invariants: when the number of tokens system can be modeled as a collection of PN modules
inside P-invariants changes, then the error is detected coupled through common places.
In (Sreenivas and Jafari, 1993) the authors em-  The main advantage of the approaches in (Genc
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and Lafortune, 2007) consists in the fact that, if the The first contribution on diagnosability of PNs
net is bounded, the diagnoser may be constructed off-was given in (Ushio et al., 1998). They extend a nec-
line, thus moving off-line the most burdensome part essary and sufficient condition for diagnosability in
of the procedure. Nevertheless, a characterization of(Sampath et al., 1995; Sampath et al., 1996) to un-
the set of markings consistent with the actual observa-bounded PN. They assume that the set of places is
tion is needed. Thus, large memory may be required. partitioned into observable and unobservable places,

An improvement in this respect has been given in while all transitions are unobservable in the sense that
(Benveniste et al., 2003; Basile et al., 2008; Dotoli their occurrences cannot be observed. Starting from
etal., 2008). the PN they build a diagnoser callsimplew diag-

In particular, in (Benveniste et al., 2003) a net noserthat gives them sufficient conditions for diag-

unfolding approach for designing an on-line asyn- Nnosability of unbounded PNs.
chronous diagnoser is used. The state explosion is [N (Chung, 2005) the authors, in contrast with
avoided but the on-line computation can be high due Ushio’s paper, assumes that part of the transitions
to the on-line building of the PN structures by means Of the PN modelling is observable and shows as the
of the unfolding. additional information from observed transitions in
In (Basile et al., 2008) the diagnoser is built on- general adds diagnosability to the analysed system.
line by defining and solving Integer Linear Program- Moreover starting from the diagnoser he proposes an
ming (ILP) problems. Assuming that the fault transi- automaton calledverifier that allows a polynomial
tions are not observable, the net marking is computed check mechanism on diagnosability but for finite state
by the state equation and, if the marking has neg- automata models.
ative components, an unobservable sequence is oc- N (Wen and Jeng, 2005) the authors propose an
curred. The linear programming solution provides the @Pproach to test diagnosability by checking the struc-
sequence and detects the fault occurrences. MoreoverlUreé property of T-invariant of the nets. They use
an off-line analysis of the PN structure reduces the UShio's diagnoser to prove that their method is cor-
computational complexity of the ILP problem. rect, however ;hey dqn't construct a diagnoser for the
In (Dotoli et al., 2008), in order to avoid the re- system to do diagnosis. In (Wen et al., 2005) they also

design and the redefinition of the diagnoser when the present an algonthm., based on a Imear programming

structure of the system changes, the authors propose &)roblem, of ponn'omlaI co.m.plexny |n.t_he ““”?bef of

diagnoser that works on-line. In particular, it waits for no.d'es for computing a sufficient condition of diagnos-

an observable event and an algorithm decides whethe2Pility of DES modeled by PN.

the system behavior is normal or may exhibit some

possible faults. To this aim, some ILP problems are

defined and provide eventually the minimal sequences3 BACKGROUND

of unobservable transitions containing the faults that

may have occurred. The proposed approach is a genyp thjs section we recall the formalism used in the pa-

eral technique since no assumption is imposed on thepe;  For more details on PNs we refer to (Murata,

reachable state set that can be unlimited, and only few;ggg).

properties must be fulfilled by the structure of the PN A pace/Transition netP/T net) is a structuri =

modeling the system fault behavior. (P, T,Pre,Post), whereP is a set ofm places;T is a
We also proposed a series of contributions deal- set ofn transitions;Pre: P x T — N andPost: P x

ing with diagnosis of PNs (Giua and Seatzu, 2005; T —, N are thepre- and post- incidence functions
Cabasino et al., 2008; Lai et al., 2008; Cabasino et al., that specify the arc€ = Post— Preis the incidence
2009). Our main results are summarized in the rest of matrix.

the paper. A markingis a vectorM : P — N that assigns to
Note that none of the above mentioned papers re-each place of /T net a non—negative integer num-
garding PNs deal witlliagnosability namely none  ber of tokens, represented by black dots. We denote
of them provide a procedure to determine a prioriif a M(p) the marking of place. A P/T systenor net
system isdiagnosablei.e., if it is possible to recon-  system/N, M) is a netN with an initial markingMo.
struct the occurrence of fault events observing words A transitiont is enabled aM iff M > Pre(-,t) and
of finite length. may fire yielding the markingt’ = M +C(-,t). We
In fact, whereas this problem has been extensively write M [o) to denote that the sequence of transitions
studied within the framework of automata as dis- o =tj, ---tj, is enabled aM, and we writeM [g) M’
cussed above, in the PN framework very few results to denote that the firing af yieldsM’. We also write
have been presented. t € o to denote that a transitidnis contained iro.
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The set of all sequences that are enabled at the ini-
tial markingMp is denoted.(N, Mp), i.e.,L(N,Mp) =
{oeT* | Mg[o)}.

Given a sequencee T*, we callrt: T* — N" the
function that associates ma vectory € N", named
thefiring vectorof o. In particular,y = 1(0) is such
thaty(t) = k if the transitiont is containeck times in
c.

A markingM is reachabldn (N, M) iff there ex-
ists a firing sequence such thatMg [0) M. The set
of all markings reachable froidy defines thaeach-
ability setof (N, Mg) and is denote&®(N, Mo).

