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Foreword

Five years have revolved since the first international workshop on Ar-
tificial Neural Networks and Intelligent Information Processing (AN-
NIIP) and it is a great pleasure to notice that the ever-increasing cre-
ativity, revealing the fantastic intellectual dynamics created around
bio-inspired Artificial Intelligence, remains intact. If applicative and
technological challenges, emanating from nowadays’ industrial, so-
cioeconomic or environment needs, open every day new dilemmas
to solved, the escalating interest of both confirmed and young re-
searchers on this relatively juvenile science, upholds a reach multi-
disciplinary synergy between a large number of scientific communi-
ties making conceivable a forthcoming emergence of viable solutions
to these real-world complex challenges.

Since 2005, ANNIIP international workshop, within the frame of
the prestigious ICINCO International Conference, takes part in the
aforementioned appealing dynamics by offering a privileged space to
refit and exchange the knowledge about further theoretical advances,
new experimental discoveries and novel technological improvements
in the promising area of the bio-inspired Artificial Intelligence (and
related topics as: Artificial Neural Networks, Humanoid Robotics,
Ambient Intelligence, etc. . . ). The present book is the outcome of
the fifth edition of this annual event.

Within this inveterate philosophy and around a deliberately limit-
ed number of papers, the objective of this fifth volume is to convene
once more relevant recent works focusing this exciting topic, relat-
ed fields and issued applications. Conformably to our values, the
choice of publishing a restricted number of papers is persistently
motivated on the one hand by the premeditated desire to give a
large space to exchanges and discussions during the workshop, and
on the other hand by the strong principle of the presentation of each
accepted article by its authors. Our constant fondness for the two
above-mentioned inseparable and complementary attitudes rolls up
from our sturdy wish to respect the further engaging feature inher-
ent to a workshop which is the opportunity of a constructive “viva
discussion” around the published works. If “Bio-inspired Artificial
Intelligence” and its real-world applications remain, as in the previ-
ous editions of this international workshop, the foremost premises of
this 5th volume, a special attention has been devoted to the balance
between theoretical and applicative aspects.
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It is important to remind that scientific relevance and technical
excellence of a collective volume emerge from quality of its con-
tributors: those who have contributed by the high quality of their
manuscripts and those who have taken part in reviewing of submit-
ted papers ensuring, by their valuable expertise, the distinction of
the present book. I would like to express again my acknowledge-
ments to contributors of all accepted papers: You are the central
reason of the nobles of this tome. Also, I would like to reedit my
gratitude to Reviewing Board and Program Committee for the valu-
able work that they accomplished: My heartfelt recognition to those
who already were members of ANNIIP Program Committee as well
as my sincere thanks to those who kindly accepted to enlarge the
Reviewing Board of this 5th workshop’s edition.

It is also essential to be reminiscent that frequently, creative dy-
namics is the result of fruitful humans’ contacts within a same scien-
tific field or the consequence of humans’ interactions from different
scientific communities and since 2004, the date of the its first edi-
tion, the ICINCO multi-conference has been an outstanding bench
of such creative synergies. For that, again, I would like to express my
warm appreciation and my particular gratitude to my friend Prof.
Joaquim Filipe, ICINCO 2009 Conference’s Chair, for his faith in
young science of “Bio-inspired Artificial Intelligence” and for his re-
liance on devoting once more this privileged space to the ANNIIP
workshop within his valuable conference.

Finally, if ICINCO Organizing Committee’s professionalism be-
came an obvious skill of this international event’s organization in so
accurate way, it should never be forgotten that the organization of
a prestigious conference remains a challenging undertake requiring
a reliable and a solid team. So, I would like to acknowledge whole
the organizing team, with a special word for Marina Carvalho from
Workshops Secretariat who, during these five revolved years since
2005, has proved her irreplaceable merit as a key person in ANNIIP
workshop’s organization.

July 2009,

Kurosh Madani
The University of PARIS XII, France



v

Workshop Chair

Kurosh Madani
The University of PARIS XII
France

Program Committee

Ajith Abraham, Machine Intelligence research Labs (MIR Labs),
U.S.A.
Veronique Amarger, PARIS-EST University, France
Gilles Bernard, PARIS 8 University, France
Ezzedine Ben Braiek, Ministery of High Studies, Tunisia
Abdennasser Chebira, LISSI, France
Amine Chohra, Paris Xii - Val De Marne University - Senart-fontainebleau
Institute of Technology, France
Suash Deb, C. V. Raman College of Engineering, India
Khalifa Djemal, University of Evry Val d’Essonne, France
Peter Géczy, AIST, Japan
Vladimir Golovko, Brest State Technical University,
Russian Federation
Robert Hiromoto, University of Idaho, U.S.A.
Dattatraya Kodavade, DKTE Society’s Textile & Engineering Insti-
tute Ichalkaranji, India
Thomas Laengle, Fraunhofer Iitb, Germany
Hichem Maaref, Université D’evry Val D’essonne, France
Jean-Jacques Mariage, PARIS 8 University, France
M’sirdi K. Nacer, LSIS, France
Georgy Panev, SPIIRAN - Russian Academy of Science, Russian
Federation
Leszek Rutkowski, Technical University of Czestochowa, Poland
Mariusz Rybnik, Finance & Management University, Poland
Christophe Sabourin, Laboratoire Images, Signaux, Et Systèmes In-
telligents, France
Anatoly Sachenko, Research Institute of Intelligent Computer Sys-
tems / Ternopil National Economic University, Ukraine
Khalid Saeed, AGH University of Science and Technology, Poland
Lamine Thiaw, Ecole Supérieur Polytechnique de Dakar, Senegal





vii

Table of Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Workshop Chairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Program Committee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Modelling, Learning and Design of ANNs

Evolving Gradient a New Approach to Perform Neural

Network Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3

César Daltoé Berci and Celso Pascoli Bottura

Topologies and Meaning Generating Capacities of Neural

Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13

Jürgen Klüver and Christina Klüver

Models for Modular Neural Networks: A Comparison Study 23

Eva Volna

Intelligent Recognition, Authentication and
Classification

Recognition of Hand Gestures Tracked by a Dataglove:

Exploiting Hidden Markov Models Discriminative Training

and Environment Description to Improve Recognition

Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

Vittorio Lippi, Emanuele Ruffaldi, Carlo Alberto Avizzanoand
Massimo Bergamasco

Image Enhancement Technique using Adaptive Multiscale

Retinex for Face Recognition Systems . . . . . . . . . . . . . . . . . . . .
43

Khairul Anuar Ishak, Salina Abdul Samad, M. A. Hannan and
Maizura Mohd Sani



viii

A Blind Source Separation Algorithm for the Processing and

Classification of Electro-oculogram Data . . . . . . . . . . . . . . . . . .
50

Fernando Rojas, Rodolfo V. García, Olga Valenzuela, Luis
Velázquez and Belén San Román

ANN and Intelligent Systems Implementation

Implementation of a Modular Neural Network in a Multiple

Processor System on Chip to Classify Electric Disturbance
59

Danniel Cavalcante Lopes, Rafael Marrocos Magalhães, Jorge
Dantas de Melo and Adrião Duarte Dória Neto

A Design for Real-time Neural Modeling on the GPU

Incorporating Dendritic Computation . . . . . . . . . . . . . . . . . . . . .
69

Tyler W. Garaas, Frank Marino, Halil Duzcu and Marc Pomplun

Minimal Architecture and Training Parameters of Multilayer

Perceptron for its Efficient Parallelization . . . . . . . . . . . . . . . . .
79

Volodymyr Turchenko and Lucio Grandinetti

ANN Applications in Prediction & Forecasting

Vegetative State: Early Prediction of Clinical Outcome by

Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
90

L. Pignolo, F. Riganello, A. Candelieri and V. Lagani

Investigation of the Use of an Artificial Neural Network

Method for the Prediction of Crystal Structures of Zeolites

from XRD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

96

Melkon Tatlier and H. Kerem Cigizoglu

Typhoon Damage Forecasting with Self-Organizing Maps,

Multiple Regression and Decision Trees . . . . . . . . . . . . . . . . . . .
105

Kazuhiro Kohara and Ryo Hasegawa



ix

Intelligent Systems and Applications

Particles Gradient: A New Approach to Perform MLP Neural

Networks Training based on Particles Swarm Optimization
113

César Daltoé Berci and Celso Pascoli Bottura

Data-mining Approaches for the Study of Emotional

Responses in Healthy Controls and Traumatic Brain Injured

Patients: Comparative Analysis and Validation . . . . . . . . . . .
123

F. Riganello, V. Lagani, L. Pignolo and A. Candelieri

Image Feature Significance for Self-position Estimation with

Variable Processing Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
132

Kae Doki, Manabu Tanabe, Akihiro Torii and Akiteru Ueda

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143





MODELLING, LEARNING AND
DESIGN OF ANNS





Evolving Gradient a New Approach to Perform Neural
Network Training

César Daltoé Berci and Celso Pascoli Bottura

Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas
Av. Albert Einstein 400, Campinas, Brazil

cesardaltoe@hotmail.com,cpbottura@fee.unicamp.br

Abstract. The use of genetic algorithms in ANNs training is not a new subject,
several works have already accomplished good results, however not competitive
with procedural methods for problems where the gradient of the error is well
defined. The present document proposes an alternative for ANNs training using
GA(Genetic Algorithms) to evolve the training process itself and not to evolve
directly the network parameters. This way we get quite superior results and obtain
a method competitive with these, usually used to training ANNs.

1 Introduction

Artificial Neural Networks is a computational paradigm inspired in the operation of the
biological brain, especially in the human brain, and seeks to explore certain properties
present in the human neural processing, that are very attractive from the computational
view point. Among the principal characteristics of the biological information process-
ing, the following can be mentioned [9]:

– Robustness and fault Tolerance. The human brain possesses a great number of neu-
rons and even losing thousands of them, the brain may continues in operation with-
out losing its capacities.

– Flexibility. There is no need to reprogram the system when exposed to new un-
known situations. In these cases the brain has the capacity to assimilate the new
scenery and to adapt to it.

– Possibility of working with fuzzy, probabilistic, noisy and inconsistent information.
The neural computation has the intrinsic ability to work with uncertainties, which
conventionally requires a high sophistication level to be treated by more conven-
tional computational paradigms.

– Parallelism. Neural computers, as the human brain, are parallel in their essence,
what turns them highly efficient for treating certain problems.

Another computational method, also bio-inspired, are the genetic algorithms, based
on Charles Darwin’s work, more precisely in his book The Origin of Species [6] where
the author idealizes the natural selection mechanism. The philosopher Daniel Dennett
great defender of Darwin’s theories, presents in his book: Darwin’s Dangerous Idea:
Evolution and the Meanings of Life [7], a engineering vision of the evolution theory,
being this one of the most influential works on the subject today.



Genetic algorithms are computational devices, based on biological evolutionary
processes, designed to find optimum and sub-optimum solutions for computational
problems. An usual application case of this tool, is in continuous function optimization,
where the genetic algorithms can be viewed as a multi objective global optimization
tool, that finds the function extreme points through a blind search mechanism, based on
the evolution of previous solutions.

The optimization problem extends to several areas of the exact sciences, including
the optimization of the ANNs parameters vector1, also known as ANNs learning or
training, because this process trains the network to recognize a certain pattern relating
its inputs to its outputs.

That training usually occur through iterative optimization methods, based on the
gradient descent of the ANN error surface, which is calculated through the backpropa-
gation algorithm [14],[15]. Among the more efficient methods known today for ANNs
training can be mentioned, the quasi-Newton method: BFGS [1] and the conjugated
directions method: Scaled Conjugate Gradient [11],[12].

An alternative way to find desired the ANNs parameters vector, is the use of meta-
heuristic methods, as the genetic algorithms. Several researchers are using those algo-
rithms directly in the optimization of the error surface with respect with parameters
vector[16],[13],[17]. There are others works using genetic algorithms not only to opti-
mize the network with respect to its parameters vector, but also other parameters as its
topology [4],[8].

In spite of genetic algorithms represent a tool of great computational power to train
ANNs, it does not have the same efficiency as procedural optimization methods, that
uses more information about the problem (first and/or second order information), and
usually produce better results.

The present document, introduces a new optimization concept for using genetic al-
gorithms for ANN training, where an sub-optimum gradient is used, and steps are taken
in the direction of this gradient. This proposal makes use of the full exploratory capacity
of the genetic algorithms, united with the efficiency of gradient descent methods, reach-
ing very superior results to those obtained by both techniques when applied separately.

2 Neural Networks Training

Artificial Neural Networks are devices with the universal approach capacity, and are in
general applied to assimilate mappings, using for this a chain of interconnected artificial
neurons, that interact each other in a similar way of the natural neural information
processing.

This devices have also a formal mathematical representation, given by a mapping
with inputs and outputs, which are expressed as a nonlinear function of its input, as
described following:

y = F(x, θ) (1)

1 In this work, is considered the ANN parameters vector, a vector ω ∈ RN containing the values
of all network weighs and bias
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where θ is the ANN parameters vector.
A priori it is not possible to determine an appropriated parameters vector θ such

that the network expresses correctly any desired mapping y = H(x), therefore it is
necessary to train the ANN to find a parameters vector, which produces the desired
behavior.

In general, is not possible to find the parameters vector analytically, than, the net-
work learning process is iterative, and seeks to increase the network adaptation to the
target mapping at each iteration (also known as epoc). To make possible this task, an
error is defined for the network output, that expresses the difference between the cur-
rent behavior and the desired one. A possible definition for the network error, which is
adopted in this work, can be the following:

e =

(∑
i

(Hi(x)−Fi(x, θ))2
)
/no (2)

where H is the target mapping that one wants to assimilate by the ANN, and no is the
number of neurons on the output layer.

This error is a functional and creates a smooth surface in the space RN , where N is
the dimension of the vector θ, therefore the process of ANN training can be seen as the
minimization of the error surface with respect to its parameter: θ.

3 The Evolving Gradient

There are some works that try to optimize the weight vector of the ANN using a genetic
algorithm. This process is in general more onerous from the computational cost2 view-
point, and shows poor results when compared to conventional optimization methods
based on gradient descent.

The present document, presents an alternative solution inspired in the work of Chalmers
The Evolution of Learning: An Experiment in Genetic Connectionism[5], that applied
evolutionary processes to evolve the learning process itself.

In the EG: Evolutionary Gradient method, the genetic algorithms are not used to
optimize the weights vector, but to optimize the process by evolving the gradient vector.

3.1 Codification

The genetic algorithm implemented in the proposed EG algorithm, uses a population of
np individuals, with a real codification, described as follows:

– Chromosome: Vectors containing real values belonging to the space RN

– Fitness: exp (−αe(x, θ − p)) where α it is a parameter to be adjusted, and p is a
chromosome.

– Selection: Roulette and Elitist.
2 here computational cost of a procedure is understood, the number of sum and multiplication

operations necessary for accomplish this

5



– Reproduction: Matrix method [2] designed with based on the subspaces generated
by parents chromosomes.

– Mutation: A Gaussian mutation modifying all components of the chromosome by
adding a random noise.

In this code nrep pairs are chosen for reproduction through a roulette mechanism,
where nrep ∈ [1, np] is a random number. The remaining of the population np − nrep

is chosen with an elitist selection procedure, to avoid loosing of the best solution and
also to preserve the population diversity.

3.2 The EG Algorithm

This algorithm is based on gradient descent algorithm, where steps are taken in the
direction of the gradient vector, however, here steps are taken in the direction of a sub-
optimum gradient evolved by the genetic algorithm previously discussed.

To each iteration of the algorithm, an initial gradient vector is calculated using the
Backpropagation method, or simple taken equals to the origin. Later a new population
is created, and this gradient is introduced in the population, that will be evolved by
the genetic algorithm during ni generations, and then, an unit step is taken in this new
evolved direction.

The use of the initial gradient seeks to accelerate the convergence of the evolution-
ary process, giving to him a reference point. It is also possible the method execution
calculation of the initial gradient, as can be seen in [3]. This procedure is useful when it
is not possible to accomplish the ANN retro-propagation phase, impeding the gradient
vector construction, what enlarge the application range of the EG.

The EG algorithm for ANNs training is describe following.

Algorithm 1: Evolving Gradient.
Determine: np, ni, nmax;
Initialize: θ;
for i=1 to nmax do

Calculate g0 by the retro-propagation of the error, or just set g0 = 0;
Evolve the gradient: g = AG(np, ni, g0) ;
Unit step: θi+1 = θi − grad

end

where AG represents a genetic algorithm.
The algorithm 1, is the result a exhaustive study of the training process, and the

functional analysis of the relations between the quantities of interest, taking into account
the dimensionality of the involved spaces and the characteristics a priori known about
the problem.

These studies converged to a method where the genetic algorithm is applied in a
space of same dimension of the parameters vector. However, this choice brings a great
advantage with respect to the cost function to be optimized.

In the application of a blind search method, as in case, the efficiency of the opti-
mization process may be considerably increased if the method is initialized near the
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neighborhood of a local optimum point, which represents a good solution to the prob-
lem. However, this points are not known a priori, nor their neighborhoods.

The same happens in the ANNs training, the error surface are not complete known,
so nothing can be done to increase the training algorithm efficiency. Moreover, it is
known that a sufficient small step in a descent direction is ways a minimizing step.
Therefore, we conclude that a RN vector, representing a descent direction, will be cer-
tainly found in a neighborhood of the origin.

This information is the main goal of the EG, given to blind search method what it
needs, a good initial condition. This approach gives to genetic algorithm a considerable
efficiency increase, so the algorithm EG here proposed, presents a significantly higher
convergence rate when compared with others meta-heuristic methods in the same con-
text.

Another important feature of the EG, is the intrinsic parallelism of the algorithm. Its
implementation in a sequential machine, as a digital computer, will generates a process
computationally very onerous, however, in a completely parallel machine, still hypo-
thetical, is obtained a very faster and efficient process.

4 Examples and Comparisons

With the intention of determining the relative efficiency of the EG compared with others
founded in the literature, some ANN application examples are used, and the efficiency
of the learning process is evaluated when the network is trained by different methods.

In this document will be considered, as comparison bases, two quasi-Newton meth-
ods, two conjugated directions methods and one simple gradient descent method, all
described as follows:

– GRAD: Optimium Gradient [10]: Gradient descent method with super-linear con-
vergence, the fastest among methods with linear convergence rate.

– DFP: Davidson Fletcher Powell [10]: quasi-Newton Method with quadratic con-
vergence.

– BFGS:Broyden Fletcher Goldfarb Shanno [1]: quasi-Newton Method with quadratic
convergence, and with smaller sensibility to the bad numerical conditioning than
the DFP method.

– FR: Fletcher Reeves [1]: Conjugated directions method, with N-steps quadratic
convergence.

– SCG: Scaled Conjugated Gradient[12]: Conjugated directions method that do not
use unidimensional searches. It possesses N-steps quadratic convergence, and it is
the fastest among these methods from the computational cost viewpoint.

The process of unidimensional search used in the algorithms GRAD, DFP, BFGS
and FR is the golden section method, applied by 30 iterations on the initial interval.

4.1 Motor Currents

In theory, the current of a three-phase induction motor can be easily calculated on the
basis of motor voltage and power, as shown in equation (3).
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I =
P√
3V η

(3)

where P and V represent the motor power and tension respectively. The variable
η takes into account the power factor and efficiency of the motor, that are based on
construction factors, the mechanical load and the rotation of the motor. Thus, it is clear
difficult to specify the variable η and so, the motor current.

The problem in question uses a neural estimator for the current calculation, based
on motor power, voltage and rotation, through a MLP network containing 3 neurons in
its sensorial layer, and with 1 neuron in its output layer.

The set used in the training consist on 300 samples obtained from manufacturers
catalogs, including motors that meet the following values ranges:

– Power: 0.1 a 330 KW.
– Rotation: 600,900,1200,1800 e 3600 rpm.
– Tension: 220, 380 e 440 V.
– Current: 0.3 a 580 A.

Fig. 1. EG SCG FR. Fig. 2. EG BFGS DFP GRAD.

In a first test, seeking to compare the efficiency of the EG compared to the previ-
ously mentioned methods, a ANN containing 3 neurons in its hidden layer was used,
having the configuration: 3-3-1. The result of the network training can be visualized in
the Fig.1 and Fig.2.

Given the stochastic characteristic of the EG, these figures show its average behavior
for a total of 20 repetitions of the training process. For this example the EG presented
quite superior results when compared with the procedural methods.

Another important analysis is to compare the result of the ANN training by evolv-
ing gradient the method with the using the genetic algorithm directly for obtaining the
optimum vector θ by minimizing the error surface.

For accomplish this analysis, let us consider a genetic algorithm, GA, with the same
number of individuals of the EG. This algorithm is applied to search for parameters
vector through 100 iterations while the EG algorithm had accomplished 5 epoc with
20 iterations per epoc, what gives for both methods the same number of iterations. The
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optimization process was repeated 20 times, and the average values for the ANN error
as shown in Figure 3.

Fig. 3. Network Learning: EG × GA. Fig. 4. Network Learning Diversity.

Figure 3 shows the superiors results obtained by the EG.
An analysis also relevant in this study, is to verify the populations diversity in both

methods, what together with the results above, gives an more accurate understanding
about the search mechanism. The metric here chosen to measure the diversity value, is
the variance of the individuals fitness. Figure (5) shows the average value of diversity
for both methods in each iteration3 of the training process.

Is clearly in Figure 3 the superior diversity preservation present by the EG. Differing
from the GA algorithm, the EG one do not present a significant lost of diversity after
some iterations.

In spite of to providing a significant reduction of the network mean square error at
each iteration, the EG is quite onerous from the computational cost viewpoint, given
that an evolution process should be completed at each epoc. In that way, the execution
of the algorithm may become too slow, depending of its configuration.

In [12], the author proves the superiority of the method SCG about the other meth-
ods here analyzed, due to the need of unidimensional search required by most methods,
that has computational cost O(N2) per iteration. The SCG method presents a compu-
tational cost: O(2N2) per iteration, what is very inferior to the ones of the methods
GRAD, DFP, BFGS and FR that possess computational costs:4 O(31N2).

The EG method, presents a total cost O(ninpN
2) (using the same analysis of [12]),

that can become quite superior to the ones of the other methods depending on the choice
of ni and np. However, the fast convergence of the method, compensate this high com-
putational cost. Figure 5 illustrates a simple comparison of the temporary evolution of
the SGC method with the evolving gradient method, for the network configuration: 3-9-
9-1 containing two hidden layers. For the SCG method 500 iterations were made while

3 Here iteration is used to describe the intermediate steps of training processes, and one iteration
of main process, of the EG, is referred as epoc

4 This value is due to the fact that the unidimensional search to makes 30 iterations for each
iteration make for the training method
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for the EG method only 5 iterations were made, to compensate the difference between
the computational costs.

Fig. 5. Network Learning.

The EG, in spite of being computationally onerous, has a quite fast convergence,
and in some cases this characteristic compensates its high computational cost, as in the
situation shown in the Figure 5. Due the stochastic characteristic present in the EG and
also in the training initialization, is not possible to conclude that the EG algorithm is
faster than the SCG method in all cases, however, the result in Figure5 let us to state
that the EG method is competitive with the other methods, from the learning efficiency
viewpoint.

4.2 Curve Fitting

In this example a group of 100 test samples of input-output pairs was used for a quadratic
function y = x2, where a white noise of width 10−4 was inserted in both signs (input
and output). The training was accomplished for various networks configurations, using
the EG and the algorithms previously mentioned. The results can be observed in Tables
1 and 2.

Table 1. Learning Results: EG SCG FR.

Architecture EG SCG FR
1-3-1 0.00019 0.00066 0.00030
1-6-1 0.00022 0.00069 0.00031
1-9-1 0.00020 0.00078 0.00033
1-18-1 0.00024 0.00082 0.00035
1-6-6-1 0.00029 0.01065 0.01395

1-12-12-1 0.00019 0.01135 0.01735
1-6-12-6-1 0.00023 0.00667 0.05779

1-12-18-12-1 0.00014 0.01764 0.06142
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Table 2. Learning Results: BFGS DFP GRAD.

Architecture BFGS DPF GRAD
1-3-1 0.00032 0.00079 0.01012
1-6-1 0.00037 0.00529 0.01197
1-9-1 0.00039 0.00617 0.01207
1-18-1 0.00045 0.00657 0.01287
1-6-6-1 0.01161 0.00959 0.01342

1-12-12-1 0.00943 0.00993 0.01377
1-6-12-6-1 0.00070 0.01060 0.01398

1-12-18-12-1 0.00420 0.01254 0.01485

For this problem it is also possible to notice that the final errors for the EG, was also
quite inferior to the ones of the others tested algorithms. Another outstanding charac-
teristic observed in the exposed results is the robustness of the EG method with respect
to variations in the ANN topology. Due the stochasticity of the learning process, it is
possible to infer that the EG method has presented the same final errors results for the
several tested configurations.

5 Conclusions

The method proposed in this paper represents a new approach for MLP artificial ANNs
training using meta-heuristic methods, presenting some new features with respect to
others similar methods.

The use of genetic algorithms in ANN training was until now, not competitive given
the inferior performance of these methods when compared to procedural optimization
techniques. This new approach, however, is competitive in this scenery, reaching results
comparable with the ones of the usual methods of ANN training, and still preserving
some characteristics of the heuristic methods.

One of the main advantages of the evolving gradient method, is the possibility to
train ANNs with the same efficiency of methods as BFGS and SCG, without the error
gradient, enlarging its application to another several problems, as the one proposed in
[3],[2].

The high computational cost, characteristic of heuristic methods as the genetic al-
gorithms, also is present in the EG that is more onerous that the other methods here
discussed. However, it is clear in the shown examples, that this high computational cost
is compensated by the accelerated convergence rate of EG method, turning its tempo-
rary evolution, comparable to any one of the others training algorithms here discussed.

Moreover, the computational cost here analysed is related to a digital machine,
which is the tool today available, however, the intrinsic parallelism of the EG, allows
its an implementation in a hypothetical parallel machine, that can be several orders of
magnitude faster than the procedural methods here discussed, inherently sequential.

So we may conclude that the Evolutionary Gradient method here presented, rep-
resents a viable alternative solution for artificial ANNs training in several situations,
especially in more complex applications, mainly when the construction of the gradient
vector is difficulty or even impossible.
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Abstract. The paper introduces the concept of meaning generating capacity 
(MC) of neural nets, i.e. a measure of information processing, depending on the 
size of basins of attraction. It can be shown that there is a significant relation 
between the variance values of the weight matrix of a network and its MC-
values. By the concept of MC network characteristics like robustness and 
generalizing capability can be explained. 

1 Introduction 

The analysis of topological characteristics of complex dynamical systems frequently 
enables important insights into the behavior, i.e. the dynamics of such systems. By 
“topology” we here mean that set of system’s rules that determine, which elements of 
the respective systems interact with which other elements. In the classical 
mathematical meaning of topology these rules define the neighborhood relations of 
the respective elements, which are at the core of, e.g., the fundamental Hausdorff 
axioms of topology. In the case of neural networks the topology is usually defined by 
the according weight matrix, which determines the degree of interaction between the 
different elements, including the limiting case of interaction degree equal to zero.  

In [1] we introduced the concept of the meaning processing capacity (MC) of a 
complex dynamical system. This definition was motivated by some informal remarks 
of Wolfram [3] about the “information processing capacity” of complex dynamical 
systems. With this term Wolfram described the fact that frequently different initial 
states of a system generate the same final attractor state; other systems in contrast 
generate different final states if the initial states are different. In other words, the 
information processing capacity refers to the different sizes of the “basins of 
attraction” of a system, i.e. the sets of initial states that generate the same final 
attractor state.  