A PN having no directed circuits is calleatyclic
A net system(N, Mp) is boundedf there exists a posi-
tive constank such that, foM € R(N, Mg), M(p) <k.

A labeling functionz : T — LU {e} assigns to
each transitioh € T either a symbol from a given al-
phabell or the empty string.

We denote a3, the set of transitions whose label
ise, e, Ty={teT | (t)=c¢}. Transitions inTy,
are calledunobservabler silent We denote a3, the
set of transitions labeled with a symbolln Tran-
sitions inT, are calledbbservabldecause when they
fire their label can be observed. Note that in this paper
we assume that the same labelL can be associated
to more than one transition. In particular, two tran-
sitionsts,ty € T, are calledundistinguishabléf they
share the same label, i.&.{t1) = £(t2). The set of
transitions sharing the same labalre denoted a§g.

In the following we denote &8, (Cy) the restric-
tion of the incidence matrix td, (T,) and denote as
ny andn,, respectively, the cardinality of the above
sets. Moreover, given a sequerce T*, Py(0), resp.,
Po(0), denotes the projection of overT,, resp.,To.

We denote asv the word of events associated to
the sequencs, i.e.,w = Py(0). Note that the length
of a sequence (denotedo|) is always greater than
or equal to the length of the corresponding waevd
(denotedw]). In fact, if o contain(’ transitions ifT,
then|o| =K +|w].

Definition 3.1 (Cabasino et al., 2009)Let (N, Mg)
be a labeled net system with labeling functionT —
Lu{e}, whereN = (P, T,Pre,Post) andT = ToUT.
Letw e L* be an observed word. We define

S(w) ={o e L(N,Mp) | Py(0) =w}
the set of firing sequencesnsistentvith w € L*, and
cw)={MeN" | JoeT" : Py(0) =w AMg[o)M}
|

In plain words, given an observation s (w) is the
set of sequences that may have fired, whi(e/) is the
set of markings in which the system may actually be.

the set of markingsonsistentvith w € L*.

DISCRETE EVENT DIAGNOSIS USING PETRI NETS

Figure 1: A PN system modeling.

Example 3.2. Let us consider the PN in Figure 1.
Let us assumé, = {t1,t2,t3,14,t5,t6,t7} and Ty =
{€s,€9,€10, €11,€12,€13}, Where for a better under-
standing unobservable transitions have been denoted
& rather thant. The labeling function is defined
as follows: £(t1) =a, £(t2) = £(t3) = b, L(t4) =
L(ts) =c¢, L(tg) = L(t7) =d.

First let us considew = ab. The set of fir-
ing sequences that is consistent withis s (w) =
{tato, tito€g, tito€gEg, t1toEgEQEL0, atoEgEL1}, and the
set of markings consistent wittw is c(w) =
{00100001000,/00010001000,
0000100100p0,01000001000,
[00000101000}.

If we considerw = acd the set of firing se-
quences that are consistent with is s (w)
{tatsts, tats€12€13t7}, and the set of markings consis-
tent withw is c(w) = {[01000001000}.
Thus two different firing sequences may have fired
(the second one also involving silent transitions), but
they both lead to the same marking. |

4  MINIMAL EXPLANATIONS
AND MINIMAL E-VECTORS

In this section we present the notions of minimal ex-

planations and minimal e-vectors for labeled PNs.

First we introduce notions of explanations for unla-

beled PNs, secondly we define when an explanation
is minimal and finally we extend these concepts to la-
beled PN.

Definition 4.1 (Cabasino et al., 2008). Given a
markingM and an observable transitiane T,, we
define

SMt)={oeT; |M[o)M', M’ > Pre(-,t)}
the set oexplanation®ft atM, and
Y(M,t) =n(z(M,1))
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thee-vectorqor explanation vectoisi.e., firing vec-
tors associated to the explanations. [ |

ThusXZ(M,t) is the set of unobservable sequences
whose firing atM enables. Among the above se-

guences we want to select those whose firing vector
is minimal. The firing vector of these sequences are

calledminimal e-vectors

Definition 4.2 (Cabasino et al., 2008). Given a
markingM and a transition € T,, we define

Smin(M,t) ={oceE(M,t) | Ao €Z(Mt) :
(') £ o)}

the set ofminimal explanationsft atM, and we de-
fine
Ymin(M,t) = T(Zmin(M, 1))

the corresponding set afinimal e-vectors [ |

In (Corona et al., 2004) we proved that, if the un-
observable subnet is acyclic and backward conflict-
free, thenYmin(M,t)| = 1.

is the firing vectoe € Ymin(M,t) corresponding to the
second element iBmin(M,1).

Obviously,Zmin(M,1) andYmin(M, ) are a gener-
alization of the sets of minimal explanations and min-
imal e-vectors introduced for unlabeled PNs with un-
observable transitions. Moreover, in the above sets
Zmin(M,I) andYmin(M,I) different sequences and
different e-vectorse, respectively, are associated in
general to the santec T;.

5 BASIS MARKINGS AND
J-VECTORS

In this section we introduce the definitions of basis
markings and justifications that are the crucial notions
of our diagnosis approach.

In particular, given a sequence of observed events
w € L*, a basis markinyyl, is a marking reached from
Mo with the firing of the observed word and of

Different approaches can be used to compute all unobservable transitions whose firing is necessary

Ymin(M, 1), e.g., (Boel and Jiroveanu, 2004; Jiroveanu
and Boel, 2004). In (Cabasino et al., 2008) we sug-

to enablew. Note that, in general several sequences
0o € T5 may correspond to the samei.e., there are

gested an approach that terminates finding all vectorsseveral sequences of observable transitions such that

in Ymin(M,t) if applied to nets whose unobservable
subnet is acyclic. It simply requires algebraic manip-

£(0p) = w that may have actually fired. Moreover,
in general, to any of such sequencgs different se-

ulations, and is inspired by the procedure proposed quence of unobservable transitions interleaved with it

in (Martinez and Silva, 1982) for the computation of
minimal P-invariants. For the sake of brevity, this al-
gorithm is not reported here.

is necessary to make it firable at the initial marking.
Thus we need to introduce the following definition of
pairs (sequence of transitions Ty labeledw; corre-

In the case of labeled PNs what we observe are spondingustification.

symbols inL. Thus, it is useful to compute the fol-
lowing sets.

Definition 4.3 (Cabasino et al., 2009). Given a
markingM and an observatiohe L, we define the
set ofminimal explanations of | at Ms

imin(Mal) = UkteT; Ucezmin(M,t) (tac)a

i.e., the set of pairs (transition labeledcorrespond-
ing minimal explanation), and we define the set of
minimal e-vectors of | at Mis

Yinin(M, 1) = UteT, Ueeyynmy) (1,€),

i.e., the set of pairs (transition labeledcorrespond-
ing minimal e-vector). |

Thus, imin(MJ) is the set of pairs whose first
element is the transition labelddand whose sec-
ond element is the corresponding minimal explana-
tion o € Zmin(M,t), namely the corresponding se-
guence of unobservable transitions whose firiniylat
enabled and whose firing vector is minimal. More-
over,Ymin(M, 1) is the set of pairs whose first element
is the transition labeletland whose second element
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Definition 5.1 (Cabasino et al., 2009)Let (N, Mg)
be a net system with labeling function: T — LU
{e}, whereN = (P, T, Pre,Post) andT = To U T,. Let
w € L* be a given observation. We define

={(00,0u), 0o €T, £L(0o) =W, 0y € T |
[Fo e s(w) @ 0o =Ps(0), oy =Pu(0)]A
[Ad’ € 5 (W) : 0o =Py(0’), a;,=Py(d")A
m(oy) < 1(0u)]}
the set of pairs (sequencg € Ty with £(gg) =W,

correspondingustificationof w). Moreover, we de-
fine

7 (w)

Yiin(Mo, W) = {(T0,Y), 0o € Ty, £(0o) =w,y € N™ |
A(0p,04) € 7(W) : TI(Oy) =Y}

the set of pairs (sequencg € Ty with £(05) =W,
correspondingrvector). |

In simple words,7 (w) is the set of pairs whose
first element is the sequenaog € T labeledw and
whose second element is the corresponding sequence
of unobservable transitions interleaved wathwhose
firing enableso, and whose firing vector is minimal.



The firing vectors of these sequences are caled
vectors

Definition 5.2 (Cabasino et al., 2009)Let (N, Mo)
be a net system with labeling functian: T — LU
{e}, whereN = (P, T,Pre, Post) andT = ToUTy. Let
w be a given observation and,,oy) € 7(w) be a

DISCRETE EVENT DIAGNOSIS USING PETRI NETS

set of j-vectors is¥min(Mo,W) = {(tststs,0), (tatst7,
[0000117)}. The above j-vectors lead to the same
basis markingM, =[0 1000001000 thus
M (W) = {(Mp,0),(Mp,[0000117)}.

Now, let us considew = ab. In this cases (w) =
{(t1t2,8)}, Ymin(Mo,w) = {(t1t,0)} and the basis

generic pair (sequence of observable transitions la- marking is the same as in the previous case, namely

beledw; corresponding minimal justification). The
marking

Mb:M0+C1Jy+C0)/a y:T[(GU)7 )/:T[(O-O)v

i.e., the marking reached firing, interleaved with the
minimal justificationoy, is calledbasis markingand
y is called itsj-vector (or justification-vectoy. |

Mp=[01000001000, thusa (w) = {(Mp,0)}.
[ ]

Under the assumption of acyclicity of the unob-
servable subnet, the set (w) can be easily con-
structed as follows.

Algorithm 5.6 (Computation of the basis mark-

Obviously, because in general more than one jus- ings and j-vectors).

tification exists for a wordlv (the sety (w) is generally

not a singleton), the basis marking may be not unique

as well.

Definition 5.3 (Cabasino et al., 2009)Let (N, Mo)
be a net system with labeling functian: T — LU
{€}, whereN = (P, T, Pre, Post) andT = To U T,. Let
w € L* be an observed word. We define
(W) ={(M,y) | (3o €5(W) : Mo[o)M) A
(3(00,0u) € 7(W) : 0o =Ps(0),
oy =PRuy(0), y="1(0u))}

the set of pairs (basis marking; relative j-vector) that

areconsistentvith w € L*. [ |
Note that the set/ (w) does not keep into account

the sequences of observable transitions that may have
actually fired. It only keeps track of the basis mark-

1. Letw=c¢e.
2. Letar (W) = {(Mo,0)}.
3. Wait until a new label is observed.
4. Letw =wandw=wI.
5. Leta (w) = 0.
6. For allM’ such tha{M’,y’) € o (W) , do
6.1.forallt €T, do
6.1.1.for all e € Ymin(M',t), do
6.1.1.1letM = M’ +Cy-e+C(-,t),
6.1.1.2.for all y such tha{M’,y) € ar (W), do
6.1.2.1lety=y +e
6.1.2.2letm (W) = ¢ (W)U {(M,y)}.
7. Goto step 3.