In [1] we defined the concept of the “meaning” of a message by the final attractor 
state a system generates when receiving this message; in other words, a system 
processes a message and generates an according meaning. Therefore, we now use the 
term of meaning generating capacity (MC), i.e. the capacity to generate more or less 
different meanings when receiving different inputs. 

The MC-value of a complex dynamical system is now defined as the proportion 
between the size m of the set of all final attractor states and the size n of the set of all 



initial states of a system, i.e., MC = m/n. Obviously 0 < MC ≤ 1: MC = 0 is 
impossible because each complex system has at least one final state, even if it is an 
attractor state with a very large period. The according limiting case hence is MC = 
1/n. If MC is very small then many different initial states will generate the same final 
states – the according attractors are characterized by large basins of attraction. If MC 
= 1 then each different initial state will generate a different final attractor state. This is 
the other limiting case, where the basins of attraction all are of size 1. In other words, 
small values of MC mean large basins of attractions and vice versa. It must be noted 
that we refer only to discrete systems, i.e. systems with only a finite number of initial 
states.  

There are at least three main reasons why this concept is important: On the one 
hand it is possible via the usage of MC to analyze complex dynamical systems like 
neural networks with respect to their informational complexity. In this sense MC 
allows for new approaches in the theory of computability. On the other hand an 
important and frequently mentioned characteristic of neural networks can be 
understood in a new and more differentiated way: In all textbooks on neural networks 
there are statements like “one of the main advantages of neural networks is their 
robustness, i.e. their tolerance with respect to faulty inputs” or something equivalent. 
We shall show that via the definition of MC not only a theoretical explanation of this 
advantage can be given but also a measurement of this robustness; in particular by the 
variation of MC specific neural networks can be generated that are either very robust, 
less robust or not at all robust in the sense of error tolerance.  

Last but not least it is possible to give by the usage of MC an explanation for 
phenomena known from the field of human information processing. It is well known 
that different humans react in a significant different way to the same messages. This 
can be illustrated by the examples of fanatics who refer all messages to the same 
cause, e.g. the enmity of Western Capitalism to religious movements. The psychiatrist 
Sacks [2] for another example describes a rather intelligent and well-educated man 
who is unable to distinguish little children from fire hydrants. The definition of MC 
can be a useful approach to construct mathematical models for the explanation of such 
phenomena.  

In contrast to dynamical systems like, e.g., cellular automata and Boolean 
networks neural networks are not often analyzed in terms of complex dynamical 
systems. Therefore, it is necessary to clarify what we understand by “initial states” 
and “final attractor states” when speaking of neural networks. 

In a strict systems theoretical sense all initial states of neural networks are the 
same, i.e. the activation values of all neurons are equal to zero, and regardless to 
which layer(s) they belong. Because this fact would make the definition of different 
initial states quite useless we define the initial state of a neural net as the state where 
the neurons of the input layer have been externally activated with certain input values 
and where the activation values of all other neurons still are equal to zero, in 
particular those of the output layer. An initial state Si of a neural net, hence, is 
formally defined by Si = ((Ai), (0)), if (Ai) is the input vector and (0) is the output 
vector, i.e. it denotes the fact that the values of the output neurons are still equal to 
zero. If there is no specific input layer then the definition must be understood that 
some neurons are externally activated and the others are not. 
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The external activation of the input neurons causes via the different functions the 
“spread of information”, determined by the respective weight values. In the case of 
simple feed forward networks the final activation values of an output layer are 
immediately generated; in the case of feed back networks or recurrent ones the output 
is generated in a more complex manner; yet in the end in all cases a certain output 
vector is generated, i.e., each neuron of the output layer, if there is any, has obtained a 
certain activation value. If there is no distinction between different layers as for 
example it is the case with a Hopfield network or an interactive network the output 
vector will consist of the final activation values of all neurons. Note that except in the 
case of feed forward networks the output vector may be an attractor with a period p > 
1. The network will then oscillate between different vectors, i.e. between different 
states of the attractor. For theoretical and practical purposes neural networks are 
mainly analyzed with respect to the input-output relation. Therefore, we define the 
final state Sf of a neural network as Sf = ((Ai), (Af)), if (Ai) is again the input vector 
and (Af) the final output vector. If (Af) is an attractor with period p > 1, then the 
components of (Af) consists of ordered sets, i.e. the set of all different activation 
values the output neurons obtain in the attractor.  

Because in the experiments described below we investigate only the behavior of 
feed forward networks with respect to different MC-values, for practical purposes we 
just define the final state as the values of the output vector after the external activation 
via the input vector. Hence we speak of a large basin of attraction if many different 
input vectors generate the same output vector and vice versa. The limiting case MC = 
1 for example defines a network where each different input vector generates a 
different output vector. Accordingly the case M = 1/n defines a network where 
practically all n different input vectors generate the same output vector. 

With these definitions it is easy to explain and measure in a formal manner the 
characteristics of neural networks with respect to robustness. A robust network, i.e. a 
network that is tolerant of faulty inputs, has necessarily a MC-value significantly 
smaller than 1. Robustness means that different inputs, i.e. inputs that differ from the 
correct one, still will generate the “correct” output, i.e. that output that is generated by 
the correct input. That is possible only if some faulty inputs belong to the same basin 
of attraction as the correct input; these and only these inputs from this basin of 
attraction will generate the correct output. All other faulty inputs transcend the limits 
of tolerance with respect to the correct output and will accordingly generate another 
output. If MC = 1 or near 1 then the network will not be robust at all for the respective 
reasons. 

The same explanation can be given for the also frequently quoted capability of 
neural networks to “generalize”: In a formal sense the generalizing capability is just 
the same as robustness, only looked upon from another perspective. A new input can 
be perceived as “similar” or as “nearly the same” as an input that the net has already 
learned if and only if the similar input belongs to the same basin of attraction as the 
input the network has been trained to remember. In other words, the training process 
with respect to a certain vector automatically is also a training process with respect to 
the elements of the according basin of attraction. The capability of generalization, 
hence, can be understood as the result of the construction of a certain basin of 
attraction. Accordingly the generalization capability is again dependent on the MC-
values: if these are small, i.e. if the basins of attraction are rather large, then the 
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network has a comparatively great generalizing capability and vice versa. Because 
one network can have only one MC-value it is obvious that systems like the human 
brain must have for one and the same perceiving task at least two different networks, 
namely one with a great generalization capability, i.e., a small MC-value, and one 
with a large MC-value to perceive different inputs as different. 

Robustness and generalizing capability of a network, hence, can be “globally” 
defined by the according MC-value. Yet there is a caveat: it is always possible to 
generate networks via according training methods that are characterized by different 
basins of attractions with different sizes. Therefore, the MC-value is not necessarily a 
unique measure for the size of all basins of attraction of a particular network. The 
term “basin of attraction” refers always only to a certain “equivalence class” of input 
vectors, namely a set of input vectors that are equivalent in the sense that they 
generate the same attractor. The size of these sets may be quite different for specific 
attractors. Hence, the MC-value gives just an average measure with respect to the 
different basins of attraction. With respect to some attractors and their generating 
inputs the networks may be robust and with respect to others not. Considering that 
possibility the concept of MC could also be defined as the difference in size of all 
basins of attraction of the networks. Fortunately the results of our present experiments 
hint at the fact that in most cases the basins of attraction of a certain networks differ 
not much in size. The caveat is necessary for theoretical and methodical reasons but 
seems not to be very important in practical contexts. 

Concepts like “size of basins of attraction” and “values of meaning generation 
capacity” obviously are very useful for the explanation of important characteristics 
like robustness or generalizing capability. Yet in a strict sense they are too general 
concepts because they only explain the behavior of certain neural networks from very 
general characteristics of complex dynamical systems. They do not explain, which 
structural characteristics of neural networks may be the reason for specific MC-
values. Hence, these concepts remain, so to speak, on a phenomenological level. 

In the beginning of our article we mentioned the fact that frequently certain 
topological characte-ristics of complex dynamical explain the behavior of such 
systems. The topology of a neural network is mainly expressed in the weight matrix. 
Hence the thought suggests itself to look for features of the weight matrix that could 
explain the size of basins of attraction and MC-values. In anticipation of our results 
we may say that we were successful in the sense that we found some general trends 
although no deterministic relations. 

2 Two Experimental Series 

In the first experimental analysis we used a standard three-layered feed forward 
network; we chose this type because it is very frequently used for tasks of pattern 
recognition and related problems. Because, as is well known, two layers are not 
enough to solve problems of non-linear separableness we took three layers in order to 
get results for networks with sufficient efficiency. The input layer consists of 10 units, 
the hidden layer of 5 and the output layer of 10 units. Input and output neurons are 
binary coded, which results in 210 = 1024 possible input patterns. To keep the 
experiments as clearly as possible we defined “equivalence classes” of input patterns: 
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all input patterns with the same number of zeroes are members of the same class. By 
choosing at random one pattern from each class we obtained 11 different input 
patterns. The activation function respectively is the sigmoid function; because of the 
three layers we chose as learning rule the standard Back Propagation rule. 

The training design was the following: In each step the network was trained to 
associate different input patterns with one target pattern; the target pattern was again 
chosen at random from the 11 input patterns. In the first step the tasks was to 
associate each input pattern with one different target pattern; the according basins of 
attraction all were of size one and the MC-value of this network after the training 
process is 1:1. In the next steps the sizes of the basins of attraction were gradually 
increased to 2, 3, 4, 5, and 6; in the last step the size of the only basin of attraction 
finally was 11, i.e. all input layers had to be associated with one and the same target 
pattern and the according MC-value is MC = 1/11. We did not investigate basins of 
attraction with sizes 7 or 10 because in the according experiments the other basins 
would become too small; for example, one basin of attraction with the size of 8 would 
force the network to take into regard also at least one basin of attraction of size 3. 
Hence we only investigated networks with basins of attraction of maximum size 5, 6, 
and 11. By taking into regard different combinations of basins of attraction we 
obtained 11 different networks. 

The according weight matrices were analyzed with respect to the variance of their 
weight values. This variance analysis was separately performed for the weight matrix 
between the input layer and the hidden layer and the matrix between the hidden layer 
and the output one. The results are shown in figure 1: 

 

   
Fig. 1. Variance of the first part of matrix (left figure) and the second part (right figure) in 
relation to the size of the basins of attraction. 

The order of the different networks in both figures is according to increasing size 
of the basins of attraction. No 1 is the case with MC = 1:1, no 11 is the network with 
MC = 1:11. 

The left figure obviously gives no unambiguous result with respect to possible 
relations between variance values and the size of basins of attraction but it suggest a 
certain trend, namely the decreasing of the variance by increasing the basins sizes. 
The right figure confirms this and even shows an unambiguous result: The variance 
values indeed gradually decrease with the increasing of the size of the basins of 
attraction. We then combined the two matrices by summing up the variance values of 
both matrices and obtained the final result shown in figure 2: 

0       1         3        4         5        6        7         8        9        10      11 0       1         3        4        5         6        7        8         9       10       11 
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Fig. 2. Variance and size of basins of attraction for the whole network; the networks are 
ordered as in figure 1. 

This final result completely confirms the trend shown in figure 1, left side, and the 
clear results of figure 1, right side: the larger the size of the basins of attraction are, 
i.e., the smaller the MC-values are, the smaller are the variance values and vice versa. 
By the way, the difference between the variance of the upper matrix and that of the 
lower one is probably due to the fact that the Back Propagation rule does not operate 
in exactly the same way on both matrices: The lower half of the whole matrix is 
changed by directly taking into account the error, i.e. the distance between the output 
neurons and those of the target vector. The changing of the upper half of the matrix is 
done by computing a certain proportion of the error and thus “dispersing” the changed 
weight values with respect to those of the lower half. Yet these just force the variance 
of the whole matrix to the shown result. If our networks had contained only two 
layers the whole result would have been like that of figure 2. We shall come back to 
this effect of a certain learning rule in the next section. 

We did not expect such unambiguous results yet on hindsight they are quite 
plausible and comprehensible: Low variance values mean dispersion of information 
or of the differences between different information respectively because of the near 
equality of the weight values. If on the other hand the weight values are significantly 
different, i.e. a high variance, then differences between different messages can be 
preserved. As small or large sizes respectively of basins of attraction have exactly that 
effect on the performing of messages it is no wonder that we obtained that clear and 
unambiguous relation between variance and size of basins of attraction. 

Yet although these clear results are quite satisfactory we knew very well that they 
must be treated with a great methodical caveat: the behaviour of neural networks, as 
that of practically all complex dynamical systems, depends on many parameters, in 
this case for example on specific propagation, activation and output functions, number 
of layers, special learning rules and so on. The results shown above were obtained 
with a specific type of neural network, although a standard and frequently used one 
with a standard learning rule. To make sure that our results are not only valid for this 
special methodical procedure we undertook another experimental series. 

In these experiments we did not use one of the standard learning rules for neural 
networks but a Genetic Algorithm (GA). The combination of a GA with neural 
networks has frequently been done since the systematic analysis of neural networks in 
the eighties. Usually a GA or another evolutionary algorithm is used in addition to a 
certain learning rule in order to improve structural aspects of a network that are not 
changed by the learning rule, e.g. number of layers, number of neurons in a particular 
layer, threshold values and so on. In our experiments we used the GA as a substitute 

         0        1       3       4       5        6       7       8        9      10     11    
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for a learning rule like the Back Propagation rule in the first experimental series. The 
according weight matrices of the different networks are, when using a GA, written as 
a vector and the GA operates on these vectors by the usual “genetic operators”, i.e. 
mutation and recombination (crossover). 

We chose this procedure for two reasons: On the one hand the operational logic of 
a GA or any other evolutionary algorithm is very different from that of the standard 
learning rules. A learning rule modifies usually just one network; in this sense it is a 
simulation of ontogenetic learning. In contrast an evolutionary algorithm always 
operates on a certain population of objects and optimizes the single objects by 
selecting the best ones from this population at time t. This is a model of phylogenetic 
evolution. In addition learning rules like the Back Propagation rule or its simpler 
form, namely the Delta Rule, represent the type of supervised learning. Evolutionary 
algorithms represent another type of learning, i.e. the enforcing learning. In contrast 
to supervised learning enforcing learning systems get no feed back in form of 
numerical values that represent the size of the error. The systems just get the 
information if new results after an optimization step are better or worse than the old 
ones or if there is no change at all in the improvement process. Therefore, the training 
procedure in the second series is as different from that of the first one as one can 
imagine. 

We assumed that by choosing such different procedures similar results from both 
experiments would be a very strong indicator for our working hypothesis, namely the 
relation between MC-values or size of the basins of attraction respectively and the 
mentioned characteristics of the according weight matrices. To be sure, that would not 
be a final proof but at least a “circumstantial evidence” that the results of the first 
series are no artifacts, i.e., that they are not only effects from the chosen procedure. 

On the other hand we were in addition interested in the question if networks with 
certain MC-values are better or worse suited to adapt to changing environmental 
conditions. It is evident that per se high or low MC-values are not good or bad. It 
always depends on the situation if a network performs better with high or low 
capabilities to generate different meanings. Sometimes it is better to process a 
message in a rather general fashion and sometimes it is necessary to perceive even 
small differences. Yet from a perspective of evolutionary adaptation it is quite 
sensible to ask if systems with higher or lower MC can adjust better. That is why we 
used an evolutionary algorithm to investigate this problem although it is another 
question than that of a relation between the variance of the weight matrix and the 
according MC-values. 

Because a GA can be constructed with using many different parameters like size of 
the mutation rate, size of the sub vectors in crossover, selection schemas, schemas of 
crossover (“wedding schemas”), keeping the best “parents” or not and so on it is 
rather difficult to obtain results that are representative for all possible GA-versions. 
We used a standard GA with a mutation rate of 10%, a population of 20 networks, 
initially generated at random, crossover segments of 5, and a selection schema 
according to the fitness of the respective networks. Because the networks were 
optimized with respect to the same association tasks as in the first series those 
networks are “fitter” than others that successfully have learned more association tasks 
than others. If for example a network is optimized with respect to the task to operate 
according to two basins of attraction of size 8 then a network is better that correctly 
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associates 6 vectors of each basin to the target vector than a network that does this 
only for 5 vectors. 

The population consists again of three-layered feed forward networks with binary 
coding for input and output layers; the input and output vectors consist of four 
neurons and the hidden layer of three. As in the first series the networks operate with 
the sigmoid activation function. We simplified the networks a bit because, as 
mentioned, a GA has not one network to operate with but a whole population. The 
target vectors were chosen at random; the vectors for the respective basins of 
attraction were chosen according to their Hamming distance to those output vectors 
that define the basins of attraction. It is no surprise that the GA came faster to 
satisfactory results, i.e. the generation of networks that are able to solve the respective 
association tasks, if the MC-values of the networks should be large than in the cases 
when the MC should be small. The main results are shown in figure 3: 

 

 
Fig. 3. Variance and size of basins of attraction in networks generated by a GA. 

The figure obviously expresses a striking similarity to figure 1 of the first series. 
The trend is the same, namely a clear relation between the size of the variance and the 
increasing size of the basins of attraction or the decreasing size of the MC-values 
respectively. Like in figure 1 the exceptions from this trend occur in the cases of 
rather small basins of attraction, but only there. As we remarked in the preceding 
section these exceptions may be due to the fact that the GA even more disperses the 
weight values than does the Back Propagation rule for the upper half of the weight 
matrix. This fact clearly demonstrates that the relation between variance values and 
the sizes of the basins of attraction is “only” a statistical one, although the correlation 
is very clear. We omit for the sake of brevity he results of the evolutionary analysis.  

As we mentioned in the beginning of this section, the fact that such totally different 
optimization algorithms like Back Propagation rule and GA, including the different 
types of learning, generate the same trend with respect to our working hypothesis is 
important evidence that the hypothesis may be valid in a general sense. Yet in both 
series we just considered “case studies”, i.e. we concentrated in both cases on one 
single network type and in the case of the GA-training on populations of the same 
type of networks. That is why we started a third series. 

3 Third Series: Statistical Analysis of Large Samples 

Experiments with large samples of neural networks are always difficult because of the 
large number of variables or parameters respectively that have to be taken into 
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account. Besides the influence of different learning rules, activation and propagation 
functions and such parameters like learning rates and momentum the main problem is 
a “combinatorial explosion”: if one takes into account the many different possible 
combinations of neurons in the different layers and in addition the possible variations 
of the number of layers one quickly gets such large samples that it is seldom possible 
to obtain meaningful results. That is why we chose another way in the preceding 
sections, namely the analysis of the two case studies in order to get a meaningful 
hypothesis at all. 

Yet despite the great difference between our two case studies it is always rather 
problematic to draw general consequences from only several case studies. That is why 
we studied a larger sample of two-layered neural nets, i.e., ca. 400.000 different 
networks. We restricted the experiment to networks of two layers in order to keep the 
experiments as clear as possible. The number of neurons in the input and output 
vector are in all experiments the same and ranged from 3 to 10. The restriction to 
equal dimensions of the two vectors was introduced because networks with different 
sizes of the two vectors do not generate all MC-values with the same probability: If 
the input vector is larger than the output one then MC = 1 would not be possible at all 
because always more than one input vector will generate the same output vector. For 
example, a simple network that is trained to learn a certain Boolean function has an 
input vector of size 2 and an output vector of size 1. Its MC-value is 0.5. If conversely 
the output vector is larger than the input vector the probability for large MC-values 
will be greater than in networks with the same number of neurons in both vectors. To 
avoid such distortions we used only vectors of equal size. 

The networks were, as in the two case studies, binary coded and operated with the 
sigmoid function. Thus we obtained ca. 400.000 pairs (MC, v), v being the variance. 
The general results are the following: 

As we supposed from the results of the two case studies the relation between 
variance and MC-values is “only” a statistical one in the sense that there are always 
exceptions from the general rule. Yet we discovered very clearly that indeed there is a 
significant probability: the larger the variance is the smaller is the probability to 
obtain networks with small MC-values, that is with large basins of attraction, and vice 
versa. This result is in particular valid for variance values significantly large or small. 
Only in the “middle regions” of variance values the probability to obtain MC-values 
as a deviation from the general rule is a bit larger but not very much. This probability 
distribution is shown in figure 4: 

 

 
Fig. 4. Statistical relation between variance (x-axis) and MC-values (y-axis). 

By the way, the deviations in the middle regions from the general trend may be a 
first explanation for the mentioned results from section 2 with respect to the 

1 

1/n 
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evolutionary capability of networks with different MC-values. These networks adapt 
more easily to changing environments than those with very large or very small values. 

The hypothesis of the relation between MC-values and variance values seems to be 
a valid one, at last as a statistical relation, Hence it is possible to predict the meaning 
generating capacity of a network and thus its practical behaviour for certain purposes 
with sufficient probability from a variance analysis of its weight matrix. Yet a caveat 
is in order: We analyzed only one type of networks and further experiments are 
necessary if our results are also valid for different types like, e.g. recurrent nets of 
Self Organized Maps. 

4 Interpretations and Conclusions 

The behavior of complex dynamical systems can practically never be explained or 
predicted by using only one numerical value (a scalar) as the decisive parameter. In a 
mathematical sense the problem for such a system is always the task of solving 
equations with a lot of variables, that is more variables than equations. It is well 
known that for such tasks there is always more than one solution. When considering 
neural networks by investigating the according weight matrix it is rather evident that 
for example large basins of attraction may be constructed by very different matrices. 
Hence, it is no wonder that the variance value, considered as a structural measure for 
the occurrence of certain MC-values and the according sizes of the basins of 
attraction, always allows for exceptions.  

The knowledge about parameters that could predict the meaning generation 
capacity would not only give important insights into the logic of neural network 
operations; that would be an improvement of our theoretical understanding of these 
complex dynamical systems. It could also give practical advantages if one needs 
neural networks with certain capabilities – either if one needs robust networks with 
great generalizing capacity or if there is need for sensitive networks that react in a 
different manner to different inputs. To be sure, the relations we have discovered so 
far are of only statistical validity. Yet to know that with a high probability one gets 
the desired characteristics of a certain network if one constructs a weight matrix with 
a specific variance is frequently a practical advantage: one has not to train the 
networks and look afterwards if the network has the desired behavior but can 
construct the desired matrix and if necessary make the additionally needed 
improvements via learning rules and/or additional optimization algorithms like for 
example a GA. For these theoretical and practical reasons it will be worthwhile to 
investigate such relations as we have shown in this article further and deeper. 
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Abstract. There are mainly two approaches for machine learning: symbolic and 
sub-symbolic. Decision tree is a typical model for symbolic learning, and neur-
al network is a model for sub-symbolic learning. For pattern recognition, deci-
sion trees are more efficient than neural networks for two reasons. First, the 
computations in making decisions are simpler. Second, important features can 
be selected automatically during the design process. This paper introduces 
models for modular neural network that are a neural network tree where each 
node being an expert neural network and modular neural architecture where in-
terconnections between modules are reduced. In this paper, we will study adap-
tation processes of neural network trees, modular neural network and conven-
tional neural network. Then, we will compare all these adaptation processes 
during experimental work with the Fisher's Iris data set that is the bench test da-
tabase from the area of machine learning. Experimental results with a recogni-
tion problem show that both models (e.g. neural network tree and modular 
neural network) have better adaptation results than conventional multilayer 
neural network architecture but the time complexity for trained neural network 
trees increases exponentially with the number of inputs. 

1 Introduction 

There are mainly two approaches for machine learning. One is symbolic approach 
and another is sub-symbolic approach. Decision tree is a typical model for symbolic 
learning, and neural network is a model for subsymbolic learning. Generally speak-
ing, symbolic approaches are good for producing comprehensible rules, but not good 
for incremental learning. Sub-symbolic approaches, on the other hand, are good for 
on-line incremental learning, but cannot provide comprehensible rules. Neural net-
work tree is a hybrid-learning model. It is a decision tree with each non-terminal node 
being an expert neural network. Neural network tree is a learning model that may 
combine the advantages of both decision tree and neural network. To make the neural 
network tree model practically useful, we should make the following: 

− to propose an efficient algorithm for incremental learning, 
− to produce neural network trees as small as possible, 
− to provide a method for on-line interpretation. 



The first topic is studied in [1], the second topic is studied in [2], and the third top-
ic is studied in [3]. 

A modular neural network can be characterized by a series of independent neural 
networks moderated by some intermediary. Each independent neural network serves 
as a module and operates on separate inputs to accomplish some subtask of the task 
the network hopes to perform [8]. The intermediary takes the outputs of each module 
and processes them to produce the output of the network as a whole. The interme-
diary only accepts the modules’ outputs - it does not respond to, nor otherwise signal, 
the modules. As well, the modules do not interact with each other. 

A multilayer artificial neural network is a net with one or more layers (or levels) of 
nodes (hidden units) between input units and the output units. They are often trained 
by backpropagation algorithm [9].   

Next, we introduce all mentioned models in details. We will study adaptation 
processes of neural network trees, modular neural network and conventional neural 
network. Then, we will compare all these adaptation processes during experimental 
work with the Fisher's Iris data set that is the bench test database from the area of 
machine learning. Experimental results with a recognition problem show that both 
models (e.g. neural network tree and modular neural network) have better adaptation 
results than conventional multilayer neural network architecture but the time com-
plexity for trained neural network trees increases exponentially with the number of 
inputs. 

2 Binary Decision Tree 

Since all kind of decision trees can be reduced to binary decision trees, then we can 
consider binary decision trees only. A binary decision tree can be defined as a list of 
7-tuples. Each 7-tuple corresponds to a node. There are two kinds of nodes: non-
terminal node and terminal node. Specifically, a node is defined by node = {t, label, 
P, L, R, C, size}, where 

t is the node number. The node with number t = 0 is called root.  
label is the class label of a terminal node, and it is meaningful only for terminal 

nodes. 
P is a pointer to the parent (for the root, P = NULL). 
L, R are the pointers to the left and the right children, respectively. For a ter-

minal node, both pointers are NULL. 
C is a set of registers. For a non-terminal node, n = C[0] and a = C[1], and 

the classification is made using the following comparison: featuren < a? If 
the result is YES, visit the left child; otherwise, visit the right child. For a 
terminal node, C[i] is the number of training samples of the i-th class, 
which are classified to this node. The label of a terminal node is deter-
mined by majority voting. That is, if [ ] [ ]iCkC

i∀
= max , then, label = k. 

size is the size of the node when it is considered as a sub-tree. This parameter is 
useful for finding the fitness of a tree. The size of the root is the size of the 
whole tree, and the size of a terminal node is 1. 
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Many results have been obtained for construction of binary decision trees [4]. To 
construct a binary decision trees, it is assumed that a training set consisting of feature 
vectors and their corresponding class labels are available. The binary decision tree is 
then constructed by recursively partitioning the feature space in such a way as to 
recursively generate the tree. This procedure involves three steps: splitting nodes, 
determining which nodes are terminal nodes, and assigning class labels to terminal 
nodes. Among them, the most important and most time consuming step is splitting the 
nodes. 

3 Neural Network Tree 

ENN

ENN 

ENN 

ENN

ENN

 
Fig. 1. A neural network tree. 