In simple words, the above algorithm can be ex-

ings that can be reached and of the firing vectors rela- plained as follows. We assume that a certain ward
tive to sequences of unobservable transitions that have(that is equal to the empty string at the initial step)
fired to reach them. Indeed, this is the information re- has been observed. Then, a new observaffiees
ally significant when performing diagnosis. The no- and we observe its label(t) (e.g.,|). We consider
tion of o/ (w) is fundamental to provide a recursive gl basis markings at the observatishbefore the fir-

way to compute the set of minimal explanations.

Proposition 5.4 (Cabasino et al., 2009).Given a
net system(N,Mp) with labeling functionz : T —
Lu{e}, whereN = (P, T,Pre,Post) andT = To U Ty.

ing of t, and we select among them those that may
have allowed the firing of at least one transitianT,

also taking into account that this may have required
the firing of appropriate sequences of unobservable

Assume that the unobservable subnet is acyclic. Lettransitions. In particular, we focus on the minimal

w =W be a given observation.
The setmin(Mo,wl) is defined as:

Yinin(Mo,Wl) = {(0o,y) | o =0t Ay=Y +e:
(06,Y') € Ymin(Mo, W),
(t.€) € Ymin(Mp, 1) andL (t) =1},

whereM{ = Mo +Cy-Y +Cyo - 0.

Example 5.5.Let us consider the PN in Figure 1 pre-
viously introduced in Example 3.2.

Let us assumav = acd. The set of justifica-
tions is 7 (w) = {(tatsts, €), (tatst7,€12€13)} and the

explanations, and thus on the corresponding mini-

mal e-vectors (step 6.1.1). Finally, we update the set

o (w) including all pairs of new basis markings and

j-vectors, taking into account that for each basis mark-

ing atw’ it may correspond more than one j-vector.
Let us now recall the following result.

Definition 5.7 (Cabasino et al., 2008)Let (N, Mg)

be a net system whei¢ = (P, T,Pre,Post) andT =
ToUTy. Assume that the unobservable subnet is
acyclic. Letw € T be an observed word. We denote

MpasigW) = {M € N™ | Jye N™ and (M,y) € (w)}
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the set of basis markings @t Moreover, we denote e A(w,T}) = 3if for all o € 5 (w) there exists; € T}

as such that; € o.
Mpasis= |_J MbasiW) In such a case thigh fault must have occurred,
weTg because all firable sequences consistent with the
the set of all basis markings for any observatioril observation contain at least one faulflih [ |

Note that if the net system is bounded then the set

Mpasisis finite being the set of basis markings a subset EX@mple 6.2. Let us consider the PN in Figure 1
of the reachability set. previously introduced in Example 3.2. L& =

) {€11,€12}. Assume that the two fault transitions be-
T_heorem 5.8 (Cabasino et al., 2008)Let us con- long to different fault classes, i.€Tt = {e11} and
sider a net systeniN,Mp) whose unobservable sub- T2 = {£12)
net is acyclic. For any € L* it holds that f = 1*12) )
CW) = {MEN | M=My+Cy-y : Let us observew = a.  Then A(w,Tf) =

2 A(w, T?) =0, being7 (w) = {(t1,€)} ands (w) = {t1}.
> . . ) I f ’
y=0 and My € Moasid W)} In words no fault of both fault classes can have oc-

curred.
6 DIAGNOSIS USING PETRI Let us ObserVeN = ab. Then A(WTfl) = 1
NETS and A(w,T?) = 0, being 7(w) = {(tit2,€)} and
S(w) = {titp,t1to€g, t1tr€gE0, t1trE8EE0, t1t2EGEL1 |

This means that a fault of the second fault class may
have occurred (e.gtito€g€11) but it is not contained

in any justification ofab, while no fault of the first
fault class can have occurred.

Assume that the set of unobservable transitions is par-
titioned into two subsets, namely = T U Treg Where

Tt includes all fault transitions (modeling anomalous
or fault behavior), whil€Tyeg includes all transitions

relative to unobservable but regular events. Th@get Now, Ietl us  considerw = Sbb In this
is further partitioned into different subsets;, where ~ 35€¢ AWTi) = 2 and AWwT¢) = 0, being
i =1,...,r, that model the different fault classes. 7 (W) = {(tatalp, €g€9€10), (tatols, €g€11) } ands(w) =
The following definition introduces the notion of  {tit2€s€s€1otz, lito€g€o€10t2€8, t1t2€g€9E10toEBEY,
diagnoser t1to€g€o€10t2E8E0E 0, o€ E 1 0t2EGEL1}. This means

that no fault of the first fault class can have occurred,
while a fault of the second fault class may have
occurred since one justification does not congin
and one justification contains it.
_ . Finally, let us considew = abbccc In this
e AW,T})=0ifforall o € s5(w) and for allt; € T] case AwTd) = 1 and AW, T?) = 3. In fact
it holdsts ¢ o. since} (w) = {(111'[2'[3'[5'[4'[47 €8€11), (titotatatsts, €g€11),
In such a case thi¢gh fault cannot have occurred, (trtotatatats, g€11), (tatatatatats, €g€11)} a fault of the
because none of the firing sequences consistentfirst fault class must have occurred, while a fault
with the observation contains fault transitions of of the second fault class may have occurred (e.g.