Figure 1 shows an example of neural network trees. A neural network tree is a deci-
sion tree, which each non-terminal (internal) node being an expert neural network. 
We can consider a neural network tree as a modular neural network [5]. To design a 
neural network tree, we can use the same recursive process as that is used in conven-
tional algorithms [6]. The only thing to do is to embed some algorithm in this process 
to design each expert neural network, e.g. a simple genetic algorithm into C4.5 [6] 
algorithm. To simplify the problem, we have two assumptions: 1) The architecture of 
all expert neural networks are the same (a multilayer perceptron with the same num-
ber of layers and the same number of neurons in each layer) that are pre-specified by 
the user. 2) Each expert neural network has n branches, with n ≥ 2. First, by fixing 
the architecture of all expert neural networks, we can greatly restrict the problem 
space for finding an expert neural network for each node. Second, we allow multiple 
branches because each expert neural network is not only a feature extractor, but also a 
local decision maker. An expert neural network can extract complex features from the 
given input vector, and then assign the example to one of the n groups. To design the 
expert neural networks, the efficient way seems to be evolutionary algorithms, be-
cause we do not know in advance which example should be assigned to which group. 
The only thing we can do is to choose one expert neural network, to optimize some 
criterion. For this purpose, we can use a simple genetic algorithm containing merely 
basic operations: one-point crossover and bit-by-bit mutation. The genotype of a 
multilayer perceptron is the concatenation of all weight vectors (including the thre-
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shold values) represented by binary numbers. The definition of the fitness is domain 
dependent. The fitness can be defined as the information gain ratio that is used as the 
criterion for splitting nodes. The basic idea is to partition the current training set in 
such a way that the average information required to classify. For detailed discussion, 
refer to [6]. 

We used the top-down method [2] to design a neural network tree. In this method, 
we divide the whole training set into two parts first and classify them into two catego-
ries: patterns which belong to the left-nodes, and those which belong to the right-
nodes. Figure 2 illustrates this idea. In this figure, a circle is a node, a triangle is a 
sub-tree. The sub-trees are designed separately using genetic algorithm for classifying 
some of the patterns in the training set. Suppose that there are n patterns in the i-th 
class, n1 patterns are classified to the left-nodes, and n2 = n - n1 patterns are classified 
to the right-nodes. To evaluate a sub-tree, we provide all training patterns (in the 
current training set) to the tree, assign each pattern to a proper category (left or right), 
and then count the number of correct classifications. Then, the fitness can be defined 
by 

 

settrainingofsize
ifationmisclassifofnumberfitness

___
__1−= . (1) 

 
This process is repeated until the current training set contains only patterns of the 

same class. Size of the whole decision tree is roughly the sum of size of all sub-trees 
obtained in the recursive procedure. 

 

sub-tree L2 sub-tree R2

sub-tree L1

 
Fig. 2. Divide a tree into many sub-trees. 

The neural network tree works as follows. The input is given to the root node first. 
It is then assigned to the i-th child if the i-th output of the module is the maximum. If 
the child is a leaf, the final result is produced locally; otherwise, repeat the same pro-
duce recursively. The most notable feature of a neural network tree is that it consists 
of homogenous neural networks that can be realized using exactly the same functional 
components (with different parameters), and the whole system can be constructed 
hierarchically. From such neural network tree, we can easily get an autonomous mod-
ular neural network [5]. For example, if the root is a multilayer perceptron with n 
outputs, it can be split into n subnets. These subnets can be used to work together 
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with the children. The autonomous modular neural network works like this: for a 
given input task, each module tries to give an output y along with a number c. If ci is 
the maximum, the output of the i-th module will be used as the final result. Each 
module can be an autonomous modular neural network again, which is obtained from 
the neural network tree by using the same procedure recursively. The basic idea is to 
design small expert neural networks to extract certain features (and make local deci-
sion based on the features) first, and the overall decision can be made by the whole 
decision tree. 

4 Modular Neural Network 

Several characteristics of modular architectures suggest that they should learn faster 
than networks with complete sets of connections between adjacent layers. One such 
characteristic is that modular architectures can take advantage of function decomposi-
tion. If there is a natural way to decompose a complex function into a set of simpler 
functions, then a modular architecture should be able to learn the set of simpler func-
tions faster than a monolithic multilayer network. In addition to their ability to take 
advantage of function decomposition, modular architectures can be designed to re-
duce the presence of conflicting training information that tends to retard learning. We 
refer to conflicts in training information as crosstalk and distinguish between spatial 
and temporal crosstalk. Spatial crosstalk occurs when the output units of network 
provide conflicting error information to a hidden unit. This occurs when the back-
propagation algorithm is applied to a monolithic network containing a hidden unit 
that projects to two or more output units. 

 

input layer of units 

. . .  

output layer of units 

units subsistent to 
module 1 

units subsistent to 
module k 

hidden layer of units 
subsistent to module l 

. . .. . . . . .

. . .  . . .  

hidden layer of units 
subsistent to module k 

. . .  . . .  

. . .

. . .

 
Fig. 3. The modular neural network architecture. 
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A modular architecture, which should generalize better than a monolithic network, 
involves the difference between local and global generalization. Modular architec-
tures perform local generalization in the sense of the architecture that only learns 
patterns from a limited region of the input space. Therefore training a modular archi-
tecture on a training pattern from one of these regions should not ideally affect the 
architecture’s performance on pattern from the other regions. Modular architectures 
tend to develop representations that are more easily interpreted than the representa-
tions developed by single networks. As a result of learning, the hidden units of the 
system used in separate networks for the tasks contribute to the solutions of these 
tasks in more understandable ways that the hidden units of the single network applied 
to both tasks. In modular networks, a different set of hidden units is used to represent 
information about the different tasks, see figure 3. 

5 Experiments 

During our experimental work, we made a very easy comparative adaptation study. In 
order to test the efficiency of described algorithms, we applied them to the Fisher's 
Iris data set [7] that is the bench test database from the area of machine learning. The 
Fisher's Iris data set is a multivariate data set introduced by Sir Ronald Aylmer Fish-
er. The dataset consists of 150 samples from each of three species of Iris flowers (Iris 
setosa, Iris virginica, and Iris versicolor). Four features were measured from each 
sample; they are the length and the width of sepal and petal. Based on the combina-
tion of the four features, Fisher developed a linear discriminated model to determine 
which species they are. We used 100 examples for training and the remainder for 
testing. 

Neural Network Tree. Expert neural networks are multilayer perceptrons of the 
same size 4 - 2 - 2, where four neurons are in the input layer, two neurons are in the 
hidden layer, and two neurons are in the output layer. For any given examples it is 
assigned to the i-th subset, if the i-th output neuron has the largest value (when this 
example is used as input). All nets are fully connected. To find such expert neural 
network for each node, we adopt the genetic algorithm, which has the following 
parameters: number of generation is 1000, the population size is 30, selection rate is 
0.9 (e.g. 90% of individuals with low fitness values are exchanged in each 
generation), crossover rate is 0.7, and mutation rate is 0.01. The number of bits per 
weight is 16. The fitness is defined directly as the gain ratio. The desired fitness is 
0.9. The maximum fitness is 1.0 from its definition. All individuals are sorted 
according to their priority ranks, and the worst p × N individuals are simply deleted 
from the population, where p is the selection rate, and N is the population size. In 
each experiment, we first extract a subnet from the whole training set, and use it for 
designing (training) a neural network tree. Of course, we count the number of 
neurons contained in the whole tree. 
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Modular Neural Network. We used a three-layer feedforward neural network with 
architecture is 4 - 6 - 3 (e.g. four neurons in the input layer, six neurons in the hidden 
layer, and three neurons in the output layer) in our experimental work. Each module 
has two neurons in a hidden layer and one output neuron. The input layer and the 
hidden layer are fully interconnected. The input values from the training set were 
transformed into interval <0; 1> to be use backpropagation algorithms for adaptation. 
The backpropagation adaptation deals with the following parameters: learning rate is 
0.3, and the moment parameter was not used. 

Multilayer Neural Network. We used a fully connected three-layer feedforward 
neural network with architecture is 4 - 4 - 3 (e.g. four units in the input layer, four 
units in the hidden layer, and three units in the output layer) in our experimental 
work, because the Fisher's Iris data set [7] is not linearly separable and therefore we 
cannot use neural network without hidden units. The backpropagation adaptation 
deals with the same parameters like in the previous model. 

6 Conclusions 

In this paper, we have studied adaptation process of neural network trees, modular 
neural network and conventional neural network. Experimental results with a recogni-
tion problem show that neural network tree whose nodes are expert neural networks 
is a neural network model with a comparable quality like modular neural network. 
Both models have better adaptation results than conventional multilayer neural net-
work architecture but the time complexity for trained neural network trees increases 
exponentially with the number of inputs, rather the size (i.e. the number of hidden 
neurons) of each network. Thus it is necessary to reduce the number of inputs [3]. 
This is impossible for conventional neural networks because the number of inputs is 
usually fixed when the problem is given. 

Table 1. Table of results. 

 Neural network tree Modular neural network Multilayer neural network 

average 
error value 

1.5% 1.2% 3.7% 

 
All models solve the pattern recognition task from the Fisher's Iris data set [7] in 

our experiments. The dataset consists of 150 samples from each of three species of 
Iris flowers (Iris setosa, Iris virginica and Iris versicolor). Four features were meas-
ured from each sample, they are the length and the width of sepal and petal. Based on 
the combination of the four features, Fisher developed a linear discriminated model to 
determine which species they are. The data set was divided into two sets: the training 
set contained 100 patterns and the test set 50 patterns. The error values for the train-
ing set were always near zero because perfect training was performed. Table 1 shows 
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a table of results. There are shown average error values for the test set over 10 runs. 
Other numerical simulations give very similar results. In the future, we will study 
properties of neural network trees in detail, and try to propose better evolutionary 
algorithms for their designing. 
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Abstract. Sequence classification based on Hidden Markov Models (HMMs) is
widely employed in gesture recognition. Usually, HMMs are trained to recog-
nize sequences by adapting their parameters through the Baum-Welch algorithm,
based on Maximum Likelihood (ML). Several articles have pointed out that ML
can lead to poor discriminative performances among gestures. This happens be-
cause ML is not optimal for this purpose until the modellized process is actu-
ally an HMM. In this paper we present a gesture recognition system featuring a
discriminative training algorithm based on Maximal Mutual Information (MMI)
and the integration of environment information. The environment is described
through a set of fuzzy clauses, on the basis of which a priori probabilities are
computed. Adaptive systems such as unsupervised neural networks are used to
build a codebook of symbols representing the hand’s states. An experiment on a
set of meaningful gestures performed during the interaction with a virtual envi-
ronment is then used to evaluate the performance of this solution.

1 Introduction

1.1 Aim of the Work

Gesture recognition is becoming an important task in technology and science. At first
it can be considered as an advanced way to interface the user to an interactive system:
exploiting the significance of natural human actions as commands would increase the
efficiency, both in using and in learning how to use the system[1].

While performing an operation in a virtual environment a user can test the effective-
ness of his practical choices and train himself to work in various situation. Meanwhile
the gesture recognition system could trace the steps performed: a model of the behavior
of a skilled performer could be produced, and a generic user can be aided by the sys-
tem to reproduce it. This can be useful in context where staff training, and producing
documentation are crucial economical issues in the working process[2].

The gesture recognition system described in this work is designed to provide a tool
to track tasks of interest during the assembly of mechanical parts. This system has been
developed together with a virtual environment where the task is set. The system is ori-
ented to scalability, in order to be suitable to work on task of realistic complexity. To



achieve this the system takes advantage of discriminative training to adapt the hidden
Markov models (HMM) used to recognize gestures and a system that produces prior
probabilities for gestures. Prior probabilities are computed on the basis of the situation
in which the gestures are performed. This makes possible to compare, at every recog-
nition performed, just a small subset of plausible gestures, making the system scalable
to an higher number of gestures. If an information about prior probabilities is known
during the classifier training, the algorithm used incorporate it. The result is a classifier
trained focusing on the differences between gestures more likely to be performed in
the same context (and hence confused). Notice that when performing a meaningful task
every object has really few ways to be used.

1.2 Structure of the Paper

Sections 2, 3 and 4 describe the solution proposed. In particular section 2 describes
how a codebook to translate raw data into symbols is built; section 3 describes how
HMMs are trained to classify sequences of symbols produces by user gestures and
section 4 describes how the environment description is implemented and integrated with
the recognition process. In section 5, an application of the system is presented together
with the recognition accuracy achieved. Conclusions and planned improvements are in
the section 6.

2 Codebook Definition and Use

2.1 Components and Parameters

Three steps are performed in order to build the codebook:

– complexity reduction by principal component analysis (PCA);
– frequency analysis by Fourier transform;
– quantization by neural networks;

The encoding process is summarized in figure 1, where a series of 11 signals is
reduced to 3 by PCA. Note that once the PCA is applied the other two operations are
applied independently on the series. This elaboration requires several parameters to be
specified:

– the number of series kept after PCA. This parameter determines the total variance
preserved;

Fig. 1. Encoding input data.
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– the time window on which the Fourier transform is applied. This is a trade off
between the precision and the responsiveness of the system;

– the number of overlapping samples between time sequences;
– the number of symbols that the sequence classifier should recognize: If the symbols

are too many the parameters of the sequence classifier can grow excessively in
number and overfitting to the training set can occur.

2.2 Principal Component Analysis

Principal component analysis[3] is a procedure to obtain a linear transformation that,
when applied to data series results in independent series. The series produced are or-
dered on the basis of the variance they hold: almost the whole variance of the system is
kept using just some of them.

Usually PCA is applied to data offline, once a series is fully available. In this work
an online encoding is needed. The codebook should be defined in a unique way, so the
transformation can not be computed online just on a given time window. The training set
is hence used to define the transformation offline and to estimate how many components
should be hold to achieve a decent precision. The transformation is then applied online
to incoming data.

2.3 Frequency Analysis

A discrete Fourier transform is applied on the series before using the neural networks.
This allows the system to focus on the dynamics more than on the position. To make
the results independent from the position, the first component of the Fourier transform,
which represents the mean, is dropped from the obtained vector. The Fourier transform
results in a complex vector, and in this form it is used as input for the neural network.

The implemented neural networks can work with complex values as well as real
ones. When just the modulus of the Fourier transform is used as input for the neural
networks the performance can be strongly degraded. This happens because, often, the
phase is an important element in defining the nature of a gesture.

2.4 Neural Quantization

The neural networks are used to finally produce the encoding symbol. The competitive
neural network exploited performs a quantization splitting the input space into several
clusters[4].

The neural network output is an integer representing the cluster in which the input
vector ha been classified. These numbers have no particular meaning, and no relation
one with the other.

During the training phase the same training set is used both for the neural networks
and the HMMs. The neural networks are trained before the HMMs because they are
needed to produce the symbols. The networks are trained by iteratively minimizing the
quadratic quantization error on the training set.

35



3 Sequence Recognition

3.1 Classification Principles

In recognition applications HMM are trained through examples to modelize the process
to recognize,typically with an HMM for every process[5] [6]. The classification is usu-
ally performed by the assignment of a given input sequence to the class associated to
the HMM with the highest probability to emit it, as described in the formula:

C = maxargi (P (S|Mi)) (1)

Where C is the class given as output for the input sequence S, and M is the performed
gesture. In this application, for reasons that will be explained in the next section, the
classification is performed by a different formula:

C = maxargi (P (Mi|S)) (2)

By this formalism, which represents the emission probability as a conditioned prob-
ability, the sequence is considered as the evidence produced by the gesture performed.
Every gesture Mi is associated to its own probability

P (Mi) (3)

That is supposed to be given a priori and not to be dependent on parameters. This makes
sense considering P(Mi) to be a higher level concept than P(S|Mi). For example, when
recognizing gestures, the probability of a sequence to be observed during a gesture is
related to movement coordination (low level), while the probability of a gesture to be
performed is connected to the task performed (high level). The probability of a sequence
S to be observed (namely, produced by the models featured by the classifier) is

Pθ(S) =
∑
i

Pθ(S|Mi)P (Mi) (4)

where the subscript θ marks the probabilities dependent on the parameters, represented
by the vector θ

3.2 Parameter Estimation

Training the parameters of an HMM to maximize the emission probability of a given
sequence is a well known problem for which several algorithms have been proposed in
literature. Maximization of likelihood is the basis of the most of them. But representing
a well-known and (relatively) easy principle to match the model to the distribution of
examples is not optimal for classification problems in the general case[7]

Hence the principle of Maximum Mutual Information (MMI) is followed. The Mu-
tual Information between a sequence S and the model Mi associated to the class i is:

I(Mi;S) = log
Pθ(S,Mi)
Pθ(S)P (Mi)

= logPi(S|Mi)− log(P (S)) (5)
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The aim of the training is to maximizing the Mutual Information between the given
sequence and the model representing the class which the sequence is supposed to be
classified in. Another interpretation of MMI[8] is useful to show how the term P (Mi)
is not dependent on θ:

I(Mi;S) = logPθ(Mi|S)− logP (Mi) (6)

Finding the MMI over θ is equivalent to maximize Pθ(Mi|S), or adapt parameters
to enhance the probability that, if the sequence S is observed, it has been produced by
the process Mi. Notice again that Pθ(Mi|S) is a property of the whole classifier rather
than the single HMM. Unlike ML, MMI approach could not be implemented by an
expectation-maximization algorithm[9]. A gradient algorithm is therefore exploited.

The sets of sequences and models are considered in the training by maximizing the
function:

Fθ =
∑
i

∑
k

Iθ(Mi;Sk) (7)

So the gradient is the sum of the gradients of Iθ(Mi;Sk) for every HMM Mi and every
sequence Sk:

∇θFθ =
∑
i

∇θ
∑
k

Iθ(Mi;Sk) (8)

Function 7 resembles the mutual information defined between two probability distribu-
tions of sequences and gestures that caused it∑

i

∑
k

P (Mi, Sk)Iθ(Mi;Sk) (9)

but the term P (Mi, Sk) is missing because the probability distribution P (M,S) is not
directly available, and computing it from the emission probabilities would cause the
gradient to lose the property stated in 8. Anyway the training set itself works as a rep-
resentation of sequences distribution, in the sense that a sequence Sk associated to an
high actual P (Mi, Sk) is represented by a large number of sequences similar to it in
the training set, so the formula 7 is an approximation of formula 9. The derivative of
formula 7 respect to a parameter θi could be written as

∂I(M ;A)
∂θi

=
∂Pθ(S|M)

∂θi

Pθ(S|M)
−

∑
M̂

∂Pθ(S|M̂)
∂θi

P (M̂)
Pθ(S)

(10)

where M̂ are the generic models and M is the model related to the class wanted to
recognize the sequence S. In order to compute

∂Pθ(S|M)
∂θi

(11)

the parameters could be evidenced in Pθ(S|M), for a and b

Pθ(S|M) =
T∑
t=1

∑
i

α(t− 1)aijbj(Ot)β(t) (12)
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and for π:
Pθ(S|M) =

∑
i

πiaijbj(O0)β(0) (13)

Applying the product rule to compute, for example, the derivative for a:

∂Pθ(S|M)
∂aij

=
∑T
t=1

∑
i α(t− 1)∂aij∂aij

bj(Ot)β(t) =

∑T
t=1

∑
i α(t− 1)bj(Ot)β(t)

(14)

Only the sequences considered likely to be confused are chosen as negative example. A
confusion margin is quantified by the formula:

P (Mk|Sj) > αP (Mi|Sj) (15)

Where Sj is a sample for the class i, and k is the class which takes Sj as negative
example when the condition is verified and α is a parameter to be specified: for α = 0
all the sequences are taken in account, for α = 1 only the ones misclassified at a certain
step of the training algorithm become negative examples.

As previously explained P (M |S) is connected with prior probabilities. This al-
lows to take advantage from high level information in the training process. Batches of
samples could be presented with different prior probabilities in order to decide which
classes should be affected by negative training.

For example, if a sample Sj for the class i is presented during the training together
with a null prior probability P (Mk),Sj will not be a negative example for the class k,
being P (Mk|Sj) = 0 and so, never greater than αP (Mi|Sj) that is never negative.
This is useful because there are some gestures that could occur together in a certain
environment and in a certain situation and hence a priori more likely to be confused.

4 Environment Description

4.1 Representation through Fuzzy Logic

An ad hoc defined language [10] is used to describe a logical model of the environment:
objects, classes of objects and proposition about both objects and classes can be defined
in a fashion that represents a simplification of a complete syntax for predicative logic.
Fuzzy logic is particularly suitable to represent physical concepts like proximity or
alignment[11].
In details the environment description consists of:

– a set of statements with their truth values, needed to describe environment state i.e.,
”the hand is near the screw, with truth value 0.5”;

– a set of rules to compute the truth values of statements from other statements truth
values, used to compute the state of the system and to update the description coher-
ently i.e., ”if a screw is screwed on a bolt then that screw is blocked”;

– a set of rules to compute the probability of a certain gesture to be performed by the
user, needed to use the environment description in the recognition process, a brief
explanation of the method used is in the next paragraph;
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– a set of rules to define the consequences of an action performed by the user, needed
to update the scheme in realtime i.e. ”if the user performs the action pick and the
hand is near an object that object is then in-hand with truth value 1”;

Describing the language in details is beyond the intention of this article, the syntax
actually used in the application is hence not presented in this context where it could
appear confusing. The examples in the previous list, given in plain text, are intended to
show quickly the kind of statements that the described system can represent.

4.2 Inference Engine and Prior Probabilities

The inference engine is the set of functions that computes truth values of arbitrary
statements from the logical description. In this section the algorithms exploited are
described. When the truth value of a statement is required, the following action are
performed by the engine:

1. The statement is searched in the description, if it is present its truth value is returned
and the research is ended;

2. A rule having the state as effect is searched. If found the procedure is repeated for
all the terms in the cause. The value of truth is than computed and returned.

3. If a value is not found in previous steps, 0 is returned.

Searching the truth value of a statement is like building an inference tree where the
nodes are rules and leaves are known statements. To avoid that an infinite loop arises
sub-threes in the inference tree cannot include the rule that represent their root. There
is another feature that makes this system different from an usual theorem demonstra-
tor[11]: it relies on rules written by the user to compute the truth values of statements
from other statements truth values the latter exploits fixed inferential rules to find true
sentences from true sentence.

A vector of gestures prior probabilities is specified for several logical condition.
The logical conditions are fuzzy statements. When prior probabilities are required by
the application a weighted sum of all the prior probability vectors is given. The truth
value of the condition is used as weight for the related vector.

5 Performance

5.1 An Application

This application consists in assembling a small computer case in the virtual environ-
ment. The user interacts with the components through an avatar of his/her hand. The

Fig. 2. A situation in a possible environment and fuzzy values for assumption on it.
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Fig. 3. The virtual environment at the beginning of the task.

recognized gestures trigger effects in the virtual environment. The finger movements
performed are registered by sensor equipped glove [12]. The three-dimensional rep-
resentation of the environment is updated coherently with the logical description. In
order to build the case components should be put in place, set with the right orientation
and than blocked. To complete the task the operations should be performed in the right
order. The case is made with a box, a base and four screws to fix them together. The
recognized gestures are: null, pick, set, screw and unscrew. The gesture null does not
produce any action, it is recognized when the hand is almost still. It is needed to avoid
recognition of random gestures when the use is not doing something. The gesture pick
is used to take and release objects. Set is used to put an object in the right position for
assembling. This overcomes the fact that in this application there is not a force feed-
back and the right position is hence difficult to find. Notice that ”being set” is a state of
an object represented in the logical environment and it is anyway needed to mount an
piece. The gestures screw and unscrew are used to fix screws on the box and to remove
them. There are 5 degrees of screwing represented by a natural number, when the ges-
ture screw is recognized the number is increased, on the opposite unscrewing decreases
the number.

5.2 Accuracy

The system has been tested using examples of the 5 gestures produced by 5 users. Every
user has been asked to perform every gesture for a minute. To build the codebook the
11 angular values describing the finger positions, sampled at 1 MHz are reduced to 3
series of data through a PCA, then the Fourier transform is applied on overlapping time
windows of 50 samples. The resulting sample series have been divided in sequences
of 8 symbols. The system has been cross-validated splitting the set of examples into 5
subset, used 4 by 4 as training set.

The main peculiarities of the proposed approach are the use of MMI instead of
ML and the use of environment informations. Hence the test consists in comparing
confusion matrices in case of HMM trained through ML and through MMI without and
with environment information.

The MMI training outperforms ML training. This is evident especially for the ges-
tures screw and unscrew that are particularly difficult to recognize, being very similar.

The last two tables show the improvement produced by the use of context infor-
mation. As told in the tables captions, the information added consist just in the hand
position and the screw state. Further performance gains would be possible adding in-
formation about the task performed by the user, for example taking in account that the
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Table 1. Confusion matrix for MMI training.

null pick set screw unscrew
null 0.946 0 0.054 0 0
pick 0 0.927 0 0.037 0.037
set 0.060 0.016 0.890 0.020 0.012

screw 0.008 0.042 0 0.832 0.117
unscrew 0 0.008 0 0.096 0.896

Table 2. Confusion matrix for ML training.

null pick set screw unscrew
null 0.915 0.015 0.010 0.030 0.010

3 0.070 0.668 0.061 0.131 0.050
set 0.060 0.10 0.702 0.048 0.090

screw 0.070 0.80 0.030 0.660 0.150
unscrew 0.080 0.70 0.080 0.140 0.680

Table 3. Confusion matrix for MMI training, the recognition exploits context information: the
hand is near a screw positioned to be screwed, the precision rises to 96.83%.

null pick screw
null 1 0 0
pick 0 0.934 0.065

screw 0.008 0.021 0.970

user started to screw after positioning a screw would make more likely his/her intention
to screw.

6 Conclusions and Future Work

The objective of the presented work was to improve HMM-based gesture recognition
performance optimizing parameters adaptation and including high level information in
the recognition process, as usually done in speech recognition applications where lan-
guage models are exploited.In the proposed system this is represented by environment
information. A test shown how adapting parameters with MMI produces a better classi-
fication performance compared with the usual ML-based training presented in literature,
expecially in the classification of similar gestures. The algorithm high computational re-
quirements have been compensated selecting a subset of the training samples at every
step, without affecting the recognition performance of the algorithm. The introduction
of environment information produced a further general performance improvement. The
proposed fuzzy logic simplified inference system assures an efficient realtime update of
environment description according to user actions.

In the presented version the action performed by the user can be saved as a list. It
should be combined with the environment informations and, produce automatically a
manual for the task performed. Another step forward will be the integration of this sys-
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Table 4. Confusion matrix for MMI training, the recognition exploits context information: the
hand is near an halfway screwed screw, the precision rises to 92.21%.

null screw unscrew
null 1 0 0

screw 0 0.935 0.065
unscrew 0.084 0.021 0.970

tem into an application representing a complex industrial task, including the possibility
for the user to use tools.
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Abstract. Various illumination effects in an image are one of the states of 
difficulty that should be solved in order to get a satisfactory result in face 
recognition task. The inhomogeneous intensities of the image has led to many 
plans and algorithms to devastate the cause and next to eliminate the 
illumination. The focus of this paper is to enhance the image by reducing 
illumination effects; employing a preprocessing step i.e. adaptive multiscale 
retinex as the illumination correction method before accomplishing the 
recognition task. The performance of this method is evaluated using the Yale 
database and has lower equal error rate compared with single scale retinex and 
conventional multiscale retinex. 

1 Introduction 

In face recognition, usually there are some inconsistencies between the real scenes 
and the training set images. One of them is illumination variations such as shadow, 
blur, dark and noise occurring in the images. Sometimes this can cause degradation in 
the algorithm to recognize the face image. In this paper, we want to reduce the 
unwanted effects in face images by applying adaptive multiscale retinex as a 
preprocessing step. Multiscale retinex was initially used to provide stability in color 
images; however it is also competent to be used in gray scale images. 

Lightness and color uniformity refer to wide range of intensity and spectral 
illumination variations [1]. Multiscale retinex is formed from the retinex theory by 
Edwin Land [2]. Land proposed the idea of retinex as a model of lightness to measure 
the lightness response in an image. 