Definition 6.1 (Cabasino et al., 2009)A diagnoser
is a functionA : L* x {T,T2,..., Tf} — {0,1,2,3}
that associates to each observatioa L* and to each
fault classT{, i = 1,...,r, adiagnosis state

classi . titoegEtatatatsern) but it is not contained in any jus-
o A(W,T{)=1Iif: tification ofw. |
(i) there exiso € $ (w) andt € Tfi suchthat; e o

The following proposition presents how the di-
agnosis states can be characterized analyzing basis
markings and justifications.

but

(ii) for all (0o,0y) € 7(w) and for allty € T} it

holds that; & ay.

In such a case a fault transition of clagsay have Proposition 6.3 (Cabasino et al., 2009).Consider

occurred but is not contained in any justification an observed word/ € L*.

of w. i :

. A(w, T{) € {0,1} iff forall (M,y) € 2 (w) and for

o A(WT}) = 2 if there exist(c,,0y),(0h,0),) € * AwTy) € {0.1) (M,y) €2 (W)

3 (w) such that allt¢ € T} it holdsy(tf) = O.

(i) there existss € T} such thats € oy; o A(W,T{) = 2 iff there exist(M,y) € 2/ (w) and
(i) forall ty € T}, t; ¢ o). (M,y') € 9 (w) such that:

In such a case a fault transition of cldsis con- (i) there existds € T¢ such thay(ts) > 0,

tained in one (but not in all) justification . (i) for all ty € Tf, y'(tf) = 0.
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o A(W,T})=3iffforall (M,y) € o (w) there exists  each new observed event updates the diagnosis state
t; € T} such that(ts) > 0. for each fault class computing the set of basis mark-
ings and j-vectors. Moreover if for a given fault class
The following proposition shows how to distin- is necessary to distinguish between diagnosis states
guish between diagnosis states 0 and 1. 0 and 1, it is also necessary to solve for each basis

Proposition 6.4 (Cabasino et al., 2009)For a PN marking_Mb the_ constraint Ser(M.b)' .

whose unobservable subnet is acyclic, et L* be In this section we show that if the considered net

an observed word such that for &M,y) € a7 (w) it system is bounded, the most burdensome part of the

holdsy(t{) =0V tf € T!. Letus co’nsider the con- procedure_ can be m.qved off-line defining a graph
y(te) PE calledBasis Reachability Grap{BRG).

straint set
<P Definition 7.1. The BRG is a deterministic graph that
M+Cy-z2>0, ! .
z 2(t1) > 0 has as many nodes as the number of possible basis
T7(M) = WS ’ (1) markings.
€Tt

To each node is associated a different basis mark-
ing M and a row vector with as many entries as the
o A(W,T})=0if ¥ (M,y) € 2 () the constraint set number of fault classes. The entries of this vector

(1) is not feasible. 0mayhonly take binary values: 1 if (M) is feasible,
i1 otherwise.
* ét(rve\:;r-:—tf )s;[ %1"; ias(;\élé\);)ibele?{ (W) such that the con Arcs are labeled with observable eventd iand
e-vectors. More precisely, an arc exists from a node

On the basis of the above two results, if the un- containing the basis markirlg to a node containing
observable subnet is acyclic, diagnosis may be car-the basis markiny!”if and only if there exists a tran-
ried out by simply looking at the set (w) for any sitiont for which an explanation exists & and the
observed wordv and, should the diagnosis state be firing of tand one of its minimal explanations leads to
either 0 or 1, by additionally evaluating whether the M’. The arc going fronM to M’ is labeled(Z (t), ),
corresponding integer constraint set (1) admits a so-Wheree € Ymin(M,t) andM’ = M +Cy-e+C(-,t). B

ze N,

lution. Note that the number of nodes of the BRG is al-
Examp|e 6.5. Let us consider the PN in Figure 1 ways finite bEing the set of basis markings a subset
whereT} = {e11} andT? = {e12}. of the set of reachable markings, that is finite being

the net bounded. Moreover, the row vector of binary
values associated to the nodes of the BRG allows us
to distinguish between the diagnosis state 1 or 0.

The main steps for the computation of the BRG in

Let w = ab. In this casea (w) = {(M,0)},
whereMt =[01000001000. BeingT (M}) fea-
sible only for the fault clas3{ it holdsA(w, T#) = 1

andA(w, T#) = 0. the case of labeled PNs are summarized in the follow-
Letw=abh Itis » (W) = {(M$,(111000"), ing algorithm.
(Mj[1 0 0 1 0 QN)}, where Mi =  Algorithm 7.2 (Computation of the BRG).