However Land did not apply the model to image enhancement algorithm, but this 
is done by Jobson where they define the properties of the surround/center retinex 
function [3]. The characteristic they describe is single scale retinex when they 
performed logarithmic after the surround function. They also apply ‘canonical’ gain 
offset to the retinex output to clip certain parts of the highest and lowest signal 
excursion. However, single scale retinex can either provide dynamic range 



compression on small scale, or tonal rendition for large scale image. This limitation 
expands single scale retinex to a more balanced method that is multiscale retinex.  

After that, another characteristic of multiscale retinex were found where other than 
dynamic range compression, multiscale retinex purposes are to replicate tone in an 
image in order to reduce its dependencies in lighting conditions and improved spatial 
resolution[4]. So we use this characteristic in this paper to lessen illumination effects 
in order to obtain controlled lighting condition in a face image. We modify the present 
multiscale retinex by including histogram shifting and adaptive histogram 
equalization to the original algorithm as to have a more uniform face image contrast 
than the original method. The detail of this proposed method will be discussed in 
section 3. Before that, section 2 will cover the original theory of multiscale retinex. 
Section 4 will describe the experimental results and lastly is the conclusion in Section 
5.  

2 The Original Multiscale Retinex 

The original multiscale retinex essentially measure the intensity of an image and 
estimate the illumination from the proportion of the local image mean intensity value. 
By applying Gaussian filter, the image is smoothed at different weight and size in 
order to find the mean of the image. To obtain the retinex output, the filtered image is 
divided using the illuminated image (input). Then, logarithmic function is done to 
compress dynamic range of images with large variations in pixel value [5] before the 
image is reconstructed again using additive function. 

The original multiscale retinex algorithm is obtained from single scale retinex [4] 
as in (1):  

 

R(x,y)=logI(x,y)-log[F(x,y)*I(x,y)]                                     (1) 

 
where I(x,y) is input image, R(x,y) is retinex output, F(x,y)   is the Gaussian surround 
function. Symbol * denotes convolution. Gaussian surround function is given by: 
 

Fሺx,yሻ=K.e-(x2+y2)/c2                                                 (2) 
 
where c is Gaussian shaped surrounding space constant. The value of c is related to 
visual angle in the direct observation which is determined through experiment. K is 
selected such that: 
 

 Fሺx,yሻdxdy=1                                                    (3)׭
 
Until this stage the single scale retinex would only provide tone reproduction and 

dynamic range compression at certain scale in an image. The image would have only 
one of the important characteristics. Thus, to overcome this limitation, superposition 
of different scale at certain weight would solve this problem as shown in (4), where 
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N is number of scale, where Rni is different scale of single scale retinex. ωn  is the 
weight of each single scale retinex with equal value. 

 

   RMSRi=෍ωn

N

n=1

Rni (4) 

3 The Adaptive Multiscale Retinex 

After applying the original multiscale retinex, we found that the image was too                                                 
dark. This meant that the image brightness and contrast needed to be altered. Thus we 
modified the algorithm by applying a recombination with the original image. 
According to [6], a method need to be applied to restore the information in different 
regions to smoothen the global contras in the image according to which region is 
darker or brighter. The information here is, different intensity in different regions in 
the original picture. For this reason, recombination is needed to restore the 
information as in (5): 
 

RMSRi   = ෍ωn

N

n=1

Rni+ωoriginal·log(original) . (5) 

 
After recombination with weighted original picture, adjustment is made on the 

histogram by performing a constant shift which helps improve the entire global 
brightness of the image. To shift the histogram is a simple task, where in the range of 
0-255 the image pixels should be. In order to allocate the pixels in the range, we set 
the initial maximum pixel (MinVal) as 0, and the minimum pixel (MaxVal) as 255. 
Then we evaluate the entire image pixels one by one and update the new value 
(NewVal) using (6). Prior to that, every pixel value (PixVal) has to be tested whether 
it is higher than the MaxVal or lower than the MinVal. If the value is higher, then the 
MaxVal will be the PixVal value and  the similarly, MinVal if the value of  PixVal is 
lower than MinVal.  These values are needed to find the new value which is compute 
from 

 

 NewVal ൌ ൤
Pixval-MinVal

MaxVal-MinVal
 ൨ כ 255 . (6) 

 
Next, we execute a local image enhancement technique that divides the image into 

rectangular blocks. Usually how many blocks should be used is determine through 
experiments. First, obtain the cumulative density function of the small region 
histogram. Then the centre pixel of the region is equalized (histogram equalization) 
and moved to the adjacent pixel in the rectangular region. This process is called 
adaptive histogram equalization (AHE) [7].  

Overall, the adaptive multiscale retinex algorithm is shown as in figure 1. 
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Fig. 1. The adaptive multiscale retinex flowchart. 

4 Experimental Results 

We evaluate the performance of the preprocessing methods using Eigenface [8] as the 
feature extractor while Euclidean distance is used for the matching purpose. We also 
implement a fusion of Principal Component Analysis (PCA) and Linear Discriminant 
Analysis (LDA) [9] for data reduction. The performance is evaluated using well 
known benchmarking measures for biometrics system i.e. Equal Error Rate (EER) 
[10]. To compute EER, two components must be determined. The first is false 
acceptance rate (FAR), when the impostor is falsely regarded as the client. Another 
one is false rejection rate (FRR), when the client is falsely regarded as the imposter. 
Here the client is the authorize person in the face recognition system. The EER is the 
cross-over value where FAR and FRR coincide. 

The dataset we use to evaluate the algorithms is Yale [11], which contains 165 
grayscale images of 15 individuals. There are 11 images per subject, one per different 
facial expression or configuration. The 11 images show various extreme illuminations 
and pose criteria. We randomly selected 5 images from each subject to be the training 
sample and 5 images of each subject as the testing sample. Our experimental face 
condition is cropped face images. The size of all images is standardized to 50x60.  

The experiments are done using grayscale images as the inputs. Three methods are 
compared, i.e., single scale retinex, multiscale scale retinex and the adaptive 
multiscale retinex. Table 1 shows the EER for these methods where we can see that 
the EER for the adaptive multiscale retinex is the lowest compared to the original 
multiscale retinex and single scale retinex.  

Table 1. EER comparison of three methods. 

Method EER (%) 
Single Scale Retinex 11.87 
Multiscale Retinex           10.33 
Adaptive Multiscale Retinex           10.27 
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The EER results correlate with the output images of the three methods. To 
illustrate, we choose 4 faces from the database which have been illuminated with 
different lighting conditions: cast shadow, attached shadow, specular reflection and 
diffuse reflection [12]. The lighting conditions are shown in figure 2. Figure 3 
illustrates the outputs for all three methods. For face number 1, only the adaptive 
multiscale retinex is able to eliminate the diffuse reflection. For face number 2, there 
are specular reflection and strong cast and attached shadow, where the adaptive 
algorithm is capable in removing the specular reflection. The condition in face 
number 3 is the same as number 1. Face number 4 contains cast shadow, specular and 
diffuse reflection. The adaptive multiscale retinex is able to remove all the lighting 
distraction on the face image, except the cast shadow.  

 

 
Fig. 2. Different lighting conditions of a face.  

 
Fig. 3. The image outputs using three methods for person 1, 2, 3, and 4. 

Figure 4(a), (b), (c) and (d) show the output histograms for face images 1, 2, 3, and 
4 before and after applying the adaptive multiscale retinex.  For all the histograms, the 
upper figure indicates the histogram before and the lower figure is the one after.  All 
the histograms show more balanced tone representation in gray scale values. The 
histograms centred at the middle show ordinary conditions with peaks and gradually 
tapering off on the left and right sides of the histogram. This proves that the method is 
able to reduce broad tonal range from the original face image.  
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Before (a) After 
 

Before (b) After 
 

Before (c) After 
 

Before (d) After 

Fig. 4. (a), (b), (c), (d). The histogram before pre-processes (the original image) and after pre-
processed with adaptive multiscale retinex for person 1, 2, 3 and 4. 

5 Conclusions 

In this paper, an adaptive multiscale retinex algorithm is presented. The purpose is to 
remove illumination appearances. This is achieved by modifying the multiscale 
retinex algorithm with adaptive histogram equalization and histogram shifting. The 
performance of this method is tested using the Yale dataset and shown in terms of 
EER rate and output comparisons with single scale retinex and conventional 
multiscale retinex. 
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Abstract. Abnormalities in the oculomotor system are well known clinical 
symptoms in patients of several neurodegenerative diseases, including 
modifications in latency, peak velocity, and deviation in saccadic movements, 
causing changes in the waveform of the patient response.  The changes in the 
morphology waveform suggest a higher degree of statistic independence in sick 
patients when compared to healthy individuals regarding the patient response to 
the visual saccadic stimulus modeled by means of digital generated saccade 
waveforms. The electro-oculogram records of six patients diagnosed with ataxia 
SCA2 (a neurodegenerative hereditary disease) and six healthy subjects used as 
control were processed to extract saccades. We propose the application of a 
blind source separation algorithm (or independent component analysis 
algorithm) in order to find significant differences in the obtained estimations 
between healthy and sick subjects. These results point out the validity of 
independent component analysis based techniques as an adequate tool in order 
to evaluate saccadic waveform changes in patients of ataxia SCA-2.  

1 Introduction 

The ocular movement records have been widely used in processing and classification 
of biological signals and pathological conditions: clinical sleep scoring [10, 11], 
cerebellar dysfunctions [12-14], diagnosis of the visual system [15, 16], amongst 
others, also in human computer interface and visual guided devices [17-19]. The 
Spino Cerebellar Ataxia type 2 (SCA-2) is an autosomal dominant cerebellar 
hereditary ataxia with the highest prevalence in Cuba, reporting up to 43 cases per 
100,000 inhabitants in the province of Holguin. In most families there is clinical and 
neuropathological evidence of additional involvement of brainstem, basal ganglia, 
spinal cord, and the peripheral nervous system [1]. This form of ataxia occurs 
commonly in persons of Spanish ancestry in north-eastern Cuba, a figure much higher 
than that found in western Cuba or in other parts of the world. The high prevalence is 



probably the result of a founder effect, but might be due to an interaction between a 
mutant gene and an unidentified environmental neurotoxin [2, 4]. 

Several studies have reported oculomotor abnormalities in SCA2 [1, 4-8]. 
Specifically, slowness of saccades has been suggested as a relatively characteristic 
finding in SCA2[4, 8]. This fact determines significant differences in saccade 
morphology between healthy individuals and patients with SCA-2, mainly for 60º of 
stimulus amplitude. The electro-oculographical records are quite different in healthy 
individuals and patients with a severe ataxia as it is shown in Figure 1 for a smooth 
pursuit experiment.  

 

 
Fig. 1. Electro-oculographic response to a smooth pursuit stimulus (top) obtained for a healthy 
subject (center) and a patient of SCA-2 ataxia (bottom). 

2 Using Blind Source Separation for Ataxia SCA2 Diagnosis 

2.1 Hypothesis for the Proposed Method 

Independent component analysis is aimed to find a linear transformation given by a 
matrix W, so that the random variables yi, (i=1,…,n) of y=[y1,…,yn] are as 
independent as possible in: 

( ) ( )y W xt t= ⋅  (1) 

This linear blind source separation approach is suitable for the signals obtained by 
the EOG, as well as in other medical analysis such as electroencephalography (EEG), 
electrocardiography (ECG), magneto-encephalography (MEG), and functional 
magnetic resonance imaging (fMRI) [20-26]. 
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As it was shown in Section 1, in the analysis of EOG oriented to the detection of 
SCA2 experts anticipate two possible behaviors of the individuals:  sick and healthy 
conduct. During an experiment over a healthy subject, the horizontal movement of the 
eye is expected to follow the stimulus signal. Therefore, the horizontal eye movement 
and the stimulus will hold a direct dependence between them, i.e. the signals are not 
independent. In contrast, a sick individual may present a more chaotic response, 
depending on the severity of the disease. Consequently, the subject response will not 
depend in such a high degree on the stimulus signal, and the signals are independent 
(or at least, “not so dependent”). 

Therefore, the proposed methodology uses independent component analysis as a 
classification algorithm criterion: if the independence measure (normally mutual 
information) reveals independence between the individual response and the stimulus 
signal, then it is rather possible that the individual presents some degree of ataxia or 
related disease.  

2.2 Description of the Blind Source Separation Algorithm 

The proposed algorithm for ataxia SCA-2 diagnosis will go along the following steps: 

1. Set both horizontal response and stimulus signal in the same phase, i.e. correct the 
delay between the stimulus change and the saccade. 

2. Normalize signals (x). 
3. Apply ICA algorithm. Any well known ICA algorithm may be applied at this point 

(FastICA [27], Jade [28], GaBSS [29-30], etc.).  
4. Normalize estimations (y)  
5. Calculate error measure between estimations (y) and mixtures (x) according to the 

root mean square error expression: 
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6. Depending on the obtained error measure, a simple categorization algorithm (such 
as C-means) may be applied in order to classify individuals. Otherwise, a human 
expert may help in subject categorization based on the ICA results.  

3 Results 

The electro-oculogram recordings of six patients with severe ataxia and six healthy 
subjects diagnosed and classified in the “Centre for the Research and Rehabilitation 
of Hereditary Ataxias (CIRAH)” were used in order to perform the analysis of 
repeated ocular saccadic movement tests for 10º, 20º, 30º and 60º divergence stimuli.  
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Fig. 2. Stimulus (1), response (2) and ICA components (3 and 4) obtained at 60º of stimulation 
for patients (top) and control subjects (bottom). 

All the records were carried out by the medical staff of CIRAH. Each individual 
was placed in a chair, with a head fixation device to avoid head movements, the 
variables were collected by a two channel electronystagmograph (Otoscreen, Jaeger-
Toennies). Recording conditions were set as follows: electrodes of silver chloride 
placed in the external borders of right eye (active electrode) and left eye (reference 
electrode), high pass filtering 0.002 Hz, low pass filtering 20 Hz, sensitivity 200 
µV/division, and sampling frequency 200 Hz. For stimulus generation a black screen 
CRT display showing a white circular target with an angular size of 0.7º was used. 
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The stimulus and patient response data are automatically stored in ASCII files by 
Otoscreen electronystagmograph. 

The patient response was filtered using a median filter, to obtain a clean waveform 
of the patient response, afterwards it was phased with the stimulus. Finally FastICA 
was applied to get the independent components (See Figure 2).  

As Figure 3 depicts, results show that the error measure obtained for SCA-2 
patients is clearly differentiable for the same measure obtained for control subjects. 
That is due to the fact mentioned in the hypothesis (Section 2.1) that if the 
independence measure reveals independence between the individual response and the 
stimulus signal, then it is possible that the individual presents some degree of ataxia. 
When the original signals (stimulus and response) were independent, the estimations 
are close to those sources and, therefore, the RMS error decreases. 
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Fig. 3. Root mean squared error between the estimations and the sources after the application of 
the algorithm to EOG data corresponding to SCA-2 patients (left) and control subjects (right). 

4 Discussion 

The results were obtained from six control subjects and six patients. Confirming our 
hypothesis, starting from electro-oculography experiments, patients showed a 
different behavior in terms of the visual response to a fixed stimulus (see Figure 2 and 
Figure 3). Therefore, after applying our proposed approach to the raw EOG data, 
classification and diagnosis can be made easily by simple human inspection of the 
results. Nevertheless, further research in this line may help in the categorization of the 
several stages of severity of SCA-2.  

The proposed method starts from the assumption that the response to a visual 
stimulus is different in a healthy individual when compared to the response of an 
individual afflicted by SCA-2. In the later situation, the response from the individual 
is not dependent on the visual stimulus, so that the ICA algorithm estimations will be 
similar to the obtained observations. This criterion has shown to be suitable in order 
to distinguish between sick (patients) and healthy (control) individuals. 
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Abstract. This paper shows the effectiveness of a modular neural network 
composed of multilayers experts trained with a hybrid algorithm implemented 
in a multiprocessor system on chip. The network is applied on the classification 
of electric disturbances. The objective is to show that, even a FPGA with hard-
ware restrictions, it could be used to implement a complex problem, when pa-
rallel processing is used. To improve the system performance was used four 
soft processors with a shared memory.  

1 Introduction 

The artificial neural network has been utilized to solve larger number of engineering 
problems, including the functions approximation [1], control as well as patterns clas-
sification [2]. The type of network, its architecture and its training algorithm are cho-
sen and evaluated according to dimension and complexity of the problems. Scientists 
have been researching many learning machines methods, including committee ma-
chines, to solve complex problems [2, 3, 4]. 

The quality of energy provided by an electric system is one of the greatest point of 
interest for concessionaire and electric energy consumers. The literature presents 
distinct approaches in the acquisition, characterization and classification of disturbs 
present in power grids. Among these contributions, could be included the application 
of Souza et al. [5] utilizing multilayer perceptrons with resilient propagation 
(RPROP) training algorithm in disturbance classification, the discrete wavelet trans-
form in characterization of voltage or current signals made by Machado et al. [6] and 
the detailed analysis of the electric signal pre-processing influence in neural network 
classifier [7]. 

At the same time the growth of the Field Programmable Gate Arrays (FPGA) ca-
pabilities, make them viable for the implementation of complete System-on-Chip 
(SoC) solution on the resolution of some complex problems [8]. Even with this 
growth, these systems have much less power of processing than a modern general 
processor. So with this restriction, maybe a more complex problem could not be im-
plement at real time in a small FPGA. The goal of this work is take advantage of 
ideas from parallel processing to increase the performance of the system. 



Following this development perspective, this work reports a learning algorithm for 
extend modular neural network and the results obtained and also shows an embedded 
architecture where the algorithm was executed and its performance.  

2 Modular Neural Network 

Committee Machines are neural network structures that use a concept commonly 
used: divided and conquer. This concept aims to divide a large and complex task in a 
set of sub-tasks that are easier to be solved and then regrouped again. From that, the 
committee machine could be defined, in summary, as a set of learning machine, also 
called experts, whose decisions are combined to achieve a better answer than the 
answers achieved individually, in other words, a machine with better performance. 

In the last years one of the mains areas of learning machine is the characterization 
of methods capable to build these committee machines. Them could be divided into 
static and dynamic structures; the modular network, as seen in Fig. 1, is a dynamic 
type of committee. It is means that the input signal is used by the gating network to 
build the global response. 

 

 
Fig. 1. Modular Neural Network Diagram. 

An advantage of modular networks when compared with other neural networks is 
the learning speed. The learning processing is accelerated in problems where exist a 
natural decomposition of the data at simple functions. To develop the committee 
machine architecture and to implement the experts, was selected the multi layer per-
ceptron (MLP).  

During the analysis and testing of the modular network presented by Jacobs and 
Jordan [9], it was observed the structure was efficient for some simple problems. The 
algorithm, when used with complex problems, is unable to found a good solution. So 
we decided to use a larger architecture, for this, was opted to add hidden layers, as 
well as MLP networks, and neurons with nonlinear activation function at both struc-
tures: experts and gating network. Also in each layer a bias was added. From the 
parallelism standpoint, the adopted strategy was to involve an expert for each task, so 
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each MLP network is being treated by a unique processor. The committee machine 
training, was conducted similarly to the MLP using backpropagation.  

To train the modified modular network, was necessary to adjust the modular train-
ing algorithm. The way in which it was implemented enables to set, not only, differ-
ent architectures to each expert, but also specific values of the learning algorithm, 
such as learning rates, momentum rate and delta-bar-delta parameters. Its possible, if 
desired, assign independent training sets to each expert network. A brief description 
from this algorithm is shown below 

2.1 Hybrid Algorithm 

To train the modified modular network was developed an algorithm adapted accord-
ing to Jacobs and Jordan [8] algorithms, for the model of Gaussian mixing associative 
and also the error back propagation algorithm, by including the calculation of the 
descend gradient. This algorithm is briefly described along this section, more details 
and the complete algorithm is described at Magalhães et al. [10]. 

The modular network used is consisted by K MLP experts, with Lesp layers with q 
neurons in each layer. And also a gating network of the type MLP with Lpas layers 
with q neurons in each layer. The neurons activation functions in all networks can be 
linear or non-linear. Was chosen the same architecture to all experts, to simplify the 
implementation in hardware. 

2.1.1 First Step 
 
The first step of the algorithm is the calculation of a priori probability associated to 
the i-th layer neuron output of the gating network, when from n-th application 
example of training, obtained from (1) 
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where ui

(l)(n) is the i-th output neuron of the l-th layer from the gating network. 

2.1.2 Second Step 
 
The second step of the algorithm is to obtain the values of a posteriori probabilities 
hi(n) associated to the output neuron i from the output of the gating network, when 
from the n-th application example of training, obtained from (2) 
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where d(n) is the expected answer and yei
(k)(n) is the answer provided by the neuron i 

from the layer l of the k-th expert for the example n. 

2.1.3 Third Step 
 
The third step is where are made increment in synaptic weights of the modular net-
work with multiple layers. The synaptic weights from the networks experts are up-to-
dated according to the equation (3) 
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where η is the learning rate, and δei

(l)(k) the gradient for the output layer neurons and 
and yj is the output of the j neuron of the l-1 layer. 

The synaptic weight increment from the gating network is done through (4) 
 

api j
l n +1( )= api j

l n( )+ ηδpi

l n( )y j
l−1 n( )     (4) 

 
To validate the algorithm we choose the problem of quality of energy, which is a 

interest point for energy concessionaire. The application implemented on the system 
architecture was a pattern classification for power lines disturbances. The methodolo-
gy of the application and data files and information were the same present in Medei-
ros et al. [7] study. This application evaluated the performance of an intelligent sys-
tem classifier, in this case a modular network, in electric disturbances classification. 

The approach is done into four mains steps: getting the signal, pre-processing, de-
finition and classification of descriptors. The first step, which comes to obtaining the 
electrical signals, has been carried out through the oscillograph network of São Fran-
cisco hydro Electric Company (CHESF) and also from the simulation via Transient 
Alternative Program (ATP). The network consists of 370 oscillographs operation 
with a sampling rate ranging between 20 and 256 samples/cycle. The signals used in 
this study were collected in voltage lines levels of 69, 230 and 500kV, with a rate of 
128 samples/cycle during 14 cycles [13]. These steps are described with more details 
by Medeiros et al. in [7]. 

The pre-processing stage is to suggest descriptors that characterize the signs varia-
tions when diverted from a certain standard. The third step, which deals with the 
descriptors definition, is performed from the decomposition of signals from the pre-
vious step. Following obtaining the descriptors, four disturbances classes are defined: 
Voltage Sag, Voltage Swell, Harmonics and Transitories. The Final Step, the classifi-
cation, is performed by the application of classifiers based on artificial neural net-
works. Several architectures were tested, as shown at Table 1. 

To the classification step were used two sets of data, the first for the training at 
computer, and the second for validation at FPGA. The training set consisted by 800 
patterns formed by the four disturbances classes. 

To validate the modular network are used 344 input patterns with their respective 
expected responses, consisting only of data obtained from the oscillographs. 

 

62



Table 1. Modular Neural Network Architecture. 

Net MOD-0 MOD-1 MOD-2 MOD-3 
Number of Experts 3 3 3 3 
Expert Architecture 10:3:4 10:5:4 10:10:4 10:15:4 
Gating Architecture 10:5:4 10:5:4 10:10:4 10:15:4 

Classification 98,46% 99,48% 100% 100% 
 

From Table 1 it can be said that the modular neural network with the proposed al-
gorithm reaches a high amount of accuracy, approximately 100%. 

More details of the algorithm implementation, information about performance and 
a comparative with others neural net architectures are founded at Magalhães [10].  

3 Multiple Processors Systems 

The idea of parallel processing is not new. A parallel system is made by processing 
elements (PE) that work in cooperation to solve a problem [11].   

Parallel systems can be classified, for example, by the data or instruction flow, us-
ing these criteria they could be divided by Flynn’s taxonomy into Single Instruction 
Single Data (SISD), Multiple Instruction Single Data (MISD), Single Instruction 
Multiple Data (SIMD) and Multiple Instruction Multiple Data (MIMD). Systems with 
multiple processors are members of the last class, which has n PE working in parallel, 
processing asynchronous tasks concurrently in order to, in a given time, complete the 
task. 

The MIMD class can be subdivided into two subclasses, according to memory 
access, a system could use or not a shared memory. The main difference between 
them is that when using the shared memory, all PE have access to the same memory, 
while in the other each PE has its own memory. So we can see two paradigms for 
performing communication between the processors: first, the use of a shared memory; 
second, a message passing facility. 

At the first paradigm, whereby more than one PE could access the same shared 
memory address to execute the write and read operations, is necessary to protect this 
block. For example, using a semaphore, this component not allows two processes 
access the same memory address simultaneously, avoiding a conflict [12].  

The second paradigm is the message passing. In this case, a PE uses an intercon-
nection network to send and receive messages, and so establish a communication with 
other PE. In this configuration each processor has its own memory that it is accessed 
only by itself. Bus, ring and mesh are examples of network topologies, which exist to 
build the interconnection of a multiprocessor system. The choice of which network 
will be used is made according with characteristics as: cost, performance and how 
many nodes exist.  

In our case, we used a shared memory communication; a Nios II processor was 
chosen as our PE, All components are communicating though the Avalon bus. This is 
designed to connect on-chip processors and peripherals together in a system on pro-
grammable chip (SOPC). Peripherals, that use this bus, could be divided into master 
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and slave the first is able to start data transfers, while the second only transfers data 
when requested. The Nios II Processor is an example of a peripheral master, while a 
shared memory is a peripheral slave. When more than one master interacts with a 
same slave it is necessary an arbiter with an arbitration to determine which master 
have access to it. The arbitration scheme used by the arbitrator is the round robin.  

The Nios II is a soft processor developed by Altera and distributed together with 
its FPGAs. These are equivalent to a microcontroller, and are used in many different 
applications. The Nios II has a central processing unit (CPU), memory and peripher-
als on a single chip. This is a RISC processor for general use. Being a software pro-
cessor, you can add and configure peripherals to the Nios II, according with the ap-
plication. The core of the Nios II can be divided into three versions: economic, basic 
and fast. The developer will choose the most appropriate for their application. The 
fast core is designed for applications that require high performance. It has cache for 
data and instructions, which improve, for example, the performance of applications 
with a large amount of data. The basic version has no cache for data and its perfor-
mance is about 40% smaller than the fast version, so it should be used in applications 
where high performance is not a necessary feature. The economic core is half size of 
the basic version. It has only the necessary functions to be used with Nios II instruc-
tions set. This core is used in applications where it is required a simple logic control.  

To use the shared memory it is necessary a mutex component, this ensure a mutual 
exclusion (ME) coordinating the read and write operations. The mutex provide an 
atomic test-and-set operation that allows a processor to test if the mutex is available 
and if so, to acquire the mutex lock in a single operation. Without the mutex, a write 
operation would normally require the processor to execute two separate operations. 
To do that the mutex has two fields (registers). Each processor has a single identifier 
(ID). Each mutex has a VALUE field and OWNER field. The VALUE field is always 
accessible for a processor to read it. A read value of 0x0000 represents mutex availa-
bility. If the mutex is available the processor writes its ID in OWNER and a different 
value of 0x0000 in VALUE. Upon acquiring the mutex the processor performs the 
operation (write or read) and then finalizes releasing the mutex. 

4 System Architecture and Results 

Table 2. Configurations Tested. 

Number of Processors Space in the FPGA (LE) Time to Generate (hh:mm:ss) 

4 12170 (61%) 00:42:17 
6 17845 (89%) 03:54:26 
8 21146 (101%) error 

 
To design the architecture and obtaining the results was used a Nios II development 
kit with a FPGA Altera Cyclone EP1C20F400C7 within 20600 logic elements (LE). 
To generate the parallel architecture, was used an IBM-PC Pentium 4 3.0GHz with 
1Gb of RAM, several configurations with different numbers of processors were gen-
erated, but the size of the FPGA was the limiting factor in defining their number in 
the system. Table 2 shows some of these configurations. 

64



At Fig. 1, is possible to see, that the modular network, could be easily divide at 
small tasks. For example, each expert could be a task, and so implemented at a differ-
ent processor, as well as the gating network and the sum function.  

We made three kind of tests; first, the modular neural network implement one pro-
cessor, in a serial version, second a parallel version using two processors, and the last 
one is a parallel version using four processors. We made tests with the message pass-
ing facility paradigm and the shared memory. We choose to use shared memory, 
because it has shown a better performance in this type of problem. At Fig. 2, we 
could see a diagram of the Modular Neural Network Parallel Algorithm divided in 
four small tasks and implemented at four processors. Each expert was implemented in 
a different processor, as well as the gating network with the sum function. 

 

 
Fig. 2. Modular Neural Network Parallel Diagram. 

We choose to implement the gating network and the sum function at the same pro-
cessor, because at this way we need one less communication. So the parallel algo-
rithm has two communications: first, one-to-all, where the master processor sends the 
inputs to all slaves (experts); second, all-to-one, that each slave sends its output to the 
master processor. In our case the master processor is where the gating network and 
the sum function were implemented. At the next tables, it is possible to see tree algo-
rithms: Table 3 the serial algorithm, Table 4, at first column, the parallel algorithm 
implement at two processors, and at Table 4, at second column, the parallel algorithm 
implement at four processors.  

Table 3. Serial Algorithm. 

Begin Serial Algorithm P1 
     1. Read inputs and write at the memory 
     2. Calculate the Experts outputs 
     3. Calculate the Gating Network output 
     4. Calculate the General output  
End Serial Algorithm P1 

 
All the processors have the same program; the first instruction’s program is to 

identify what processor is, to execute its part of the code. Each processor has its own 
memory and could access a shared memory. The modular neural network executed at 
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the FPGA was the MOD-0 shown at Table 1, this network achieved 98,46% of classi-
fication accuracy. MOD-0 is a network with fewer variables so it could be executed 
even in a small FPGA, as the Cyclone.  

Table 4. Parallel Algorithm. 

Begin Parallel Algorithm P1 
    1. Read inputs and write at the shared memory 
    2. Calculate the Gating Network output 
    3. Wait the Experts outputs 
    4. Calculate the General output  
End Parallel Algorithm P1 
 
Begin Parallel Algorithm P2 
    1. Wait P1 write the inputs at the shared memory  
    2. Calculate the Experts Output 
    3. Write Experts Results 
End Parallel Algorithm P2 

Begin Parallel Algorithm P1 
    1. Read inputs and write at the shared memory 
    2. Calculates the Gating Network output 
    3. Wait the Experts outputs 
    4. Calculate the General output  
End Parallel Algorithm P1 
Begin Parallel Algorithm P2 

1. Wait P1 write the inputs at the shared memory 
     2. Calculate the Expert 1 output 
     3. Write Expert 1 Results 
End Parallel Algorithm P2 
Begin Parallel Algorithm P3 
     1. Wait P1 write the inputs at the shared memory 
     2. Calculate the Expert 2 output 
     3. Write Expert 2 Results 
End Parallel Algorithm P3 
Begin Parallel Algorithm P4 
     1. Wait P1 write the inputs at the shared memory 
     2. Calculate the Expert 3 output 
     3. Write Expert 3 Results 

End Parallel Algorithm P4 
 

To measure the performance of the three algorithms we use a performance counter, 
which is a component that counts how many clocks a program, and a section of it, 
need to execute. The serial algorithm has three main functions, as seen in Table 3; a) 
calculate the experts outputs, b) calculate the gating network output, and c) calculate 
the global output.  The time, which each one needs, is shown in percent, at Fig. 3. The 
time necessary to read an input is insignificant when compared with the others, so it 
was not considerate. 

The function that needs more time is: experts output, so we decide to make parallel 
this function at the parallel algorithm.  In this it is necessary a flag to syncronize the 
processors, because the global output only could be calculated after the others. 
Another function was created, the output experts wait. The algorithm was divided as 
follow: the master processor calculate the gating network and wait the results from 
slaves processors,  so even the master processor finish with the gating network it 
needs to wait to calculate de global output. All slaves calculate the experts outputs 
and send the answers to master. As the algorithm only terminates after the calculation 
of the global output, the total time of this system is measured on the master.  

Results with 2 processors are shown at Fig. 4, at this configuration one processor 
is the master, and the second processor is the slave, that calculate all the experts 
outputs. As the tasks of the slave needs more time than the master, this stay 26.41% 

66



of time waiting the results from it. At the second configuration, in which has 4 pro-
cessors, each slave calculate the output of one expert, results are shown at Fig. 5.  

 

 
Fig. 3. Time of each function at the
serial program. 

 Fig. 4. Time of each function at the master 
processor at the parallel algorithm with 2 
processors. 

With 4 processors the master stays only 2,69% of time at idle. The computing time 
decrised at each improvement, this time, at number of clocks, is shown at Fig. 6. 

 
 

 
Fig. 5. Time of each function at the
master processor at the parallel algo-
rithm with 4 processors. 

 
Fig. 6. Total time, meseaured at cycles, of 
each algorithm. 

With the number of clocks of each algorithm, as shown in the figure above, it is 
possible to calculate the speed-up of the parallel algorithm, this is obtained using the 
expression (5). 

G =
TS

TP

 (5) 

where TS is the serial execution time and TP is the parallel execution time. The speed-
up calculated was 1.47 for 2 processors, and 1.87 for 4 processors.  

5 Conclusions 

In this paper, the implementation of pattern classification for power lines disturbances 
using multiple processors on FPGA was made. The classification achieved at MOD-0 
was 98.46%.  
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We use a small Cyclone Altera FPGA, which has performance restrictions, to im-
plement the execution phase of the MOD-0. This operates at a frequency of 50MHz, 
and has less than half size of  new FPGA, even then the best speed-up achieved was 
1.87, in other words, 93.5% of improvement at execution time.  

This application is portable to different FPGAs, and could have the number of 
processors easily increased due its scalability. Using a new one a better performance 
could be achieving increasing the number of NIOS II inside it, and so execute the  
MOD-1, MOD-2, MOD-3 networks and others applications more complex. 
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Abstract. Recent advances in neuroscience have underscored the role of single 
neurons in information processing.  Much of this work has focused on the role 
of neurons' dendrites to perform complex local computations that form the basis 
for the global computation of the neuron.  Generally, artificial neural networks 
that are capable of real-time simulation do not take into account the principles 
underlying single-neuron processing.  In this paper we propose a design for a 
neural model executed on the graphics processing unit (GPU) that is capable of 
simulating large neural networks that utilize dendritic computation inspired by 
biological neurons.  We subsequently test our design using a neural model of 
the retinal neurons that contribute to the activation of starburst amacrine cells, 
which, as in biological retinas, use dendritic computational abilities to produce 
a neural signal that is directionally selective to stimuli moving centrifugally. 

1 Introduction 

As with most research topics, neural modeling has broadened into a spectrum of 
methodologies that sometimes use the terms artificial neural networks, computational 
neuroscience, and brain models to illustrate methodological differences. The authors 
of [1] have chosen the terms realistic brain models and simplified brain models to 
illustrate two sides of the research spectrum. Realistic brain models refer to models 
that go to painstaking lengths to model the individual components of neurons and 
their assemblies. In these models, the goal is often directed toward gaining greater 
insight into actual brain function [2]. Indeed, this is a very active avenue of research 
in both the neuroscience and computational neuroscience fields. 

Unlike their counterpart, simplified brain models, often implemented as artificial 
neural networks (ANNs), are usually directed toward computing meaningful 
information. Their simplified nature is both a distinct advantage and disadvantage 
over realistic brain models, as it is the conceptual and computational intractability that 
has hindered the use of realistic brain models as functional entities. Despite the large 
range of successful applications of ANNs, future networks that attempt to solve 
complex problems such as robust object recognition [3] or modeling complex 
behaviors [4] will likely require more realistic organization principles. 

If neural networks are to be realized in a more biologically realistic manner, the 
two aforementioned hindrances will need to be overcome. The first, conceptual 
intractability, is being slowly broken apart by a large number of neuroscientists such 



as those previously referenced.  Their progress has led to many new ideas and models 
regarding the functioning of individual neurons. A major insight that has emerged 
from these studies involves the role of the single neuron in the computational abilities 
of neural networks –both biological and artificial [2, 5]. In particular, the structural 
organization of the neuron’s dendrite (the part of the neuron that receives signals from 
other neurons) has become an important concept in both the theory of biological 
neuron functioning [2, 5-7] and computational studies [8]. Models that do not take 
into account the physical structure of the neuron are in effect using point neurons.  
Point neurons are named as such to illustrate the lack of dendrites where afferent 
neurons instead synapse directly onto the soma (cell body). 

One biological phenomenon that has been attributed to interactions between 
neurons synapsing at proximal locations on a dendrite is the directionally selective 
activation of starburst amacrine cells [9]. Euler et al. [9] demonstrated that the signal, 
which responds vigorously for stimuli moving centrifugally –i.e., away from the 
soma–, is the result of local computations that take place on the dendrites of the cell. 
Following this result, Tukker et al. [10] created a realistic computational model that 
showed the directionally selective signal found at the distal tips of the dendrites could 
be accounted for by an interaction between a temporally delayed global signal and 
local synaptic input. 

The second hindrance, computational intractability, is a result of the large number 
of calculations needed to model a realistic neuron. One approach that is being used to 
overcome computational insufficiencies in highly parallel applications, such as neural 
modeling, is to use the graphics processing unit (GPU) [11], which is the primary 
computational unit integrated into present-day computer graphics cards. 

In this paper, we present a neural network design that has been crafted for 
execution on the GPU.  The design achieves real-time computational abilities while 
preserving potentially crucial features of realistic brain models such as dendritic 
computing. To demonstrate the neural network design, we implement a sample 
network that simulates the subset of the retinal circuitry responsible for generating the 
directionally selective signal in the starburst amacrine cells. 

2 GPU Processing 

In recent years, the computational abilities of certain systems have seen enhanced 
growth due to the expansion of parallel systems such as cluster computing and 
distributed computing. Another highly parallel paradigm that has recently been 
exploited by computationally hungry scientists is the GPU, which is currently being 
used for image processing, computer vision, signal processing, video encoding, and 
ray tracing, among others [11]; applications such as these have been given the 
acronym GPGPU for general-purpose computation using graphics hardware. 

2.1 Brief Overview of GPU Architecture 

The massive computational power underlying the GPU comes from its parallel 
architecture, which is implemented using a computational unit known as a stream 
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processor. Essentially, a stream processor is a highly restricted form of a processor 
core; whereas processor cores are able to perform a wide variety of complex tasks, 
stream processors use a specialized instruction set to perform the tasks that are 
repeatedly executed during computer graphics rendering. By performing only a 
handful of tasks, the GPU can pack hundreds of stream processors into a single GPU, 
as opposed to the eight processor cores available in modern CPUs at the time of 
writing. 

Given the restricted nature of stream processors, applications that wish to exploit 
the computational advantages of the GPU must adhere to a narrow flow of execution. 
This flow is divided into four primary steps: vertex operations, primitive assembly, 
rasterization, and fragment operations. All programs executed on the GPU must 
perform all four steps; however, in many GPGPU applications, the first three steps are 
executed at a bare minimum to support the bulk of the computation, which takes place 
at the final stage. Those interested in the details of the first three stages are 
encouraged to visit a community website dedicated to GPGPU programming [12]. 

The fragment operations that support the bulk of GPGPU computations are 
performed by a simple program designed to execute on the GPU known as a fragment 
shader. Fragment shaders perform a series of operations that manipulate one pixel of 
data per execution. However, since there are hundreds of stream processors, many 
millions of pixels of data can be processed in a very short period of time. 

Data used by GPGPU applications must also conform to computer graphics 
constructs which use images known as textures to store data. In traditional computer 
graphics applications, a texture stores visual attributes not suited for –or too 
computationally expensive for– representation by geometry, such as the clothes of a 
character or the asphalt of a highway. 

2.2 Neural Networks on the GPU 

Many ANNs involve a highly parallel design that is well suited for implementation on 
the GPU. Consequently, a number of researchers have taken advantage of this to 
achieve notable gains in execution time [13-15]. For instance, Bernhard and Keriven 
[13] were able to achieve a 5 to 20 fold increase in performance over a CPU 
implementation while simulating spiking neural networks for image segmentation.  
Gobron et al. [14] use the GPU to model the retina using cellular automata, and 
Woodbeck et al. [15] use the GPU to implement a model of the processing that takes 
place in the primary visual cortex. However, in each of these instances of neural 
network processing, simple point-neurons were used to perform the pertinent 
computations, which will likely be insufficient to for complex tasks such as robust 
object recognition. 

3 Neural Network Design 

3.1 Single Neuron Model 

As mentioned previously, researchers now believe the physical organization of 
synapses plays a key role in the processing of information by neurons. In the design 
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presented here, we take into account the organization of afferent synapses to facilitate 
some of the mechanisms that underlie the computational power of biological neurons. 
Figure 1 shows two neurons that can be simulated using the present model. The key 
thing to notice is the labeling of dendrite segments, which permits local computations 
to take place in individual segments. London and Häusser [5, pp. 509] note, “Because 
the branch points in the dendritic tree can be seen as summing up the current in 
individual branches, ... the whole dendrite can implement complex functions.” The 
addition of this type of organization will allow the use of what London and Häusser 
refer to as the dendritic toolkit [5]. In the sample network we use this dendritic toolkit 
to compute a direction selective signal in the dendrites of a simulated starburst 
amacrine cell. 
 

 
Fig. 1. Illustration of potential neurons in the present model. 

3.2 Single Neuron Creation 

The single neuron model described in the previous section allows inputs to be 
grouped together on a single dendrite segment so that local computations can take 
place independently. However, it may not be entirely clear how the dendrite segments 
can be generated or how afferent synapses can be connected to each segment. 
Consequently, we have included the pseudocode for a recursive function that 
generates the dendrite branching patterns from a branch code. For example, the 
branch code that is used to generate the left neuron in Figure 1 is given on the first 
line of pseudocode, and the branch code to generate the right neuron is 
41110111011101110. 

Essentially, each digit in the branch code, which can be stored in string form, 
represents the number of new segments that are to be generated from the current 
location. For example, ‘2’ represents a binary split, ‘1’ represents a single segment, 
and ‘0’ represents the end of a segment. When a split is encountered, the subsequent 
digit(s) is used to generate the first segment of the split until that branch is terminated 
with a ‘0’ at which point the following digit(s) is used to generate the second segment 
of the most recent split, and so on until all segments have been terminated. 

branchCode = “5210102101012102101021010110” 
SetupDendriteSegment(int codeIndex) 
 if branchCode[codeIndex] equals ‘0’ 
  delete digit from branchCode at codeIndex and 
return 
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 DendriteSegment d = new DendriteSegment 
 while SynapsesNeeded() equals true 
  Add GetNextSynapse() to d 
 for i = Integer of branchCode[codeIndex] to 0 
  SetupDendriteSegment(codeIndex+1) 
 delete digit from branchCode at codeIndex and return 
End SetupDendriteSegment 

The SetupDendriteSegment function can generate a complex branching 
pattern from a string of digits; however, it still must be decided how afferent inputs 
will be connected to the individual dendrite segments. Since this is different for each 
type of neuron, a general procedure is described which invokes two undefined 
functions, SynapsesNeeded and GetNextSynapse which are left to the reader 
to implement as needed by their application. 

One final item needs to be handled before the segments are complete, which is the 
fact that the local membrane potentials of neighboring segments should be part of the 
local computation that takes place on each individual dendrite segment. This can be 
solved by simply treating the neighboring segments as synapses and identifying these 
with a unique synapse type (described in the following section). 

3.3 Data Storage 

In the present model, functionally identical neurons are arranged into a single layer 
which forms the functional unit of the network. Each layer of simulated neurons in the 
network requires three textures to be maintained throughout execution: a neuron 
texture, a dendrite texture, and a synapse texture. Individual pixels in the neuron 
texture store the activation (i.e., membrane potential; AN) for each individual neuron 
as well as an index to the first dendrite segment of the neuron (ID) stored in the 
dendrite texture. Pixels in the dendrite texture store the local membrane potential of 
each dendrite segment (AD), an index to the first synapse of the segment (IS) stored in 
the synapse texture, and a weight used to moderate how much local potential is 
transferred from the segment (WD). Finally, each pixel in the synapse texture stores an 
index to the afferent membrane potential that is being transferred by the synapse (IA); 
for instance, bipolar cells in the sample network receive input from the photoreceptor 
neurons, which will be indexed by the synapse texture of the bipolar cell’s synapses. 
However, as with biological neurons, synapses in the model can also receive their 
input from a dendrite segment of another neuron. The synapse texture also contains a 
weight used to modify the synapse strength (WS) and the type of the synapse (T) 
which determines the texture that is indexed by the synapse. Figure 2 illustrates a 
summary of the data model described above. 

3.4 Model Execution 

As mentioned in the previous section, functionally identical neurons are grouped into 
layers. Each layer is executed by two fragment shaders each time a neuron’s 
activations are calculated. The first fragment shader computes the local activation 
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function of individual dendrite segments. This shader executes by beginning at the 
first indexed synapse in the synapse texture and iterating over subsequent synapses 
until a blank synapse is encountered –denoted by a -1 in IA. The membrane potential 
calculated in this way is then stored in the G component of the dendrite texture. The 
second shader computes the global activation function of the neurons in the network. 
This shader works in a manner very similar to the first shader by iterating over the 
dendrite segments directly connected to the neuron soma, and the activation of the 
neuron is stored in the G component of the neuron texture. 
 

 
Fig. 2. Data model for the neural network design.  Each pixel (grey square) is used to store the 
various indexes and parameters used to compute the activations of the neurons and dendrites in 
the network. 

4 Sample Network 

The sample network presented hereafter is used to demonstrate how the organization 
principles previously described can be implemented to achieve both function and 
efficiency. To this end, the following network will be used to model a subset of the 
retinal circuitry responsible for the directionally selective signal found in the distal 
dendrite branches of the starburst amacrine cells. In particular, we model the 
photoreceptors (short-, medium-, & long-wavelength cones; implemented in the 
model using individual red, green, and blue color channels), horizontal cells (H1 and 
H2), on-center bipolar cells (short-, medium-, & long-wavelength cells), and starburst 
amacrine cells. The local membrane potentials of the network demonstrate that the 
computation of the centrifugal direction selective signal is very similar to that of 
biological neurons [9, 10]. 
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4.1 System Overview 

Input to the network is achieved using a standard webcam setup that captures video at 
30 frames per second (FPS). After each frame is captured, it is transferred to video 
memory on the graphics card using the OpenGL API. Fragment shaders, which 
encompass nearly all of the network processing and implementation, are implemented 
using OpenGL’s high level shading language, GLSL. The neuron, dendrite, and 
synapse textures are created prior to execution using an extension of the methods 
detailed in previous sections. All computations were executed on a desktop computer 
running Windows XP with a 2.6 Ghz AMD 64 bit dual-core processor with 4 GBs or 
RAM and a Nvidia GTX 280 graphics card. 

4.2 Network Organization 

The wiring of photoreceptors, horizontal cells, and on-center bipolar cells is modeled 
directly from the biological wiring described in [9, 10, 16, 17]. Figure 3 (left) 
illustrates the connections that exist between a single starburst amacrine cell and the 
cells that contribute to its activation; essentially, the neurons shown for the classic 
receptive field for a single starburst amacrine cell. Dendritic branching of horizontal 
and bipolar cells incorporates only single dendrite branch segments –e.g., a branch 
code of 410101010. Bipolar cells compute a contrast modulated activation through 
an antagonistic center-surround organization of its afferent synapses from cones 
(center) and horizontal cells (surround). For the sake of brevity, the equations used to 
compute neural activations are not presented. However, the neural activations follow 
very closely those of their biological counterparts as described by Dowling [17], and 
are similar in effect to those of [18]. 

Starburst amacrine cell dendrites follow the basic design present in Figure 1. This 
dendrite branching pattern, though highly simplified, still preserves the necessary 
geometric relationship that allows the computation of the centrifugal-selective signals 
as described by Tukker et al. [10]. As dendrite segments of the starburst amacrine cell 
move progressively farther from the soma, inputs to these segments are selectively 
received from bipolar cells that are more distant from the starburst cell.  
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Fig. 3. Connections and data flow in the sample network. (left) A 3-dimensional rendering of 
the actual connections that contribute to the activation of a single starburst amacrine cell in the 
sample network. Illustrated neurons represent the classic receptive field of the starburst neuron.  
(right) Source image and the activations of each layer in the network. Lighter portions represent 
higher activations whereas the color represents the relative contribution by red, green, and blue 
components of the source signal. 
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4.3 Network Results 

The sample network consists of nine layers of neurons, more than 225,000 individual 
neurons, and more than 2 million synapses. Despite its size, the activations of every 
neuron in the network can be computed in 7 ms or, put another way, the network 
operates at roughly 142 pulses per second (1 pulse = 1 computation of all neuron 
activations). In preliminary versions of the network, the GPU version outperformed 
an analogous, multi-threaded CPU version by a factor of approximately 20 when 
executed on a 2.4 Ghz quad-core processor. 

The activations of the individual layers in the network are illustrated in Figure 3 
(right). The activations of all layers, with the exception of the starburst amacrine 
layer, are illustrated during a single, similar pulse step. The activations of the starburst 
amacrine layer, however, are from a pulse that is many steps into the future relative to 
the other layers, which demonstrates the motion of the robot pictured. Although the 
starburst amacrine cells are directionally selective, their highly overlapped nature 
instead results in activations similar to image subtraction from traditional image 
processing techniques. This result in itself could be achieved with a simpler network 
[c.f., 18]; however, starburst amacrine cells form a crucial input for the 
computationally more complex directionally selective ganglion cells [9]. As such, this 
network represents a significant first step in the creation of a larger, more complex 
network dedicated to modeling the complex visual processes that contribute to our 
own remarkable visual abilities. 

5 Discussion 

In the present work we have demonstrated a novel neural network design that 
combines biologically realistic –and potentially computationally crucial– mechanisms 
that can be executed in real-time by taking advantage of the highly parallel 
organization of modern GPUs. This design was then demonstrated by modeling the 
subset of the retinal neural circuitry that is responsible for computing a directionally-
selective signal in the starburst amacrine cell. As in its biological form, the signal 
computed in the cell is the result of the physical organization of the afferent input on a 
starburst cell’s dendrites. 

The sample network, which consists of more than 225k neurons, can be computed 
at a rate that is nearly 5x the frame rate of the incoming signal. As such, this sample 
network could already be extended to include much more sophisticate motion 
processing by including layers subsequent to starburst cells such as directionally 
selective ganglion cells and neurons in extra-striate areas and the middle temporal 
area, which are known to be very important to motion processing in primate vision 
[19]. Additional cortical mechanisms important for primate vision have been 
proposed to directly rely on computations that take place in the dendrites [e.g., 20, 
21]. The single neuron model that is introduced here could be used directly to 
implement such proposed complex neural mechanisms in a computationally efficient 
manner. Future work will be directed toward building more complex visual abilities 
of the network, and, when necessary, utilizing the dendritic toolkit that is supported 
by the current neural network design to implement such abilities. 
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Abstract. The development of a parallel algorithm for batch pattern training of 
a multilayer perceptron with the back propagation algorithm and the research of 
its efficiency on a general-purpose parallel computer are presented in this paper. 
The multilayer perceptron model and the usual sequential batch pattern training 
algorithm are theoretically described. An algorithmic description of the parallel 
version of the batch pattern training method is introduced. The efficiency of the 
developed parallel algorithm is investigated by progressively increasing the 
dimension of the parallelized problem on a general-purpose parallel computer 
NEC TX-7. A minimal architecture for the multilayer perceptron and its 
training parameters for an efficient parallelization are given. 

1 Introduction 

Artificial neural networks (NNs) have excellent abilities to model difficult nonlinear 
systems. They represent a very good alternative to traditional methods for solving 
complex problems in many fields, including image processing, predictions, pattern 
recognition, robotics, optimization, etc [1]. However, most NN models require high 
computational load, especially in the training phase (up to days and weeks). This is, 
indeed, the main obstacle to face for an efficient use of NNs in real-world 
applications. Taking into account the parallel nature of NNs, many researchers have 
already focused their attention on their parallelization [2-4]. Most of the existing 
parallelization approaches are based on specialized computing hardware and 
transputers, which are capable to fulfill the specific neural operations more quickly 
than general-purpose parallel and high performance computers. However 
computational clusters and Grids have gained tremendous popularity in computation 
science during last decade [5]. Computational Grids are considered as heterogeneous 
systems, which may include high performance computers with parallel architecture 
and computational clusters based on standard PCs. Therefore, existing solutions for 
NNs parallelization on transputer architectures should be re-designed. Parallelization 
efficiency should be explored on general-purpose parallel and high performance 
computers in order to provide an efficient usage within computational Grid systems.  

Many researchers have already developed parallel algorithms for NNs training on 
weights (connections), neuron (node), training set (pattern) and modular levels [6-10]. 
The first two levels are a fine-grain parallelism and the second two levels are a 
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coarse-grain parallelism. Connection parallelism (parallel execution on sets of 
weights) and node parallelism (parallel execution of operations on sets of neurons) 
schemes are not efficient while executing on a general-purpose high performance 
computer due to high synchronization and communication overhead among parallel 
processors [10]. Therefore coarse-grain approaches of pattern and modular 
parallelism should be used to parallelize NNs training on general-purpose parallel 
computers and computational Grids [9]. For example, one of the existing 
implementation of the batch pattern back propagation (BP) training algorithm [6] has 
efficiency of 80% while executing on a 10 processors of transputer ТМВ08. 
However, the efficiency of this algorithm on general-purpose high-performance 
computers is not researched yet. 

The goal of this paper is to research the parallelization efficiency of parallel batch 
pattern BP training algorithm on a general-purpose parallel computer in order to form 
the recommendations for further usage of this algorithm on heterogeneous Grid 
system. 

2 Architecture of Multilayer Perceptron and Batch Pattern 
Training Algorithm 

It is expedient to research parallelization of multi-layer perceptron (MLP) because 
this kind of NN has the advantage of being simple and provides good generalizing 
properties. Therefore it is often used for many practical tasks including prediction, 
recognition, optimization and control [1]. However, parallelization of an MLP with 
the standard sequential BP training algorithm does not provide efficient 
parallelization due to high synchronization and communication overhead among 
parallel processors [10]. Therefore it is expedient to use the batch pattern training 
algorithm, which updates neurons’ weights and thresholds at the end of each training 
epoch, i.e. after the presentation of all the input and output training patterns, instead 
of updating weights and thresholds after the presentation of each pattern in the usual 
sequential training mode. 

The output value of a three-layer perceptron (Fig. 1) can be formulated as:  
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where  is the number of neurons in the hidden layer,  is the weight of the 
synapse from neuron  of the hidden layer to the output neuron,  are the weights 
from the input neurons to neuron  in the hidden layer,  are the input values,  
are the thresholds of the neurons of the hidden layer and T  is the threshold of the 
output neuron [1, 11]. In this study the logistic activation function  
is used for the neurons of the hidden ( ) and output layers ( ), but in general case 
these activation functions could be different. 
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The batch pattern BP training algorithm consists of the following steps [11]: 
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Fig. 1. The structure of a three-layer perception. 