00000011000. ItisAWwTE) =2 and

1. Label the initial nodgMg, xg) whereVi =1,...,r,
AW, T?) = 0 being both7 (M}) and 7 (M2) not

1 if 7(Mp) is feasible,

feasible. %(TH) =1 0 otherwise,
Let w = abbccc  In this case a7 (w) = Assign no tag to it. _

{(Mg7[1 1100 QT)7(M47[1 1100 QT)}, where 2.W||’ll|et nodec;s Wlt.::'lhno t?g BXISC}d

3 4 select a node with no tag and do
Mf=[0000001 l 00 Ilj and My = 2.1.letM be the marking in the nodg, x),
00000010100. ItisAwT#) =3 and be- 2.2 foralll eL
ing 7 (Mg) feasible for the second fault cla3§ it 2.2.1forallt:L(t) =1 AYmin(M,t) # 0, do
holdsA(w.T2) — 1 - o for all e € Yyin(M, 1), do

oldsA(w, T¢) = 1. o letM' = M +Cy-e+C(-1),

o if A anode(M,x) with M =M, do
e add a new node to the graph containing

7 BASIS REACHABILITY GRAPH (M, X) where¥i =1,...1,
/(TH) = 1 if 7 (M) is feasible,
. . . . : . X(Tg 0 otherwise.
Diagnosis approach described in the previous section and arq(l, &) from (M, ) to (M’,X)
can be applied both to bounded and unbounded PNs. o else ’ ’
The proposed approach is an on-line approach that for e add arc(l, ) from (M, x) to (M’,X)
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if it does not exist yet
2.3.tag the node "old”.
3. Remove all tags.

The algorithm constructs the BRG starting from
the initial node to which it corresponds the initial
marking and a binary vector defining which classes
of faults may occur atMy. Now, we consider all
the labelsl € L such that there exists a transitibn
with L(t) = | for which a minimal explanation &g
exists. For any of these transitions we compute the
marking resulting from firing at Mg + C, - €, for any
€ € Ymin(Mo,t). If a pair (marking, binary vector) not
contained in the previous nodes is obtained, a new
node is added to the graph. The arc going from the
initial node to the new node is labeléide). The pro-
cedure is iterated until all basis markings have been

considered. Note that, our approach always requires

My, [0 0]

@0 b.e c0
A 4 £l
M, [0 0] b0 M, 1 0] b.es s, [0 0]
A A d, A A
de; "(:,0 e 0 d,0 d,e d0

d0
A4
M, [0 1] b0 | M4, [11]

b,e;

b, €3,

C’Oﬂ Mg [01] |l —

Figure 2: The BRG of the PN in Figure 1.

6.1. for all arcs exiting from the node withl’, do
6.1.1.let M be the marking of the output node
ande be the minimal e-vector on the edge
from M’ to M,

to enumerate a state space that is a strict subset of the ~ 6.1.2.for ally’ such tha(M’,y’) € ar (W), do

reachability space. However, as in general for diag-

nosis approaches, the combinatory explosion cannot

be avoided.

Example 7.3. Let us consider the PN in Figure 1,
whereT, = {tl,t27t3,t4,t5,'[6,'[7}, Tu= {88789,8107811,
812,813}, Tfl = {811} andez = {812}. The Iabeling
function is defined as followsz (t1) = a, £(t2) =
L(t3)=Db,L(ta) =L(ts) =¢, L(tg) = L(t7) =d.

The BRG is shown in Figure 2. The notation used
in in this figure is detailed in Tables 1 and 2. Each
node contains a different basis marking and a binary
row vector of dimension two, being two the number
of fault classes. As an example, the binary ve{d)
is associated t¥lp becausa (M) is not feasible for
both fault classes. From nodi&, to nodeM; there is
one arc labeled and with the null vector as minimal
explanation. The node containing the basis marking
M2z has binary vectoj0 1], becausa (My) is feasible
only for T2. Node(Ma, [0 1]) has two output arcs both
labeled withd and both directed to nodéM4, [0 0])
with two different minimal explanatioré andey, re-
spectively, plus another output a@bﬁ) directed to
node(Ma,[1 1]). |

The following algorithm summarizes the main
steps of the on-line diagnosis carried out by looking
at the BRG.

Algorithm 7.4 (Diagnosis using the BRG).

1. Letw=c¢.
2. Let 97 (W) = {(Mo,0)}.
3. Wait until a new observable transition fires.
Let!| be the observed event.
4. Letw =wandw=w]I.
5. Let v (w) =0, [Computation of ar (w)]
6. For all nodes containinyl’ : (M’,y') € ar (W), do
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6.1.2.1. lety=y +e
6.1.2.2. leta (w) = (W)U {(M,y)},
7.foralli=1,...,r,do
[Computation of the diagnosis state]
7.1.if ¥ (M,y) € o (W) A Vts € T} itis y(ts) =0, do
7.1.1.if V (M,y) € o (w) it holdsx(i) = 0,
wherex is the binary vector in nod®!, do
7.1.1.1letA(wT}) =0,
7.1.2.else
7.1.2.10etA(wT)) =1,
7.2.if 3(M,y) € or (w) and(M',y') € 1 (w) s.t.:
(i) 3ts € T such thaty(t¢) > 0,
(i) vt € T}, ¥ (ts) = 0, do
7.2.1letAwT]) =2,
7.3.if ¥ (M,y) € & (w) 3t¢ € T} - y(tf) >0, do
7.3.1letA(wT}) =3.
8. Goto step 3.