1. Set the desired error (Sum Squared Error) SSE= minE  and the number of training 
iterations t ; 

2. Initialize the weights and the thresholds of the neurons with values in range 
(0…0.5) [12]; 

3. For the training pattern pt : 
3.1. Calculate the output value )(ty pt  by expression (1); 

3.2. Calculate the error of the output neuron )() , where  

is the output value of the perceptron and )(td pt  is the target output value; 

()(3 tdtyt ptptpt −=γ )(ty pt

3.3. Calculate the hidden layer neurons’ error ))(( , 

where )(tS pt  is the weighted sum of the output neuron; 

)()()( 333 tSFtwtt pt
j

ptpt
j ′⋅⋅= γγ

3.4. Calculate the delta weights and delta thresholds of all perceptron’s neurons 
and add the result to the value of the previous pattern 

)())( , ))(( , 

)())( , ))(( , 

where )(tS pt
j  and )(th pt

j  are the weighted sum and the output value of the  
hidden neuron respectively; 

()( 3333 thtSFtwsws pt
j

ptpt
jj ⋅′⋅+Δ=Δ γ

()( 2 txtSFtwsws pt
i

pt
j

pt
jijij ⋅′⋅+Δ=Δ γ

)( 33 tSFtTsTs ptpt ′⋅+Δ=Δ γ

)( 2 tSFtTsTs pt
j

pt
jjj ′⋅+Δ=Δ γ

j

3.5. Calculate the SSE using ( )2)()(
2
1)( tdtytE ptptpt −= ; 

4. Repeat the step 3 above for each training pattern pt , where { }PTpt ,...,1∈ , PT  is 
the size of the training set; 

5. Update the weights and thresholds of neurons using ijijij wstwPTw Δ⋅−= )()0()( α , 

jjj TstTPTT Δ⋅+= )()0()( α , where )(tα  is the learning rate; 

6. Calculate the total SSE )(tE  on the training iteration t  using ∑
pt

pt tE ; 
=

=tE
1

)()(
PT

7. If )(tE  is greater than the desired error minE  then increase the number of training 
iteration to 1+t  and go to step 3, otherwise stop the training process. 
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3 Parallel Batch Pattern Back Propagation Training Algorithm 

It is obvious from analysis of the batch pattern BP training algorithm in Section 2 
above, that the sequential execution of points 3.1-3.5 for all training patterns in the 
training set could be parallelized, because the sum operations ijwsΔ  and  are 
independent of each other. For the development of the parallel algorithm it is 
necessary to divide all the computational work among the Master (executing 
assigning functions and calculations) and the Slaves (executing only calculations) 
processors.  

jTsΔ

The algorithms for Master and Slave processors functioning are depicted in Fig. 2. 
The Master starts with definition (i) the number of patterns PT in the training data set 
and (ii) the number of processors p used for the parallel executing of the training 
algorithm. The Master divides all patterns in equal parts corresponding to number of 
the Slaves and assigns one part of patterns to himself. Then the Master sends to the 
Slaves the numbers of the appropriate patterns to train.  

Each Slave executes the following operations for each pattern pt among the PT/p 
patterns assigned to him: 

• calculate the points 3.1-3.5 and 4, only for its assigned number of training 
patterns. The values of the partial sums of delta weights ijwsΔ  and delta 
thresholds jTsΔ  are calculated here; 

• calculate the partial SSE for its assigned number of training patterns. 
After processing all its assigned patterns, each Slave waits for the other Slaves and 

the Master at the synchronization point. At the same time the Master computes the 
partial values of  and  for its own (assigned to himself) number of training 
patterns.  

ijwsΔ jTsΔ

The global operations of reduction and summation are executed just after the 
synchronization point. Then the summarized values of the ijwsΔ  and jTsΔ  are sent to 
all the processors working in parallel. Using a global reducing operation and 
simultaneously returning the reduced values back to the Slaves allows a decrease of 
the time overhead in the synchronization point. Then the summarized values of  
and  are placed into the local memory of each processor. Each Slave and the 
Master use these values  and 

ijwsΔ

jTsΔ

ijwsΔ jTsΔ  in order to update the weights and thresholds 
according to the point 5 of the algorithm. These updated weights and thresholds will 
be used in the next iteration of the training algorithm. As the summarized value of 

 is also received as a result of the reducing operation, the Master decides 
whether to continue the training or not. 

)(tE

The software routine is developed using the C programming language with the 
standard MPI library. The parallel part of the algorithm starts with the call of the 
MPI_Init() function. The parallel processors use the synchronization point 
MPI_Barrier(). The reducing of the deltas of weights ijwsΔ  and thresholds  is 
provided by function MPI_Allreduce(), which allows to avoid an additional step for 
sending back the updated weights and thresholds from the Master to each Slave. 
Function MPI_Finalize() finishes the parallel part of the algorithm. 

jTsΔ
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Fig. 2. The algorithms of the Master (a) and the Slave (b) processors. 

4 Experimental Researches 

Our experiments were carried out on a parallel supercomputer NEC TX-7, located in 
the Center of Excellence of High Performance Computing, University of Calabria, 
Italy (www.hpcc.unical.it). NEC TX-7 consists in 4 identical units. Each unit has 4 
Gb RAM, 4 64-bit processors Intel Itanium2 with a clock rate of 1 GHz. This 16th-
processor computer with 64 Gb of total RAM has a performance peak of 64 GFLOPS. 
The NEC TX-7 is functioning under the Linux operation system.  

As shown in [12], the parallelization efficiency of parallel batch pattern BP 
algorithm for MLP does not depend on the number of training epochs. Parallelization 
efficiencies of this algorithm are respectively 95%, 84% and 63% on 2, 4 and 8 
processors of the general-purpose NEC TX-7 parallel computer for a 5-10-1 MLP 
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with 794 training patterns and an increasing number of training epochs from 104 to 
106.  

As shown in [7], parameters such as the number of training patterns and the 
number of adjustable connections of NN (number of weights and thresholds) define 
the computational complexity of the training algorithm and, therefore, exert influence 
on its parallelization efficiency. Therefore, research efficiency scenarios should be 
based on these parameters. In this case the purpose of our experimental research is to 
answer the question: what is the minimal/enough number of MLP connections and 
what is the minimal/enough number of training patterns in the input data set for the 
parallelization of batch pattern BP training algorithm to be efficient on a general-
purpose high performance computer? 

The following architectures of MLP are researched in order to provide the analysis 
of efficiency: 3-3-1 (3 input neurons × 3 hidden neurons = 9 weights between the 
input and the hidden layer + 3 weights between the hidden and the output layer + 3 
thresholds of the hidden neurons and 1 threshold of the output neuron = 16 
connections), 5-5-1 (36 connections), 5-10-1 (71 connections), 10-10-1 (121 
connections), 10-15-1 (181 connections), 15-15-1 (256 connections), 20-20-1 (441 
connections). The number of training patterns is changed as 25, 50, 75, 100, 200, 400, 
600 and 800. It is necessary to note that such MLP architectures and number of 
training patterns are typical for most of neural-computation applications. During the 
research the neurons of the hidden and output layers have logistic activation 
functions. The number of training epochs is fixed to 105. The learning rate is constant 
and equal 01.0)( =tα .  

The parallelization efficiency of the batch pattern BP training algorithm is 
depicted in Figs. 3-5 on 2, 4 and 8 processors of NEC TX-7 respectively. The 
expressions S=Ts/Tp and E=S/p×100% are used to calculate a speedup and efficiency 
of parallelization, where Ts is the time of sequential executing the routine, Tp is the 
time of parallel executing of the same routine on p processors of parallel computer. It 
is necessary to use the obtained results as the following: (i) first to choose the number 
of parallel processors used (Fig. 3 or Fig. 4 or Fig. 5), (ii) then to choose the curve, 
which characterizes the necessary number of perceptron’s connections and (iii) then 
to get the value of parallelization efficiency from ordinate axes which corresponds to 
the necessary number of training patterns on abscissa axes. For example, the 
parallelization efficiency of the MLP 5-5-1 (36 connections) is 65% with 500 training 
patterns on 4 processors of NEC TX-7 (see Fig. 4). Therefore the presented curves are 
the approximation characteristics of a parallelization efficiency of the certain MLP 
architecture on the certain number of processors of a general-purpose parallel 
computer. 

As it is seen from the Figs. 3-5, the parallelization efficiency is increasing when 
the number of connections and the number of the training patterns is increased. 
However, the parallelization efficiency is decreasing for the same scenario at 
increasing the number of parallel processors from 2 to 8. The analysis of the Figs. 3-5 
allows defining the minimum number of the training patterns which is necessary to 
use for efficient parallelization of the batch pattern training algorithm at the certain 
number of MLP connections (Table 1).  
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Fig. 3. Parallelization efficiency on 2 processors of NEC TX-7. 

 
Fig. 4. Parallelization efficiency on 4 processors of NEC TX-7. 

 
Fig. 5. Parallelization efficiency on 8 processors of NEC TX-7. 
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For example, the Table 1 shows that the number of training patterns should be 100 
and more (100+) for efficient parallelization of MLP with the number of connections 
more than 16 and less and equal than 36. As it is seen from the Table 1, it is necessary 
to use more training patterns in a case of small MLP architectures. The minimum 
number of the training patterns is increasing in a case of parallelization on the bigger 
number of parallel processors. 

Table 1. Minimum number of training patterns for efficient parallelization on NEC TX-7. 

2 processors 4 processors 8 processors 
Connections 
number, C 

Training 
patterns 

Connections 
number, C 

Training 
patterns 

Connections 
number, C 

Training 
patterns 

16 < C ≤ 36 100+ 16 < C ≤ 36 200+ 16 < C ≤ 36 200+ 
36 < C ≤ 71 75+ 36 < C ≤ 71 100+ 36 < C ≤ 71 100+ 

71 < C ≤ 256 50+ 71 < C ≤ 256 50+ 71 < C ≤ 121 75+ 
C > 256 25+ C > 256 25+ C > 121 50+ 

5 Conclusions 

The parallel batch pattern back propagation training algorithm of multilayer 
perceptron is developed in this paper. The analysis of parallelization efficiency is 
done for 7 scenarios of increasing the perceptron’s connections (number of weights 
and thresholds), in particular 16, 36, 71, 121, 181, 256 and 441 and increasing the 
number of training patterns, in particular 25, 50, 75, 100, 200, 400, 600, 800. The 
presented results can be used for estimation a parallelization efficiency of concrete 
perceptron model with concrete number of training patterns on the certain number of 
parallel processors of a general-purpose parallel computer. The experimental research 
proves that the parallelization efficiency of batch pattern back propagation training 
algorithm is (i) increasing at increasing the number of connections and increasing the 
number of the training patterns and (ii) decreasing for the same scenario at increasing 
the number of parallel processors from 2 to 8. The results of analysis of minimum 
number of training patterns for efficient parallelization of this algorithm show that (i) 
it is necessary to use more training patterns in case of small architectures of 
multilayer perceptron and (ii) the minimum number of the training patterns should be 
increased in a case of parallelization on the bigger number of parallel processors. 

The provided level of parallelization efficiency is enough for using this parallel 
algorithm in Grid environment on the general-purpose parallel and high performance 
computers. For the future research it is expedient to estimate the factors of decreasing 
the parallelization efficiency of batch pattern back propagation training algorithm at 
small number of training patterns and small number of adjustable connections of 
multilayer perceptron. 
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Abstract. Residual brain function has been documented in vegetative state 
patients, yet early prognosis remains difficult. Purpose of this study was to 
identify by artificial Neural Network procedures the significant neurological 
signs correlated to, and predictive of outcome. The best networks test set 
accuracy was 70%, 72% and 70% for the entire patients’ group and the 
posttraumatic  and non-posttraumatic subgroups, respectively. The method 
accuracy does not reflect a perfect classification, but is significantly far from 
the random or educated guess and is in accordance with the results of previous 
clinical studies. 

1 Introduction 

The Vegetative State (VS) is a clinical condition characterized by the absence of 
awareness (of self and environment), voluntary or purposeful behavioral responses to 
external stimuli, and communication in the severely brain damaged. Subjects in VS 
are otherwise awake, often with wakefulness-sleep cycles [1, 2, 3, 4, 5, 6]. Recovery 
(with varying residual disabilities) occurs only in a portion of patients; resources, 
staff, logistics and costs requirements for the care of these subjects are imposing 
irrespective of outcome. Purpose of this study was to identify by artificial intelligence 
procedures a significant model supporting decision in the early prognosis of VS 
subjects [7, 8]. It should be noted in this regard that evidence-based neurology 
indicates significant neurological signs correlated to, and predictive of outcome. 
Prognosis can be modeled as a regression, classification or survival analysis problem 
by traditional statistics or machine learning techniques [9]. This study is purposed to 
demonstrate that reliable classification models predictive of the vegetative state 
outcome prognosis can be obtained by Artificial Neural Networks (ANN) techniques. 
Section 2 of this paper outlines dataset and pre- processing; Section 3 describes the 
experimentation protocol for the training of classification models; Sections 4 and 5 
summarize and comment the results. 

 



2 Data Collection and Pre-processing  

2.1 Data Collection 

Three hundred and thirty three subjects in VS consecutively admitted to the dedicated 
semi-intensive care unit of the S. Anna – RAN Institute (Crotone, Italy) over a 9-year 
period (April 1998–March 2006) were considered retrospectively. The VS was 
clinically defined in all subjects compliant to the criteria suggested by the Multi-
Society Task Force and the guidelines of the London Consensus Conference (Multi-
Society Task Force, 1994). 

For each patient, were entered in the dataset: age, sex, etiology of brain injury 
(posttraumatic or non-posttraumatic), rating at the Glasgow Coma Scale (GCS) [10] 
at admission, and twenty-two neurological signs of established relevance in coma and 
VS [11] (Tables 1) assessed by the attending physician at two-week intervals 
following procedures and criteria predefined as intrinsic to the UNI ENI ISO 
9001:2000 quality standards. Each sign was present or absent (binary attribute). The 
subjects’ condition at discharge was measured by the Glascow Outcome Scale (GOS): 
GOS1=death; GOS2=vegetative state exceeding 1 year in duration; GOS3=recovery, 
with severe disabilities; GOS4=recovery, with mild disabilities; and GOS5=full 
recovery or recovery with minimal disabilities not interfering with the everyday life 
[12]. The GOS is widely used in the evaluation of the VS outcome, but the subject’s 
assignment to any GOS class is subjected to misclassification [13] which could affect 
the training of classification models. Therefore, the first two classes and the latest two 
classes of GOS were combined into the GOS1-2 and GOS4-5 classes respectively, with 
a resulting sharper separation among classes. The prediction of outcome was 
estimated at admission and after 50, 100 and 180 days after admission. 

Table 1. Clinical signs assessed at two-week intervals and entered into the artificial neural 
network processing as potential prognostic factors. 

Decerebration 
Decortication 
Conjugated gaze deviation  
Skew eye deviation 
Blink reflex 
Cilio-spinal Reflex 
Tactile-oral Reflex 
Optic-oral Reflex 
Bulldog Reflex 
Grasping reflex 
Corneal Reflex 
Corneal-mandibular reflex 
Threat reflex 
Myotactic-cervical reflex 
Chewing reflex 
Sucking Reflex 
Oculo-cephalic reflex (with disappearance of the doll’s head phenomenon) 
Absence of spontaneous motility 
Eye tracking 
Snout Rabbit sign 
Half-moon pucker sign 
Klippel sign 
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2.2 Pre-processing 

Etiology of brain injury and the pathophysiology underlying VS are known to 
influence the outcome. The dataset inclusive of all patients and two data sub-sets of 
the posttraumatic (n=213) and non-posttraumatic patients were considered. 
Continuous numerical attributes (such as age and GCS level) were normalized in the 
interval [0;1] for each dataset; remaining attributes were binary and did not require 
pre-processing. 

3 Experimentation  

3.1 Parameter Configuration 

The classification models were structured as classical feed-forward ANN , with one or 
two hidden layers and sigmoid function activation [14, 15]. The number of neurons 
was varied among 1, 2, 4, 6, 10, 15, 20, 25, 30 and 40 for both the first and second 
hidden layer. The Stuttgart Neural Network Simulator (SNSS) was used for all the 
experimentations [16] 

The training of the ANN was performed by using the standard Back Propagation 
algorithm and the “Enhanced Back Propagation” algorithm. The latter introduces the 
previous arc weight change as a parameter for computing the new arc weight change. 
SNNS implements both algorithms with the Std_Backpropagation and 
BackpropMomentum functions. In particular, the Std_Backpropagation function 
requires the specification of the parameter η (learning rate) and dmax (maximal 
difference between expected and calculated output for each neuron). Besidea η, the 
BackpropMomentum function needs the momentum μ measuring the influence of the 
previous arc weight change on the current weight calculation. Table 2 shows the 
parameters configuration used for the training algorithms. 

Table 2. Training algorithms parameters configurations. 

Std_Backpropagation BackpropMomentum 

η dmax η Μ 

0.1 0.1 0.1 0.2 

0.3 0.2 0.3 0.8 

0.5  0.5  

0.7  0.7  

0.9  0.9  

3.2 Experimentation Protocol 

We used a Training–Validation–Test (TVT) procedure to select the best parameter 
configuration regulating both the network structure and the training algorithm 
operation. In particular, for each dataset the following steps were applied: 
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1. creation of training, validation and test set (see Table 3); 
2. for each combination of network and training algorithm parameters: 

a. execution of 200 training cycles; 
b. evaluation of network accuracy on the validation set; 
c. if the total number of  training cycles is 20000, then stop; otherwise, 

return to step a; 
3. selection of the network with the best accuracy on the validation set; 
4. evaluation of accuracy on the test set. 

At the end of the TVT procedure, we obtained three trained ANN (one for each 
dataset) with their respective accuracy on the test set. 

Table 3. Subdivision of instance among training, validation and test sets. 

Dataset Training Validation Test 

NPT Dataset 80 20 20 

PT Dataset 133 30 50 

Entire Dataset 200 53 80 

4 Results 

The best networks test set accuracy was 70%, 72% and 70% for the entire patients’ 
group and the posttraumatic  and non-posttraumatic subgroups, respectively. The best 
parameter configurations are reported in Table 4. 

Table 4. Configurations parameters of the best networks. BP: standard back propagation 
algorithm; EBP: enhanced back propagation; na: not applicable. 

Dataset 
Entire 

dataset 

PT 

dataset 

NPT 

dataset 

1st hidden layer 30 1 6 

2nd hidden layer 30 N.A. N.A. 

Training algorithm BP EBP BP 

η 0.7 0.1 0.7 

dmax N.A. N.A. 0.2 

μ 0.2 0.8 N.A. 
 

A better understanding of the classificatory performance can be obtained through 
the analysis of the confusion matrices (see Tables 5 and 6) indicating misclassified 
elements. We decided to assign instances with unclear evaluation to the 
“misclassified” class (e.g. the same instance was assigned to two classes at the same 
time with similar probability). 
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Table 5. Entire dataset confusion matrix. 

 predicted class 

Misclassified real 

class 
1_2 3 4_5 

1_2 16 1 3 2 

3 5 2 11 0 

4_5 1 0 38 0 

Table 6. Posttraumatic dataset confusion matrix. 

 predicted class 

Misclassified real 

class 
1_2 3 4_5 

1_2 6 0 0 3 

3 0 0 7 2 

4_5 0 0 30 2 

Table 7. Non-posttraumatic dataset confusion matrix. 

 predicted class 

Misclassified real 

class 
1_2 3 4_5 

1_2 8 2 0 0 

3 0 5 0 1 

4_5 1 1 1 1 

5 Comment 

The method accuracy does not reflect a perfect classification, but is significantly far 
from the random or educated guess and is in accordance with the results of previous 
clinical studies [11]. It should be noted that class GOS3 has a larger error estimate 
both in the entire dataset and in the posttraumatic sub-set. The higher 
misclassification depends on this class taking into account all patients with a severe 
motor outcome (e.g. paresis of one or more limbs), impaired consciousness (e.g. 
global amnesia) or both. GOS3 can therefore be heterogeneous and ANN are unable to 
identify a major labeling characteristic. Interestingly, test set patients with GOS3 in 
the non-posttraumatic dataset are well classified, while GOS4-5 subjects of the same 
dataset are poorly classified. The limited size of the non-posttraumatic sample does 
not allow further investigation of such phenomenon. 
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Abstract. The possibility of using artificial neural network methods for the 
prediction of zeolite crystal structures, such as pore size and unit cell dimen-
sions, from X-ray diffraction patterns was investigated. The Generalized Re-
gression Neural Network method and X-ray diffraction data obtained from lite-
rature were utilized in these investigations. The predictions made by using this 
neural network method were, in general, more reliable than those performed by 
regression. The best predictions were achieved for the estimation of the pore 
size, while the neural network method improved significantly the very poor re-
sults obtained by regression for the unit cell dimensions.   

1 Introduction 

Zeolites are hydrated microporous crystalline aluminosilicates that may be used in 
diverse applications related to ion exchange, catalysis, adsorption and separation [1-
3]. Zeolites have developed into a large industry due to their unique and versatile 
properties. They may be utilized in the separation of linear and branched hydrocar-
bons, for catalytic cracking and hydrocracking or as detergent builders, to name a 
few, while a significant number of potential applications are waiting to emerge. Zeo-
lites may occur naturally or be synthesized in laboratory conditions. The most signifi-
cant parameters determining the type of the zeolite formed from a certain initial reac-
tion mixture composition are the synthesis time and temperature as well as the molar 
ratios of the reactants. Suitable reagents that form a clear solution or a gel mixture 
should be used to obtain different types of zeolites. After carrying out the synthesis 
procedure with these reagents, the solid material formed in the solution should be 
separated by filtration, which is then characterized by using various techniques. X-ray 
diffraction (XRD) is one of the basic and essential techniques to characterize the solid 
material thus obtained. XRD may be used to determine the crystallographic structure, 
grain size and orientation of the crystals. It is commonly utilized to identify unknown 
substances by comparing diffraction data against a database. The relative abundance 
of crystalline materials in solid mixtures may also be determined by this technique. 



Additionally, when coupled with lattice refinement techniques, it can provide 
structural information on unknown materials. The achievement of this last deed is not 
a simple task to perform and requires significant amount of knowledge on the numer-
ous peaks pertaining to the X-ray diffraction patterns of different materials. 

Artificial neural networks (ANNs) have the ability to learn from input data and are 
very useful for the prediction of complex high-dimensional data. ANN methods have 
a broad range of applications, including research in chemical engineering. Artificial 
neural networks have been successfully used for dynamic modeling and control of 
chemical processes and fault diagnosis [4], in the catalytic modeling and design of 
solid catalysts [5] and for modeling the kinetics of a chemical reaction [6]. The appli-
cability of ANN methods in emulsion liquid membranes [7] and in the predic-
tion/estimation of the vapor-liquid equilibrium data [8] has been investigated. It has 
also been shown that ANN methods might learn efficiently from available zeolite 
synthesis data in the literature to predict the complex relationship between the chemi-
cal compositions of initial reaction mixtures and the zeolites formed from them [9].  

A detailed theoretical investigation of the rather complex and high dimensional re-
lationship between the XRD peaks and the crystallographic properties of various 
zeolites (as well as other crystalline materials) may be very useful to provide a more 
common and practical use of the XRD technique in the prediction of the crystal struc-
tures of unknown zeolites and other materials. In this study, the Generalized Regres-
sion Neural Network (GRNN) method was utilized to perform this investigation. The 
results obtained were compared to XRD data reported in the literature, as well as to 
the estimations made by using multilinear regression.  

2 Theory 

2.1 X-Ray Diffraction Technique 

Crystals are regular arrays of atoms, and X-rays can be considered as waves of 
electromagnetic radiation. Atoms scatter X-ray waves, primarily through their 
electrons. An X-ray striking an electron produces secondary spherical waves 
emanating from the electron, which is known as elastic scattering. Although these 
waves cancel one another out in most directions through destructive interference, they 
add constructively in a few specific directions, determined by Bragg’s law, 

2dsinθ = nλ       (1) 

where d is the spacing between diffracting planes in Å, θ is the incident angle in 
degrees, n is any integer, and λ is the wavelength of the beam in Å. These specific 
directions appear as spots on the diffraction pattern. It should be mentioned that X-
rays have wavelengths on the order of a few angstroms, the same as typical 
interatomic distances in crystalline solids. This means that X-rays can be diffracted 
from minerals which, by definition, are crystalline and have regularly repeating 
atomic structures. In the XRD technique, the X-ray intensity is recorded and reported 
as a function of the 2θ angle. 
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2.2 Artificial Neural Networks 

Artificial neural networks are black box models that can perform an estimation using 
limited input and output data patterns. In this study, the Generalized Regression 
Neural Network (GRNN) method was used to relate the XRD data to the properties of 
the crystal structures of zeolites.  

The basics of the GRNN can be found in the literature [10,11]. The GRNN method 
does not require an iterative training procedure but instead estimates any arbitrary 
function between input and output vectors, drawing the function estimate directly 
from the training data. This method is consistent, that is, as the training set size be-
comes large, the estimation error approaches zero, with only mild restrictions on the 
function. The GRNN is used for estimation of continuous variables, as in standard 
regression techniques. It is based on a standard statistical technique called kernel 
regression. By definition, the regression of a dependent variable y on an independent 
x estimates the most probable value for y, given x and a training set. The regression 
method will produce the estimated value of y, which minimizes the mean-squared 
error. The GRNN consists of four layers: input layer, pattern layer, summation layer, 
and output layer. The first layer is fully connected to the second, pattern layer, where 
each unit represents a training pattern and its output is a measure of the distance of 
the input from the stored patterns. Each pattern layer unit is connected to the two 
neurons in the summation layer: S-summation neuron and D-summation neuron. The 
S-summation neuron computes the sum of the weighted outputs of the pattern layer 
while the D-summation neuron calculates the unweighted outputs of the pattern neu-
rons. The connection weight between the ith neuron in the pattern layer and the S-
summation neuron is yi, the target output value corresponding to the ith input pattern. 
For D-summation neuron, the connection weight is unity. The output layer merely 
divides the output of each S-summation neuron by that of each D-summation neuron. 
In this method, the spread σ is a smoothing parameter, the optimal value of which is 
often determined experimentally [12]. When the spread parameter σ is made large, 
the estimated density is forced to be smooth and in the limit becomes a multivariate 
Gaussian with covariance σ2I. On the other hand, a smaller value of σ allows the 
estimated density to assume non-Gaussian shapes, but with the hazard that wild 
points may have too great an effect on the estimate. In this study, different spreads 
were tried to find the best one that gave the minimum difference between predicted 
and experimental values for the utilization of the cross-validation data.   

2.3 Method 

Zeolites are hydrated microporous crystalline materials. The zeolite framework con-
sists of an assemblage of SiO4 and AlO4 tetrahedra, joined together in various regular 
arrangements through shared oxygen atoms, to form an open crystal lattice. The mi-
cropore structure is determined by the crystal lattice, which contains pores of molecu-
lar dimensions into which guest molecules can penetrate. The cations (e.g., Na) are 
placed in special positions near the Al atoms. The pore size varies for different zeo-
lites, depending on the arrangement of the atoms forming the zeolite crystal structure. 
The crystal structure of a material or the arrangement of atoms in a crystal structure 
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can be described in terms of its unit cell. The unit cell is a tiny box with one or more 
spatial arrangements of atoms. The unit cells stacked in three-dimensional space 
describe the bulk arrangement of atoms of the crystal. The crystal structure has a 
three dimensional shape. The unit cell may be represented by its lattice parameters, 
including the length of the cell edges and the angles between them. 