Steps 1 to 6 of Algorithm 7.4 enables us to com-
pute the setm (w). When no event is observed,
namelyw = €, thenas (w) = {(Mo,0)}. Now, assume
that a label is observed. We include in the set(l)
all couplesM,y) such that an arc labeléexits from
the initial node and ends in a node containing the ba-
sis markingM. The corresponding value gfis equal
to the e-vector in the arc going froMg to M, being
0 the j-vector relative tdg. In general, ifw is the
actual observation, and a new event labélfcs, we
consider all couple$M’,y) € ar (W) and all nodes
that can be reached frol’ with an arc labeledl. Let
M be the basis marking of the generic resulting node.
We include inar (w) = ar (w't) all couples(M,y),
where for anyM, y is equal to the sum of plus the
e-vector labeling the arc fro’ to M.

Step 7 of Algorithm 7.4 computes the diagnosis
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Table 1: The markings of the BRG in Figure 2.

Mo 100000O0O0O0TGO0O0]
M1 01 000O0O0CDT1IO0TO0O0]
My 01 000O0O0OO0OTZ1O0O0]
M3 001 00O0OO0OT1IO0TU0O0]
My 001 00O0O0OO0OTZ1O0O0]
Ms 0 000O0OOT1100 0]
Ms 0 000O0OOT1O0T1O00]

Table 2: The e-vectors of the BRG in Figure 2.

€8 | €9 | €10 | €11 | €12 | €13
e |0 [0 |0 0 1 1
el|1 1|1 0 0 0
e |1 (0|0 1 0 0

state. Let us consider the geneitic fault class. If
V(M,y) € & (w) andVts € T it holdsy(tf) = 0, we
have to check théh entry of all the binary row vec-
tors associated to the basis markirgs such that
(M,y) € o (w). If these entries are all equal to O,
we setA(w, T;) = 0, otherwise we seh(w, T{) = 1.
On the other hand, if there exists at least one pair
(M,y) € ar (w) with y(t¢) > O for anyts € T, and
there exists at least one pdil’,y’) € o (w) with
y(ts) = O for allt; € Ty, thenA(w, T;) = 2. Finally, if
for all pairs(M,y) € a (w) y(t¢) > 0 for anyt; € T},
thenA(w, T}) = 3.

The following example shows how to perform di-
agnosis on-line simply looking at the BRG.

Example 7.5.Let us consider the PN in Figure 1 and
its BRG in Figure 2. Leiv = €. By looking at the
BRG we establish thal(e, T}) = A(e, T?) = 0 being
both entries of the row vector associatedvig equall
to 0.

Now, let us considew = ab. In such a case
M (W) = {(M3,0)}. It holds A(ab, T}) = 1 and
A(ab, T?) = 0 being the row vector in the node equal
to[1 0.

Finally, for w = abbc it holds A(abbgT})
2 and A(abbcT?) = 1. In fact o (w)
{(Ma,y1), (Ms,y2)}, wherey: = &, y> = & + €3, and
the row vectors associated kdy andMs are respec-
tively [1 1] and][0 Q. |

8 MATLAB TOOLBOX

Our group at the University of Cagliari has developed
a MATLAB toolbox for PNs.

In this section we illustrate how it can be used for
the diagnosis of labeled PNs. In particular, we con-
sider the function that given a bounded labeled PN
builds the basis reachability graph.

The input of the MATLAB function BRG.m are:

the structure of the net, i.e., the matrid&® and
Post;

the initial markingMo;

e acell arrayF that has as many rows as the number
of fault classes, that contains in each row the fault
transitions that belong to the corresponding fault
class;

a cell arrayL that has as many rows as the car-
dinality of the considered alphabet, that contains
in each row the observable transitions having the
same label;

a cell arrayE that contains in each row a string of
characters, each one corresponding to a different
label in the considered alphabet. Obviously, the
cell arrayE is ordered according tb.

The output of the MATLAB function BRG.m is
a cell arrayT that univocally identifies the resulting
BRG. It has as many rows as the number of nodes of
the BRG. A different row is associated to each node
and contains the following information:

e an identifier number of the node;

e a matrix whose rows are equal to the transpose of
the basis markings associated to the node;

a matrix with as many rows as the number of ba-
sis markings associated to the node and as many
columns as the number of fault classes: flie
element in theth row (corresponding td)_/l'b) is
equal tox (T/) evaluated am). Thusx(T/) =0

is 7 (ML) is not feasible with respect fE]f, 1 oth-
erwise;
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e the transitions enabled at node;

o the identifier number of the nodes that are reached
firing an enabled transition and the corresponding
j-vector.

9 NUMERICAL SIMULATIONS

Let us consider the Petri net in Figure 3 (Lai et al.,
2008), where thick transitions represent observable
event and thin transitions represent unobservable
events. It models a family of manufacturing systems
characterized by three parametarsm andk.

— nis the number of production lines.

— m is the number of units of the final product
that can be simultaneously produced. Each unit of
product is composed of parts.

— k is the number of operations that each part
must undergo in each line.

To obtain one unit of final product orders are
sent, one to each line; this is represented by observ-
able events. Each line will produce a part (all parts
are identical) and putitin its final buffer. An assembly
station will take one part from each buffer (observable
eventte) to produce the final product.