Data obtained from the literature [13], describing the XRD patterns of different 
zeolites were used in the estimations carried out by using the ANN method. Prelimi-
nary estimations indicated that the GRNN method was more successful in the predic-
tion of the zeolite crystal structure from XRD data when compared to the Radial Ba-
sis Function-Based Neural Networks (RBF) and Feed Forward Back Propagation 
(FFBP) methods, which were also examined. Thus, the GRNN method was used for 
the estimations performed in detail. The components of the input vector were the 2θ 
angles of eight XRD peaks with the highest intensity pertaining to different zeolites, 
while the components of the output vector were the pore sizes (r) and lengths of the 
unit cell edges (a,b,c) of these zeolites. The pore sizes and unit cell dimensions of 
zeolites generally vary between a few angstroms and a few nanometers. Since the 
pores of some zeolites are not uniform and some others may have pore channels of 
different lengths, the largest dimensions of the pores were taken into consideration in 
this study.  

The application of the ANN to data consisted of two steps. The first step was the 
training of the neural networks, which comprised the presentation of training data 
(data set 1) describing the input and output to the network and obtaining the inter-
connection weights. The components of the input vector were eight different 2θ an-
gles of the XRD peaks, while the components of the output vector were the pore sizes 
and the three different lengths of the unit cell edges of corresponding zeolites. The 
input and output data were normalized between 0 and 1 prior to the training. Once the 
training stage was completed, the ANNs were applied to the cross-validation data 
(data set 2). Determining an appropriate architecture of a neural network for a par-
ticular problem is an important issue, since the network topology directly affects its 
computational complexity and its generalization capability. The number of hidden 
layers and the number of nodes in the hidden layers were determined after trying 
various network structures. The network structure providing the best result was de-
termined according to the success of the predictions performed by using the cross-
validation data set. The ANN method was used to predict only one component of the 
output vector at a time.  

The number of data used for training was 55 while that used for cross-validation 
was 7. The zeolites consisting of silicon, aluminum, oxygen, water and different ca-
tions were taken into consideration in the investigations carried out in this study.  

The results obtained by using the GRNN method were compared to the actual val-
ues [13] as well as to those values estimated by using multilinear regression. In re-
gression, the relationships between the 2θ angles of eight XRD peaks and the pore 
sizes and lengths of the unit cell edges of zeolites were determined by using data set 
1. The information obtained was used in the estimation of the pore sizes and lengths 
of the unit cell edges of the zeolites investigated in data set 2. Since, to our know-
ledge, a similar theoretical attempt, for determining such a relationship has not been 
performed before, the comparison of the results obtained from ANN methods to those 
determined by multilinear regression may be a reasonable first approach. The regres-
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sion model tested in this study was of simple linear form, as given below. R 
represents either the pore size or the lengths of the unit cell edges of zeolites  

 
R = a0+ a1(2θ1)+ a2(2θ2)+ a3(2θ3)+ a4(2θ4)+ a5(2θ5)+ a6(2θ6)+ a7(2θ7)+ a8(2θ8) a8(2θ8)      (2) 

 
The relative error (d) was used to monitor the success of the ANN method and re-

gression used in the prediction of zeolite crystal properties from the 2θ angles of the 
X-ray diffraction patterns. d was determined by taking into consideration the devia-
tion (%) of the pore sizes or lengths of the unit cell edges of zeolites, calculated by 
using the ANN method (ccalc), from the corresponding actual values (cact).  

 
d = ⏐cact-ccalc⏐/ cact  x 100                                             (3) 

 
dm was defined as the arithmetic mean of the relative errors obtained for the dif-

ferent data used in prediction.  

3 Results and Discussion 

3.1 Criteria assuring Best Performance for the GRNN Method 

The predictions of the pore sizes and lengths of the unit cell edges of zeolites investi-
gated in data set 2 were performed by using GRNN method mentioned above, and 
data set 1 for training. As mentioned before, the network structure providing the best 
result was determined according to the success of the predictions performed by using 
the cross-validation data. It was also established that the conditions providing the best 
results in the testing stage could allow the ANN method to exhibit quite high perfor-
mances in the training stage.  

For the GRNN method, spread factors in the range 0.02-0.2 were the conditions 
determined to give the best results. The spread factor was determined to be equal to 
0.15, 0.075, 0.2 and 0.02 for r (pore size of zeolites), a, b and c (lengths of unit cell 
edges of zeolites), respectively, by using the cross-validation data for the optimiza-
tion. When the optimization was performed by using training data (data set 1), with-
out taking into consideration data set 2, the dm values, representing the deviation of 
the predicted values of data set 1 from experimental values, were less than 10% for all 
the cases investigated. When the spread factor was optimized by using data set 2, the 
predictive power of the GRNN method was not reduced significantly. The predictions 
made by using the GRNN method for the pore size and lengths of the unit cell edges 
of zeolites are detailed below. 

3.2 Evaluation of the Predictions made by the GRNN Method 

The results obtained by the GRNN method are depicted in Figures 1-4 for r (pore 
size), a, b, and c (lengths of the unit cell edges) of zeolites, respectively. The devia-
tions of the results obtained by using the ANN method from the actual values may be 
observed more clearly from Table 1. The performance exhibited by multilinear re-
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gression may also be seen in the table. It may be observed from Figures 1-4 and Table 
1 that the GRNN method provided fairly good fits to the actual results for most of the 
data, though there were some discrepancies. The average deviation from actual results 
was smaller for the pore size predictions while the largest deviation was observed for 
length, a, of the unit cell edge.  

Table 1. Relative errors obtained for the predictions. 

Method dm (%) 
 r  a  b  c 
GRNN 12.0 30.9 17.5 22.2 
regression 14.7  149.4 169.2 160.7 
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Fig. 1. Zeolite pore size predictions by (x) GRNN in comparison to (_) actual values.  

The results obtained for regression given in Table 1 should also be taken into con-
sideration before arriving at a conclusion about the success of the ANN method in the 
prediction of the zeolite crystal structure properties. When multilinear regression was 
utilized, the average deviation from the actual values was slightly higher than that of 
the GRNN method for the prediction of the pore size. However, the predictions of the 
lengths of the unit cell edges were very poor with multilinear regression. The average 
deviation was equal to about 150-170% for the estimation of all the three edges of the 
unit cell. When this information is taken into consideration, the average deviations 
between 17% and 31% provided by the GRNN method may be regarded to be quite 
promising. For further improvement, additional XRD data, for example, those per-
taining to zeolite-like materials may also be included for the training of the neural 
networks. Furthermore, the height and width of the XRD peaks may also be taken 
into consideration as components of the input vector. Different ANN methods may 
also be tested for possible improvements in the prediction of crystal structures from 
XRD data.   
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The superiority of the ANNs over conventional methods for the prediction of com-
plex and high dimensional relationships, such as the one investigated in this study, 
can be attributed to the capability of the ANNs to capture the nonlinear features and 
generalize the structure of the whole data set. ANN methods are flexible alternatives 
and standard ANN software can be used to construct intricate multipurpose nonlinear 
solutions. The method has no limitations in the form of fixed assumptions or formal 
constraints. The neural network has a distributed processing structure. Each individu-
al processing unit or the weighted connection between two units is responsible for 
one small part of the input–output mapping system. 
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Fig. 2. Unit cell length, a, predictions by (x) GRNN in comparison to (_) actual values.  
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Fig. 3. Unit cell length, b, predictions by (x) GRNN in comparison to (_) actual values. 
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Fig. 4. Unit cell length, c, predictions by (x) GRNN in comparison to (_) actual values. 

4 Conclusions 

It was determined that neural networks might learn from XRD data to predict some 
properties of the crystal structures of zeolites. The predictions made were, in general, 
much more reliable than those performed by the multilinear regression. The best 
prediction was made for the pore sizes of zeolites, which also represented the case 
where the difference between the success of the predictions made by regression and 
neural networks was the smallest. The improvement provided by the use of the 
GRNN method, when compared to regression, was quite significant for the predic-
tions of the lengths of the unit cells of zeolites.   

The use of artificial neural network methods may allow a better understanding of 
the relationship between the X-ray diffraction patterns and the crystallographic prop-
erties of zeolites as well as other materials. This will ease and support the discovery 
of novel crystal materials since a short and practical characterization by using availa-
ble XRD data will become possible. It should also be remembered that in case train-
ing and cross-validation data other than those adopted in this study, (e.g., those per-
taining to different types of materials) could be used with GRNN as well as other 
ANN models to make the predictions, the relative success of prediction might still 
improve. Recurrent neural networks and optimization of neural network architecture 
by using genetic programming are methods that may be tested for providing further 
developments.  
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Abstract. Damage caused by typhoons to both people and structures has de-
creased in Japan due to improvements of countermeasures against natural disas-
ters, however, such damage still occurs. A typhoon warning that represents the 
risk posed by a typhoon with high accuracy should be issued appropriately. 
Thus, we propose a new typhoon warning system which forecasts the likely ex-
tent of damage associated with a typhoon towards humans and buildings. The 
relation between typhoon data and damage data is investigated and typhoon 
damage is forecast using typhoon data. Self-organizing maps (SOM), multiple 
regression analysis and decision trees were used for typhoon damage forecast-
ing. We consider two types of forecasting: two-class (yes or no) and three-class 
(small, medium or large scale) damage forecasting. Experimental results on ac-
curacy of two-class and three-class forecasting with SOM were 93.3% and 
96.8%, respectively. The accuracy with SOM was much better than that with 
multiple regression and decision trees. We recommend a new typhoon damage 
forecasting method based on these results. 

1 Introduction 

Intelligent techniques such as back-propagation neural networks (BPNN) [1], self-
organizing maps (SOM) [2], decision trees [3] and Bayesian networks [4] have been 
extensively investigated, and various attempts have been made to apply them to iden-
tification, prediction and control [e.g., 1-10]. Harada et al. applied BPNN to forecast-
ing typhoon course [8], Takada et al. applied BPNN to forecasting typhoon damage 
of electric power systems [9] and Udagawa et al. applied Bayesian networks to rain 
prediction [10]. This paper applies intelligent techniques to forecasting typhoon dam-
age to human and buildings.  

Damage caused by typhoons to both people and structures has decreased in Japan 
due to improvements of countermeasures against natural disasters, however, such 
damage still occurs [11, 12]. A typhoon warning that represents typhoon menace with 
high accuracy should be issued appropriately. A typical typhoon warning currently 
issued may be “This typhoon is large and very strong”. We propose a new typhoon 
warning which forecasts the risk of damage scale to both human and buildings. We 
investigate relation between typhoon data and damage data and forecast typhoon 
damage using typhoon data. The typhoon data includes the month when the typhoon 



was born, latitude and longitude where the typhoon was born, lowest atmospheric 
pressure, maximum wind speed and total precipitation. Damage data includes human 
damage data such as number of fatalities and injured persons and building damage 
data such as number of completely destroyed houses and number of houses under 
water.  

We use SOM, multiple regression analysis and decision trees for typhoon damage 
forecasting. SOM [2] are neural networks which consist of two layers: input layer and 
map layer. As an interesting feature of SOM, teaching vectors are not required and 
input vectors are automatically classified in accordance with similarity, updating the 
weight of the winning neuron and the neighbor neurons. After trained by SOM algo-
rithm, the weight vectors of the neurons form the cluster of input vectors. A decision 
tree [3] is an inductive learning algorithm. In a decision tree algorithm, an explicit 
decision boundary is extracted from the training data, and an example E is classified 
into class c if E falls into the decision area corresponding to c. Viscovery SOMine 4.0 
was used as SOM software and See5 release 1.19 was used as decision tree software 
with default parameter values. 

2 Forecasting Damage Data using Typhoon Data 

139 data records of typhoon data and damage data from June 1981 to September 1999 
were collected from the typhoon database [13, 14]. The types of typhoon and damage 
data are shown in Table 1. There are nine types of typhoon data and nine types of 
damage data, divided into three types of human damage and six types of building 
damage. We used 111 data records (to September 1995) for learning and 28 data 
records (from July 1996) for testing.  

Table 1. Types of typhoon data and damage data used in this study. 

  
  
Typhoon data 

Month when the typhoon was born,  
Latitude and longitude where the typhoon was born,  
Lowest atmospheric pressure, 
Maximum wind speed, 
Total, one-hour and twenty-four-hour precipitation,  
Life span 

  
  
  
  
Damage data 

Number of fatalities,   
Number of injured persons, 
Number of dead and injured persons 
Number of completely destroyed houses, 
Number of half destroyed houses, 
Number of partially destroyed houses, 
Total number of damaged houses, 
Number of houses under water, 
Total number of destroyed non-house structures 

  
The average and maximum of every damage type are shown in Table 2. The min-

imum of every damage type was zero. 
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Table 2. Average and maximum of every type of damage data. 

Data type Average Maximum 
Number of fatalities 5.5 100 
Number of injured persons 39.2 1499 
Number of dead and injured persons 44.8 1561 
Number of completely destroyed houses 21.9 541 
Number of half destroyed houses 1839.8 169877 
Number of partially destroyed houses 1051.7 85989 
Total number of damaged houses 2913.4 170418 
Number of houses under water 7829.6 174124 
Total number of destroyed non-house structures 163.6 15840 

 
In this study, we consider two types of typhoon damage forecasting: two-class 

(yes or no) and three-class (small, medium or large scale) damage forecasting.  

3 Two-class (Yes or No) Damage Forecasting 

In two-class damage forecasting, a predictor is trained by two values (0 and 1). In this 
case, 0 means that the damage is zero (no) and 1 means that the damage is not zero 
(yes). Experiments were made with nine types of continuous typhoon data as inputs 
and one damage data (two values) as an output. Here, we expect that typhoon data 
such as lowest atmospheric pressure, maximum wind speed and precipitation can be 
forecast with high accuracy by a weather forecasting system such as Japanese 
SYNFOS [15] and hence actual typhoon data was used as inputs. 

Table 3. Average accuracy of two-class (yes or no) damage forecasting. 

Method Learning data Test data 
Self-organizing maps (SOM) 100% 93.3% 
Multiple regression (MR) 70.9% 70.2% 
Decision trees (DT) 77.7% 63.9% 

Table 4. Accuracy of two-class (yes or no) damage forecasting for test data. 

Damage type SOM MR DT 
No. fatalities 92.9% 57.1% 50.0% 
No. injured persons 89.3% 75.0% 75.0% 
No. dead and injured persons 96.4% 89.3% 85.7% 
No. completely destroyed houses 92.9% 57.1% 57.1% 
No. half destroyed houses 89.3% 71.4% 71.4% 
No. partially destroyed houses 92.9% 67.9% 60.7% 
Total no. of damaged houses 96.4% 75.0% 64.3% 
No. houses under water 96.4% 85.7% 78.6% 
Total no. destroyed non-house structures 92.9% 53.6% 32.1% 
Average 93.3% 70.2% 63.9% 

SOM: self-organizing maps, MR: multiple regression, DT: decision trees 
 
The average accuracy of two-class (yes or no) damage forecasting for the three in-

telligent methods is shown in Table 3. Here, average accuracy means the average of 
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the accuracy of nine damage data. The average accuracy of the learning and test data 
using SOM was 100% and 93.3%, respectively. This experiment confirmed that dam-
age data are well related with typhoon data and that SOM learned the nonlinear rela-
tion very well. The accuracy for each damage test data is shown in Table 4. Each 
damage data was forecast very well by SOM. The accuracy with SOM was much 
better than that with multiple regression and decision trees. 

4 Three-class (Small, Medium or Large Scale) Damage 
Forecasting 

In three-class damage forecasting, two experiments were made with nine types of 
continuous typhoon data as inputs and one damage data as an output. In the first ex-
periment, a predictor is trained by continuous damage data. As this is a regression 
problem, decision trees were not used. The average of each damage data was calcu-
lated as shown in Table 2. Small scale corresponds to under half of the average, me-
dium scale corresponds to between half of the average and the average, and large 
scale corresponds to over the average, respectively. The prediction was considered 
accurate when both the predicted value and the actual value correspond to the same 
size. The average accuracy of three-class damage forecasting when trained by conti-
nuous damage data is shown in Table 5. The average accuracy of the learning and test 
data with SOM was 100% and 78.6%, respectively. The accuracy for each damage 
type is shown in Table 6.  The accuracy with SOM was much better than that with 
multiple regression, however, each damage data was not always forecast very well by 
SOM. For example, accuracy for number of fatalities and number of partially de-
stroyed houses was 67.9% and 92.9%, respectively. 

Table 5. Average accuracy of three-class (small, medium or large scale) damage forecasting 
when trained by continuous damage data. 

Method Learning data Test data 
Self-organizing maps (SOM) 100% 78.6% 
Multiple regression (MR) 52.8% 43.7% 

Table 6. Accuracy of three-class (small, medium or large scale) damage forecasting for test 
data when trained by continuous damage data. 

Damage type SOM MR 
No. fatalities 67.9% 35.7% 
No. injured persons 75.0% 46.4% 
No. dead and injured persons 75.0% 42.9% 
No. completely destroyed houses 60.7% 46.4% 
No. half destroyed houses 89.3% 42.9% 
No. partially destroyed houses 92.9% 42.9% 
Total no. of damaged houses 89.3% 39.3% 
No. houses under water 82.1% 39.3% 
Total no. destroyed non-house structures 75.0% 57.1% 
Average 78.6% 43.7% 
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In the second experiment, a predictor is trained by three values (0, 1 and 2). As 
this is a classification problem, decision trees were used. In the learning data, 0 means 
that the damage is small scale, 1 means the damage is medium scale and 2 means the 
damage is large scale. The prediction was considered accurate when the predicted 
size was equal to the actual size. The average accuracy of three-class damage fore-
casting when trained by three values is shown in Table 7. The average accuracy of the 
learning and test data with SOM was 100% and 96.8%, respectively. This also con-
firmed that damage data are also well related with typhoon data. The accuracy for 
each damage type is shown in Table 8. Each damage type was also forecast very well 
by SOM. For example, accuracy for number of fatalities and number of partially 
destroyed houses was 85.7% and 100%, respectively. The accuracy with SOM was 
also much better than that with multiple regression and decision trees. 

Table 7. Average accuracy of three-class (small, medium or large scale) damage forecasting 
when trained by three values. 

Method  Learning data Test data 
Self-organizing maps (SOM) 100% 96.8% 
Multiple regression (MR) 77.5% 65.1% 
Decision trees (DT) 90.1% 78.6% 

Table 8. Accuracy of three-class (small, medium or large scale) damage forecasting for test 
data when trained by three values. 

Damage type SOM MR DT 
No. fatalities 85.7% 42.9% 78.6% 
No. injured persons 100% 53.6% 71.4% 
No. dead and injured persons 100% 53.6% 71.4% 
No. completely destroyed houses 92.9% 39.3% 53.6% 
No. half destroyed houses 100% 85.7% 96.4% 
No. partially destroyed houses 100% 85.7% 85.7% 
Total no. of damaged houses 100% 85.7% 92.9% 
No. houses under water 92.9% 50.0% 60.7% 
Total no. destroyed non-house structures 100% 89.3% 96.4% 
Average 96.8% 65.1% 78.6% 

5 Conclusions 

We investigated typhoon damage forecasting with intelligent techniques. Using nine 
types of typhoon data as inputs to SOM, experimental results on the average accuracy 
of two-class (yes or no) and three-class (small, medium or large scale) damage fore-
casting were 93.3% and 96.8%, respectively. The accuracy with SOM was much 
better than that with multiple regression and decision trees. As a result, a typhoon 
forecasting method is proposed as follows: 1) Evaluate two-class damage forecasting, 
2) When two-class forecasting result is yes, evaluate three-class damage forecasting, 
3) Issue a typhoon warning based on above three-class damage forecasting. For ex-
ample, such a warning may be issued, “According to the Japanese typhoon database, 
we forecast that the coming typhoon has a risk of causing both large scale human and 
building damage. Please take care.” In further research, we will consider more de-
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tailed damage forecasting and use other predictors such as support vector machines. 
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Abstract. The use of heuristic algorithms in neural networks training is not a
new subject. Several works have already accomplished good results, however not
competitive with procedural methods for problems where the gradient of the error
is well defined. The present document proposes an alternative for neural networks
training using PSO(Particle Swarm Optimization) to evolve the training process
itself and not to evolve directly the network parameters as usually. This way we
get quite superior results and obtain a method clearly faster than others known
methods for training neural networks using heuristic algorithms.

1 Introduction

ANNs (Artificial Neural Networks) is a computational paradigm inspired in the opera-
tion of the biological brain, and seeks to explore certain properties present in the human
neural processing, that are very attractive from the computational view point[10]. In
this paper will be treated a specific type of ANNs, called MLP, a widely applied ANNs
model, for which is found a vast literature.

MLP ANNs training process are usually a non linear optimization process, fre-
quently based on the gradient of the ANNs error surface, which is calculated through
the backpropagation algorithm [18],[19]. Among the more efficient methods can be
mentioned, the quasi-Newton method: BFGS [1] and the conjugated directions method:
Scaled Conjugate Gradient [14],[15], all of them considered order 2 optimization meth-
ods.

The present document introduces a new approach for MLP ANNs training using
PSO [11],[17],[12],[6] (or another heuristic algorithm like genetic algorithms, however,
differing from others proposals founded in the pertinent literature [20],[16] [21],[7],[9]).
The proposed method: PG uses a sub-optimum gradient, and unit steps are taken in the
direction of this gradient. This proposal makes use of the full exploratory capacity of
the PSO, united with the efficiency of gradient descent methods.

2 The Particle Gradient Method

There are some works that try to optimize the ANNs vector of parameters using meta-
heuristic algorithms, in most cases genetic algorithm are implemented. This process



is in general more onerous from the computational cost1 viewpoint, and shows poor
results (with respect to the process convergence rate) when compared to conventional
optimization methods, based on gradient descent. This scenario created the main mo-
tivation to this work, to create a meta-heuristic training method, that rivals procedural
training methods with respect to convergence rate, here understood as learning effi-
ciency, even when implemented in a digital machine.

The proposed method, represents an alternative solution inspired in the work of
Chalmers The Evolution of Learning: An Experiment in Genetic Connectionism[8], that
applied evolutionary processes to evolve the learning process itself, and not its solution.

In the PG: Particles Gradient method, the PSO algorithm is not used to optimize
the vector of parameters itself, but to optimize the learning process by finding a sub-
optimum gradient vector at each learning iteration (season).

2.1 Codification

The PSO algorithm applied in the proposed PG algorithm, uses a population of np

particles, with a real codification described as follows:

– Particle Position: Vector containing real values belonging to the space RN , repre-
sent the error gradient for an ANN.

– Fitness: e(x, θ − p) where p is a particle position, x is the ANN input and θ is its
vector of parameters.

– Speed Modulation: A method to control the particles speed to provide a faster con-
vergence rate [3].

2.2 The PG Algorithm

This algorithm is based on the gradient descent algorithm where steps are taken in the
direction of a gradient vector, however, here unit steps are taken in the direction of a
sub-optimum gradient found by the PSO algorithm.

To each iteration of the main algorithm, an initial gradient vector is calculated using
the Backpropagation method, or simply by setting it equals to origin, which is clearly a
good estimate, and than inserted in the population2. Later a vector representing a sub-
optimum gradient is evolved by the PSO algorithm by ni generations, and then an unit
step is taken in this new descent direction.

The use of the initial gradient seeks to accelerate the convergence of the PSO algo-
rithm, giving to him a reference point. However, the execution of the method without
the use of an initial gradient also obtains good results, even similar to ones found us-
ing an initial gradient, as can be seen in [4]. This procedure is useful when it is not
possible to accomplish the retro-propagation phase of the ANN, impeding the gradient
vector construction, and consequently the application of faster procedural optimization
methods.

1 Here the computational cost of a procedure is understood as the number of sum and multipli-
cation operations necessary to accomplish this

2 Inserting a simple point in a particle’s population consists of creating a new particle in the
point’s position

116



The GP algorithm for MLP ANNs training is described in detail as follow.

Algorithm 1: Particles Gradient.
Determine: np, ni, nmax;
Initialize: θ;
for i=1 to nmax do

Calculate g0 by the retro-propagation of the error, or set g0 = 0;
Find the gradient: g = PSO(np, ni, g0) ;
Unit step: θi+1 = θi − g

end

where PSO represents a Particle Swarm Optimization algorithm.
The algorithm 1, is the result a exhaustive study of the training process, and the

functional analysis of the relations between the quantities of interest, taking into account
the dimensionality of the involved spaces and the characteristics a priori known about
the problem.

These studies converged to a method where the search blind is applied in a space
of same dimension of the vector of parameters. However, this choice brings a great
advantage with respect to the cost function to be optimized, or the surface where the
particles will be moved. This choice provides a condition very particular to the PSO
method, which is widely explored in this work.

In the application of a blind search method, as in case, the efficiency of the opti-
mization process may be considerably increased if the method is initialized near the
neighborhood of a local optimum point, which represents a good solution to the prob-
lem. However, this points are not known a priori, nor their neighborhoods.

The same happens in the ANNs training, the error surface is not complete known, so
nothing can be done to increase the training algorithm efficiency. Moreover, it is known
that a sufficient small step in a descent direction is ways a minimizing step. Therefore,
we conclude that a RN vector, representing a descent direction, will be certainly found
in a neighborhood of the origin.

This information is the main goal of the proposed method, given to blind search
method what it needs, a good initial condition. This approach gives the PSO method
a considerable efficiency increase, so the algorithm PG, presents a significantly higher
convergence rate when compared with others meta-heuristic methods in the same con-
text.

Another important feature of the PSO method, is the intrinsic parallelism of the al-
gorithm. Its implementation in a sequential machine, as a digital computer, will generate
a process computationally very onerous, however, in a completely parallel machine, still
hypothetical, is obtained a very faster and efficient process.

3 Examples and Comparisons

With the intention of determining the relative efficiency of the proposed method com-
pared with others founded in the literature, some ANN application examples are used,
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and the efficiency of the learning process is evaluated when the network is trained by
different methods.

In this document will be considered, as comparison bases, two quasi-Newton meth-
ods, two conjugated directions methods and one simple gradient descent method, all
described as follows:

– GRAD: Optimium Gradient [13]: Gradient descent method with super-linear con-
vergence, the fastest among methods with linear convergence rate.

– DFP: Davidson Fletcher Powell [13]: quasi-Newton Method with quadratic con-
vergence.

– BFGS:Broyden Fletcher Goldfarb Shanno [1]: quasi-Newton Method with quadratic
convergence, and with smaller sensibility to the bad numerical conditioning than
the DFP method.

– FR: Fletcher Reeves [1]: Conjugated directions method, with N-steps quadratic
convergence.

– SCG: Scaled Conjugated Gradient[15]: Conjugated directions method that do not
use unidimensional searches. It possesses N-steps quadratic convergence, and it is
the fastest among these methods from the computational cost viewpoint.

The process of unidimensional search used in the algorithms GRAD, DFP, BFGS
and FR is the golden section method, applied by 30 iterations on the initial interval.

3.1 Motor Currents

In theory, the current of a three-phase induction motor can be easily calculated on the
basis of motor voltage and power, as shown in equation (1).

I =
P√
3V η

(1)

where P and V represent the motor power and tension respectively. The variable
η takes into account the power factor and efficiency of the motor, that are based on
construction factors, the mechanical load and the rotation of the motor. Thus, it is clear
difficult to specify the variable η and so, the motor current.

The problem in question uses a neural estimator for the current calculation, based
on motor power, voltage and rotation, through a MLP network containing 3 neurons in
its sensorial layer, and with 1 neuron in its output layer.

The set used in the training consist on 300 samples obtained from manufacturers
catalogs, including motors that meet the following values ranges:

– Power: 0.1 a 330 KW.
– Rotation: 600,900,1200,1800 e 3600 rpm.
– Tension: 220, 380 e 440 V.
– Current: 0.3 a 580 A.

In a first analysis will be used in comparison to the proposed algorithm, a training
algorithm that uses the PSO technique directly applied to minimize the error surface
with respect to the vector of parameters.

118



This method uses exactly the same meta-heuristic of the proposed algorithm, and
also the same implementation, differing only in the application approach.