The partin linei (i = 1,...,n) undergoes a series Ne€ss we also reported the time necessary to compute

of k operations, represented by unobservable eventsit.

€i1,€2, k- Let us observe that some boxes of the above tables
Atter this series of operations two events are pos- contain the non numerical values o:t: (out of time),

sible: either the part is regularly put in the final buffer thatdenotes that the corresponding value has not been

Prk+1

tn,I<+:L

pn,k+2

Figure 3: A manufacturing system.

of the line, or a fault may occur. computed within 6 hours.

— Putting the part in the final buffer of line 1 cor- All simulations have been run on a PC Athlon 64,
responds to unobservable evenk, 1, while putting 4000+ processor.
the partin the final buffer of line(i = 2,...,n) corre- — Columns 1 and 2 show the valuesrodndk.
sponds to observable evet, 1. — Column 3 shows the number of nod&of the

— There aren— 1 faults, represented by unob- reachability graph.
servable event$; (i=1,...,n—1). Faultf; moves — Column 4 shows the timé& in seconds we
a part from linei to line i+ 1. Note that on lind spent to compute the reachability graph.
(i=1,...,n—1) the fault may only occur when the — Column 4 shows the number of nodBRG of
part has finished processing and is ready to be put inthe BRG.
its final buffer; the part goes to the same processing — Column 5 shows the timgrg in seconds we
stage in lind + 1. spent to compute the BRG using the function BRG.m.

In this section we present the results of the compu-  Tables 3, 4 and 5 show that the time spent to com-
tation of the BRG for several numerical simulations. pute the reachability graph highly increases with the
Results obtained for different valuesmfk andm are dimension of the net, namely withandk, and with
summarized in Tables 3, 4 and 5. the number of products.

Note that for the sake of simplicity we assumed On the contrary, the time spent to compute the
that all faults belong to the same class. BRG is always reasonable even for high values,of

In these tables we also detail the cardinality of kandm.
the reachability seR. This is an extremely important Tables 3, 4 and 5 also show that the number of
parameter to appreciate the advantage of using basisiodes of the BRG only depends arandm, while it
markings. The value dR| has been computed using is invariant with respect ta. On the other handR|
a function we developed in MATLAB. For complete- also highly increases witk
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Table 3: Numerical results in the casenof= 1.

n| k] |R |tr[sec]| |[BRG | tgra[sec] |
211 15 0.031 5 0.062
212 24 0.031 5 0.062
213 35 0.047 5 0.062
214 48 0.062 5 0.07
215 63 0.078 5 0.07
2|6 80 0.094 5 0.07
311 80 0.094 17 0.101
312 159 0.25 17 0.101
313 274 0.672 17 0.109
314 431 1.72 17 0.117
3|5 636 3.938 17 0.125
3|6 895 8.328 17 0.132
411 495 2.375 69 0.375
4| 2| 1200 | 16.969 69 0.43
4| 3| 2415 | 77.828 69 0.477
4| 4| 4320 | 272.53 69 0.531
4| 5| 7119 | 824.69 69 0.594
4| 6| 11040 2122.4 69 0.664
51| 3295 | 155.81| 305 4.345
52| 9691 | 1615.7| 305 | 4.765
5| 3| 22707| 10288 | 305 5.25
514 o.t. o.t. 305 5.75
515 o.t. o.t. 305 6.897
516 o.t. o.t. 305 7.894

Table 4: Numerical results in the casenof= 2.

n| k] |R |tr[sec]| |[BRG | tgra[sec] |
211 96 0.11 17 0.086
22| 237 0.469 17 0.094
23| 49 2.078 17 0.1

3| 1] 1484 | 24.204| 140 0.78
32| 5949 | 486.39| 140 0.844

3| 3| 18311| 5320.9| 140 0.906

4| 1| 28203| 14006 | 1433 73.5
4|2 o.t. o.t. 1433 76.5
4|3 o.t. o.t. 1433 76.5
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Table 5: Numerical results in the casenof= 3.

n] k] [R [tr[sec]| [BRG | terc[sec]]
211 377 1.203 39 0.145
2| 2| 1293 | 17.203 39 0.145
3] 1| 12048| 2113.9| 553 8.219
3|2 o.t. o.t. 553 9.016
411 o.t. o.t. 9835 | 4095.06
4|2 o.t. o.t. 9835 | 4095.06

10 CONCLUSIONS AND FUTURE
WORK

This paper presents a diagnosis approach for labeled
PNs using basis markings. This enables us to avoid an
exhaustive enumeration of the reachability set. This
approach applies to all bounded and unbounded Petri
net systems whose unobservable subnet is acyclic.
However, if we consider bounded net systems the
most burdensome part of the procedure may be moved
off-line computing the Basis Reachability Graph. Fi-
nally, we have presented a tool for the diagnosis of
labeled bounded PNs and we have shown the simula-
tion results using as diagnosis benchmark a family of
manufacturing systems.

We have also studied the problem of diagnosabil-
ity of bounded and unbounded PNs giving for both
cases necessary and sufficient conditions for diagnos-
ability. These results are not reported here, but they
have been already submitted to an international con-
ference.

Our future work will be that of studying the di-
agnosis problem for distributed systems investigating
the possibility of extending the approach here pre-
sented to this case.
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