The configuration of both methods are described as follows:
Neural Network:

– Topology: 3 neurons in sensorial layer, 9 neurons in hidden layer and 1 neuron in
output layer.

– Linear output.
– Hyperbolic tangent activation functions.

Particle Swarm Optimization: PSO

– 136 particles.
– 400 iterations.
– Speed modulation [3],[5].

Particles Gradient: PG

– 136 particles.
– 5 epocs.
– 80 iteration per epoc.
– Speed modulation.

Due the stochastic characteristics of both methods tested, it is necessary a statistical
analysis of the results. Has been chosen in this paper the completion of 20 repetitions of
the training process and subsequent analysis of average results, which are summarized
in figure 1.

Fig. 1. Average values for mean squared error
during the training process.

Fig. 2. Average values for diversity during the
training process.

The graph shown in Figure 1 represent the average error value obtained by each
method in each epoc of training process, whereas for PSO algorithm intermediate val-
ues, because it have accomplished 400 iterations, taken to give the same conditions for
the two methods.
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Is clearly to see that the proposed method is quite superior to the PSO algorithm.
Like both use the same heuristic, and more, they have the same implementation, be-
comes clear the fact that the proposed approach significantly increase the optimization
process efficiency, accomplishing the main objective.

An analysis also relevant in this study, is to verify the populations diversity in both
methods, what together with the results above, gives an more accurate understanding
about the optimization mechanism. The metric here chosen to measure the diversity
value, is the variance of the particles fitness. Figure (2) shows the average value of
diversity for both methods in each iteration3 of the training process.

Its is clearly in Figure 2 the great superiority of the proposed method with respect
to diversity preservation when compared to the PSO algorithm. This fact is due mainly
to restart of the population for each new epoc, which restores its maximum diversity4.

A joint analysis of both Figures 1 and 2 provides a more complete and mature under-
standing of the optimization mechanism used by both particles swarms. In the proposed
method, the high preservation of diversity, is providing mobility enough to swarm con-
tinues finding best solutions, while in the PSO algorithm, the drop in diversity cause a
rapid convergence at the beginning of the process, but after some time the population
loses its exploratory capacity and becomes incapable of improving its solution.

Thus, is clear that the design here proposed, creates a method with high convergence
rate and also high diversity preservation, what are not intrinsic of the PSO algorithm.

Now seeking to compare the efficiency of the PG with the previously mentioned
procedural methods, a ANN containing 3 neurons in its hidden layer was used, having
the configuration: 3-3-1. The result of the network training can be visualized in the
Figure 3 and Figure4.

Fig. 3. Average values for mean squared error
during the training process.

Fig. 4. Average values for diversity during the
training process.

3 Here iteration is used to describe the intermediate steps of training processes, and one iteration
of main process, of the proposed method, is referred as epoc

4 The reader may ask if restarting the population in the method PSO do not lead to the same
result, which clearly does not happen for obvious reasons, but these will not be discussed here
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Again, due the stochastic characteristic of the PG, these figures show its average
behavior for a total of 20 repetitions of the training process. For this example the PG
have presented quite superior results when compared with the procedural methods.

In spite of to providing a significant reduction of the network mean square error in
each epoc, the proposed algorithm is quite onerous from the computational cost view-
point, given that a search process should be completed at each iteration. In that way, the
execution of the algorithm may become too slow, depending of its configuration.

In [15], the author proves the superiority of the method SCG, in respect to compu-
tational cost and convergence rate, over the other methods here analyzed. This result is
based in the need of unidimensional search required by most methods, that has com-
putational cost O(N2) per iteration. The SCG method presents a computational cost:
O(2N2) per epoc, that is very inferior to the ones of the methods GRAD, DFP, BFGS
and FR that possess computational costs:5 O(31N2).

The proposed method presents a total cost O(ninpN
2), that can become quite su-

perior to the ones of the other methods depending on the choice of ni and np. However,
the fast convergence of the method compensate, in some cases, this high computational
cost.

Now, to build a efficient comparison, let us assume that the function O(·) is linear
with respect to the parameters 6 np and ni, we can write:

CSCG
t = CGP

t

nSCG
e O(N2) = nGP

e O(ninpN
2)

nSCG
e O(N2) = nGP

e ninpO(N2)
nSCG

e = nGP
e ninp

nGP
e =

nSCG
e

ninp

(2)

Therefore, if is selected a number of epocs for the algorithm SCG: nSCG
e ne =GP

ninp, it is estimated that both algorithms show a very similar computational cost, al-
lowing an analysis of the relative efficiency with respect to convergence rate × compu-
tational cost.

To accomplish this comparison, lets consider the following parameters set:

– Number of epocs: SCG: nSCG
e = 3200, GP: nGP

e = 4
– Iterations per epoc: ni = 60
– Number of particles: np = 30
– Number of repetitions: nr = 5

5 This value is due to the fact that the unidimensional search to makes 30 iterations for each
training epoc

6 This assumption is made to allow a brief analysis of the problem in order to consider the non-
linearity of this function to obtain an accurate result, would not add significant information to
present analysis, due the fact that this functions are affected by the methods implementation,
and not by its definitions
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The Figure 5 shows the ANN mean squared error, after been trained by both methods,
in each repetition.

Fig. 5. Comparison between the algorithms: GP and SCG.

In the Figure 5 we can easily see that despite of the proposed method present a
higher computational cost, its efficiency rivals the efficiency of SCG method, actually
considered one of the most efficient method.

3.2 Curve Fitting

In this example a group of 100 test samples of input-output pairs was used for a quadratic
function y = x2, where a white noise of width 10−4 was inserted in both signs (input
and output). The training was accomplished for various networks configurations, using
the proposed algorithm and the algorithms previously mentioned. The results can be
observed in Tables 1 and 2.

Table 1. Learning Results: PG SCG FR.

Architecture PG SCG FR
1-3-1 0.00016 0.00066 0.00030
1-6-1 0.00019 0.00069 0.00031
1-9-1 0.00018 0.00078 0.00033

1-18-1 0.00020 0.00082 0.00035
1-6-6-1 0.00024 0.01065 0.01395

1-12-12-1 0.00018 0.01135 0.01735
1-6-12-6-1 0.00017 0.00667 0.05779

1-12-18-12-1 0.00014 0.01764 0.06142

Table 2. Learning Results: BFGS DFP GRAD.

Architecture BFGS DPF GRAD
1-3-1 0.00032 0.00079 0.01012
1-6-1 0.00037 0.00529 0.01197
1-9-1 0.00039 0.00617 0.01207
1-18-1 0.00045 0.00657 0.01287
1-6-6-1 0.01161 0.00959 0.01342

1-12-12-1 0.00943 0.00993 0.01377
1-6-12-6-1 0.00070 0.01060 0.01398

1-12-18-12-1 0.00420 0.01254 0.01485

For this problem it is also possible to notice that the final errors obtained by the
proposed method, were also quite inferior to the ones of the others tested algorithms.
Another outstanding characteristic observed in the exposed results is the robustness of
the PG method with respect to variations in the ANN topology. Due the stochasticity of
the learning process, it is possible to infer that the PG method has presented the same
final errors results for the several tested configurations.
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Several other tests were also accomplished [2], based on different problems with
different network topologies, including comparisons with genetic algorithms. In all of
this tests was founded similar results to those here presented, confirming all conclusions
here taken.

4 Conclusions

The method proposed in this paper represents a new approach for MLP ANNs training
using meta-heuristic methods, with different features of others similar methods.

The use of a particle swarm optimization algorithms, as another meta-heuristic
methods like genetic algorithms, in ANN training was, until now, not competitive given
the inferior performance of these methods when compared to procedural optimization
techniques. This new approach, however, is competitive in this scenery, reaching results
sometimes comparable with the ones of the faster MLP ANN training methods, and still
preserving characteristics of the heuristic methods.

One of the main advantages of the PG method, is the possibility to train ANNs with
the same efficiency of methods as BFGS and SCG, without knowledge about the error
gradient, enlarging its application to several problems, as the one proposed in [4],[2],
where the ANN is trained to estimate the state of a dynamic system, and is not possible
to calculate the ANN error, and so, the error gradient is unavailable.

Another outstanding characteristic for the proposed method is the preservation of
the probability to converge to a global optimum, as in the particle swarm optimization,
that is superior from that observed in procedural methods, where it is very probable that
they will converge to an local optimum closer to where the method was initiated.

The high computational cost, characteristic of heuristic methods as the genetic al-
gorithms, also is present in the proposed method that is more onerous that the other
methods here discussed when implemented in a digital machine. However, it is clear
from the shown examples, that this high computational cost is compensated by the ac-
celerated convergence rate. Moreover, the intrinsic parallelism of the proposed method,
allows its an implementation in a parallel machine, that can be several orders of magni-
tude faster than the procedural methods here discussed, inherently sequential.

So we may conclude that the Particles Gradient method here proposed, represents a
viable alternative solution for ANNs training, in some situations even being the prefer-
able one, and in a more complex and unusual application, mainly when is difficulty or
even impossible the construction of the gradient vector, this method can be one of better
choices.
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Abstract. Relationship between Heart Rate Variability (HRV) and emotions 
subjectively reported by 26 healthy subjects during symphonic music listening 
have been investigated through Data Mining approaches. Most reliable decision 
models have been successively adopted to forecast an emotional assessment on 
a group of 16 Traumatic Brain Injured patients during the same type of 
stimulation, without algorithms retraining. The most performing decisional 
models have been a Rule Learner (ONE-R) and a Multi Layer Perceptron 
(MLP) but, comparing them, the first one was the best in terms of reliability 
both on validation and independent test phases. Furthermore, ONE-R provides a 
simple “human-understandable” rule useful to evaluate emotional status of a 
subjects depending only on one HRV parameter: the normalized unit of Low 
Frequancy BandPower (nu_LF). Specifically, the classification by HRV nu_LF 
matched that on reported emotions, with 76.0% of correct classification; tenfold 
cross-validation: 70.2%; leave-one-out validation: 71.1%. On the other hand, 
MLP approache has provided an accuracy of 82.69% on healthy controls, but it 
has decreased to 47.11% and 46.15% on 10folds-cross and leave-one-out 
validation respectively. Finally, the accuracy has resulted in 51.56% when the 
MLP model has been applied to the posttraumatic subjects, while the ONE-R 
accuracy has resulted in 70.31%. Data mining proved applicable in 
psychophysiological human research. 

1 Introduction 

Data-mining or hybrid techniques are used in medicine to sort significant information 
out of large databases in mutagenicity studies, predictive toxicology, disease 
classification, selective integration of multiple biological databases, etc. Applications 
in neurology have focused on prognostic studies [1-2] or in the classification of 
emotional responses [3] . The Heart Rate Variability (HRV) is an emerging objective 
measure of the continuous interplay between the sympathetic and parasympathetic 
autonomic nervous sub-systems. It is thought to provide information also on complex 



patterns of brain activation, including emotional responses [4-11]. For instance, HRV 
abnormalities are reportedly common in psychiatric or brain damaged patients [12-
14]; HRV proved a useful predictor of outcome in brain injured patients [15-16]. 
HRV studies require quantitative approaches and large numbers of parameters are 
generated when the parametric and non-parameric HRV spectra are computed.  

In our study we measured several HRV parameters from 26 healthy subjects 
during the listening of music samples, suitably selected to induce specific emotional 
status. At the end of each listening we asked to report felt emotions, without any 
reference to pre-selected categories and to the feelings that the subjects thought the 
music was intended to induce. On the basis of these interviews, we identified to 
macro-categories of emotions (positive and negative emotions) and defined a two-
classes classification problem. The same procedure has been adopted for acquiring 
data from a group of 16 posttraumatic subjects. More details about the two datasets 
construction are reported in another our study [3]. Since the great amount of variables 
(35 HRV parameters) and the relatively weak consolidated knowledge about the 
problem, data mining techniques have represented an effective solution for identifying 
a relationship between HRV parameters and emotions, without any preliminary 
assumption about data distribution. 

We compared different classification learning strategies through suitable 
validation techniques, such as 10folds-cross and leave-one-out validation and test on 
the independent test set. 

2 Material and Methods 

2.1 Patients and Controls 

Two groups of subjects were studied:  

1. twenty six healthy volunteers (14 women; mean age: 31.7±7.1 yrs., age range: 
21-45 yrs.; high-school to university education);  

2. sixteen patients without severe disabilities completing rehabilitation after severe 
traumatic brain injury (5 women; mean age: 21.6±3.0 yrs., age range: 17 to 33 
yrs., grammar to high school education); and  

Subjects were informed in full detail about the study purpose and experimental 
procedures and the ethical principles of the Declaration of Helsinki (1964) by the 
World Medical Association concerning human experimentation were followed. The 
procedures for data collection and the experimental setting caused no physical or 
emotional discomfort and were discontinued whenever the subject felt tired or tense 
or at the subject’s request. Controls and posttraumatic subjects had no musical 
training (see [3] for methodological detail). 

2.2 Stimulus Conditions 

Four music samples (Table 1) were selected following characterization by intrinsic 
structure and expected emotional response as indicated by the available formal 
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complexity and dynamics descriptors. These descriptors reportedly relate music 
structure to self-assessed emotions and allow to characterize the emotional status 
along a continuum from euphoria and well-being to melancholy, severe anxiety and 
perceived aggressive tendencies [17-18]. 

Table 1. Selected music samples. 

1) Luigi Boccherini: Quintet op. 11 n. 5, Minuetto   (duration: 3’ and 50”);  

2) Piotr Ilitch Tchaïkovski: sixth symphony, op. 74, first movement  (duration: more than 10”);  

3) Modest Petrovich Mussorgsky: St. John's Night on the Bald Mountain (duration: more than 10”);  

4) Edvard Grieg: Peer Gynt, op 23, The morning (duration: 4’ and 20”) 
 

Experiments on patients and control took place at the same time of the day in a 
familiar environment and did not interfere with the posttraumatic subjects’ 
medical/rehabilitative schedules. Subjects were comfortably lying on an armchair, 
with constant 24º C ambient temperature and in absence of transient noises. They 
were exposed binaurally (earplugs) to the four selected music samples balanced for 
loudness and played in random sequence to minimize carry-on effects. There was a 
20-min rest between consecutive samples to avoid overstimulation and excessive 
fatigue.  

The heart beat was recorded from the beginning of the music sample and for a 
total of 300 beats (3',36"±24", with 83.7± 9.5 beats/min and a resulting total recording 
time between 3',12" and 3':55") by means of the Virtual Energy Tester (Elamaya 
Instruments, Milano, Italy). The photopletismographic sensors were positioned on the 
third phalange of the left hand middle finger in order to minimize the subjects’ 
discomfort consistent with the guidelines of the Task Force of European Society of 
Cardiology and the North American Society of Pacing and Electrophysiology[19].  
The photopletismographic signal was sampled at 100 samples/sec; the series of 
consecutive intervals between heart beats was analyzed in the time and frequency 
domains by the HRV advanced analysis software developed at the Department of 
Applied Physics, University of Kuopio, Finland [20]. The non-parametric (Fast 
Fourier Transform, Welch spectrum) and parametric (autoregressive) spectra were 
computed (Table 2). The power spectral density from 0.01 Hz to 0.5 Hz was 
computed with 0.001 Hz resolution and three frequency ranges (very low frequency 
[VLF]: 0.01-0.04 Hz; low frequency [LF]: 0.04-0.15 Hz; and high frequency [HF]: 
0.15 Hz – 0.5 Hz) were considered (Table 2).  

At the end of each music sample, controls and posttraumatic subjects were 
requested to classify their emotions, without reference to any pre-selected categories 
and irrespective of the emotional feeling they thought the music was intended to 
induce. The distribution of the emotions expressed for each music sample was 
determined [17-18]. 
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Table 2. Spectral and Statistical Parameters. 

Statistical Parameters Spectral Parameters 

Mean RR interval (Mean RR) and SD 
(STD RR);  

Mean Heart Rate (Mean HR) and SD 
(STD HR); 

Root mean square of SD (RMSSD);  

number (NN50) and percentage 
(pNN50) of NN intervals longer than 
50 ms 

 

Very Low Frequency (VLF), Low Frequency (LF), High 
Frequency (HF) and normalized unit (nu) in FFT and 
autoregressive spectra 

VLF Peak frequency in FFT and autoregressive spectra 

LF Peak frequency in FFT and autoregressive spectra 

HF Peak frequency in FFT and autoregressive spectra 

Power Spectrum of VLF, LF, HF and Total in FFT and 
autoregressive spectra 

% of VLF, LF, HF in FFT and autoregressive spectra 

Ratio LF/HF, nu LF, nu HF, nu LF/HF in FFT and autoregressive 
spectra 

2.3 Data Mining Techniques 

We adopted several classification approaches for identifying an association between 
HRV parameters and the self-assessed emotions. To this aim, two different classes or 
categories were defined for the reported emotional status: positive (happiness, joy, 
serenity, calm,…) and negative (fear, anxiety, tension, scare,…). The control group 
was selected as training set for several data-mining classification  techniques, such as 
Decision Trees, Support Vector Machines, Artificial Neural Networks and Rules 
Learner, provided by the WEKA open source software (Waikato Environment for 
Knowledge Analisys) [21, 22]. 

Training set included 104 cases (26 healthy subjects x 4 music samples) and 35 
variables (Table 2). In a first step, two internal validation techniques based on training 
data (namely the 10 folds-cross and leave-one-out validation) were used to evaluate 
how much extracted models would fit the new data. 

Most reliable decision models have been selected and adopted to forecast an 
“emotional status assessment” on the independent test set (16 posttraumatic subjects). 
The models used to obtain this assessment on the test set has been not “re-learned” 
from it. The independent test set included 64 cases (16 posttraumatic subjects x 4 
music samples) and the aforementioned 35 HRV parameters. 

In this way, we have been able to estimate “real” reliabilities for the selected 
models. Figure 1 shows how we have designed our study.  

Since every classification technique adopts a different structure for explaining the 
relationship between input variables and output (HRV parameters and subjectively 
reported emotions, respectively in our study) it may be really difficult to select a 
priori a strategy for learning the relationship from the available data. For such reason 
we decided to adopt several classification learning procedures applicable to our 
problem, such as Decision Trees, Support Vector Machines, Rule Learners and 
Artificial Neural Networks, all available in WEKA. 
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Fig. 1. Phases of the Study.  

Respect to 10fold-cross and leave-one-out validation, we have obtained that the 
most reliable classification techniques were ONE-R [23] and Multi Layer Perceptron 
[24]. The first one is a Classification Rule Learner and works in a very easy way: it 
accepts a training set as input and searches for a “1-rule” classifying instances on the 
basis of a single variable (attribute). Initially, the algorithm ranks attributes according 
to error rate on the training set then, if the attribute is numerical, the algorithm divides 
the range of possible values into several disjoint intervals. In order to avoid 
overfitting (that is when each interval contains only a value belonging to one class) 
ONE-R permits to set a parameter named “bucket-size” that is the minimum number 
of instances in an interval. We obtained the best performing ONE-R configuration 
setting 7 as minimum number of instances in one interval. In figure 2 we report the 
extracted rule (note that nu_LF can belong to only one interval, so only one prediction 
is possible). 
 

 
Fig. 2. Decision model for emotional status assessment learned through ONE-R algorithm on 
healthy controls. 

If nu_LF is in 

[0; 29.35) 

[29.45; 46.37) 

[46.37; 64.25) 

[64.25; 72.45) 

[72.45; 100] 

negative emotion predicted 

positive emotion predicted 

negative emotion predicted 

positive emotion predicted 

negative emotion predicted 

[ . ; . )    inferior extreme included – superior extreme excluded 
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Multi Layer Perceptron (MLP) is a particular Artificial Neural Network (ANN) 
architecture also known as “feed forward architecture”, and it is composed by, at the 
least, three different layers: input layer, hidden layer and output layer. Generally, the 
hidden layer can be more then one and also the number of neurons into hidden layers 
can also vary, where a neuron is the “simple” processing unit of the net.  

As each ANN, MLP is a mathematical/computational model based on biological 
neuronal networks and is commonly applied to model complex input/output 
relationships or to identify data patterns of distribution/correlation. Structurally, an 
ANN is composed by a set of neurons, linked each other by a large number of 
(usually nonlinear) weighted connections. Each neuron is able to calculate a specific 
function, given the inputs and the weights on the connections are adjusted in order to 
minimize some criteria as, usually, the errors number. 

Using MLP we have obtained the best results setting up the following net 
parameters: only one the hidden layer with 5 neurons, Learning Rate=0.2, 
Momentum=0.1 and 1000 training epochs. Moreover we have previously ranked the 
variables by preprocessing the dataset by ONE-R WEKA Filter, which evaluates the 
worth of an attribute by using the ONE-R strategy. Finally, the best results for MLP 
were obtained selecting the first 8 ranked attributes (nu_LF, powerHF, STDRR, 
gender, powerVLF, peakVLF, peakLF and peakHF). The MLP architecture is showed 
in figure 2. 

 

 
Fig. 3. Multi Layer Perceptron architecture. 

3 Results 

ONE-R procedure sorted out the nu_LF descriptor as the more significant spectral 
parameter in the selected experimental conditions and for the study purpose. The 
ONE-R allowed a good trade-off between the portion of correct sample/label 
association on the entire training set (recognition) and the portion of correct 
sample/label association on validation and independent test phases (generalization).  

In table 3 we summarize our results both for ONE-R and MLP. For the first one, 
an overall correct classification on training set (healthy controls) has been obtained on 
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about 76.0% of the instances, 81.0% and 69.0% of negative and positive emotions, 
respectively; (tenfold cross-validation: 70.2%; leave-one-out validation: 71.1%). 

When applied to the independent test set (posttraumatic subjects), the 
classification accuracy performed by the ONE-R decision model was comparable: 
70.3% of correct classification on the entire test set, 65% and 74% of positive and 
negative emotions, respectively.  

Despite the greater accuracy of the MLP on the entire training set (82.7% vs. 
76.0%, for MLP and ONE-R respectively), MLP accuracy decreased to 47.11% and 
46.11% on 10folds-cross and leave-one-out validation phases respectively. Moreover, 
also the correct attribution for each class of emotion has decreased: 33.33% and 
57.63% for positive and negative emotions, respectively, on 10folds-cross validation, 
and 26.67% and 61.02% for positive and negative emotions, respectively, on leave-
one-out validation. 

Furthermore, also on independent test phase MLP has provided lower reliability 
than ONE-R approaches: 70.31% of accuracy for ONE-R versus 51.56% for MLP 
(32% and 64.10% for positive and negative emotions respectively). All the results are 
summarized in Table 3. 

Table 3. Results One-R vs MLP. 

Analysis of data: ONE-R vs MLP 

 On training data 10 Folds-cross Leave-one-out Independent Test Set 

OneR 75.96% 70.19% 71.15% 70.31% 

MLP 82.69% 47.11% 46.15% 51.56% 

Attribution of positive emotions 

 On training data 10 Folds-cross Leave-one-out Independent Test Set 

OneR 68.89% 57.78% 64.44% 68.00% 

MLP 68.89% 33.33% 26.67% 32.00% 

Attribution of negative emotions 

 On training data 10 Folds-cross Leave-one-out Independent Test Set 

OneR 81.36% 79.66% 76.27% 71.79% 

MLP 93.22% 57.63% 61.02% 64.10% 

4 Comment 

Although the HRV is an emerging objective measure also in neurophysiology, there is 
still a lack of knowledge about a possible and tangible relationship between heart 
activity and the emotional status assessment. On the other hand, Data Mining 
techniques may offer practical advantages for analyzing data, also medical [25, 26], 
and they have proved useful analysis tools in our study, searching for the most 
reliable and frequent relationships between HRV parameters measured during 
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symphonic music listening and emotions subjectively reported by a group of 26 
healthy subjects at the end of each listening. Several data mining methods have been 
investigated and evaluated through the most suitable validation techniques. Reliability 
of resulting relationships has been then tested on an independent test group of 16 
posttraumatic patients, without algorithm retraining.  

ONE-R algorithm (a classification rule learner) has provided the best 
performances and reliability, identifying a single HRV parameter (notably the nu_LF 
measure) as the most relevant for assessing the emotional status, both for healthy 
controls and posttraumatic subjects.  

In this study ONE-R proved more effective then the best MLP configuration and  
provided a simple “if…then” rule. Furthermore, this rule can be easily applied, in 
combination with the non-invasive technique for HRV data acquisition (by a 
photopletismographic sensor), to evaluate the emotional conditions of unconscious 
subjects (such as subjects in vegetative state) in order to establish, in a more objective 
way, when is better to continue or interrupt any contact or stimulation. 
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Abstract. We have researched about an action planning method of an autono-
mous mobile robot with a real-time search. In the action planning based on a
real-time search, it is necessary to balance the time for sensing and time for
action planning in order to use the limited computational resources efficiently.
Therefore, we have studied on the sensing method whose processing time is vari-
able and constructed a self-position estimation system with variable processing
time as an example of sensing. In this paper, we propose a self-position estima-
tion method of an autonomous mobile robot based on image feature significance.
In this method, the processing time for self-position estimation can be varied by
changing the number of image features based on its significance. To realize this
concept, we conceive the concepts of the significance on image features, and ver-
ify three kinds of equations which respectively express thesignificance of image
features.

1 Introduction

An autonomous mobile robot is one of the most interesting targets in the field of the
robotics. It is very expected not only in the industrial fieldbut also in the community
like an office, a hospital and a house in the future. Among various kinds of problems
for an autonomous mobile robot, we have focused on and researched about its action
planning methods with the real-time search [1][2]. In the action planning with the real-
time search, a robot action is acquired through the recognition of the current situation
and the action search on the ground. Therefore, the computational resource for the ac-
tion planning is limited, and the situation around a robot changes every moment in a
dynamic environment where the robot moves. Under these circumstances, we have to
consider the balance between the time for recognition and the time for action search
according to the situation around the robot in order to utilize the limited computational
resource efficiently. This idea is based on Anytime Sensing which has been proposed
by S.Zilberstein et.al[3], and one of crucial features in the action planning with the
real-time search. As an example of recognition, we deal witha self-position estimation
problem for the robot with vision and construct a self-position estimation system with
variable processing time based on the above idea.

In this system, it is assumed that the robot estimates the current self-position by
matching an acquired input image with stored images which indicate certain positions
in the environment. The normalized correlation coefficient[7] is applied as a criterion



Fig. 1. Self-position Estimation System.

of the template matching. In order to use the limited computational resource efficiently,
only image features in a stored image are used in the self-position estimation process.
Moreover, the processing time for the self-position estimation is varied by changing the
number of the image features utilized for the template matching. In this case, it is im-
portant that the number of the image features is varied according to priority in order not
to deteriorate the performance of the self-position estimation.[5][6] To realize this idea,
it is essential to decide how important each image feature isfor the self-position estima-
tion. By changing the number of the image features based on image feature importance,
stable self-position estimation can be realized even if thetime for the self-position esti-
mation is shortened. According to these reasons, a new self-position estimation method
with variable processing time is proposed based on image feature significance in this
research. In this paper, the concepts based on image featureimportance are conceived,
and three types of equations are defined as an indicator of significance on image fea-
tures. These equations are compared through some experimental results.

2 Self-Position Estimation with Variable Processing Time

2.1 Self-position Estimation System

As a framework of a self-position estimation problem, the robot moves in the indoor en-
vironment and estimates which key location it is around in the environment. It obtains
images at key locations and image templates are generated with them as a prepara-
tion for the self-position estimation.At the self-position estimation, an input image is
obtained and it is processed through image processing for noise reduction and gray
scaling. Then, an input image matches stored image templates and the estimation result
is output. In the case of Fig.1(a), the highest value of the similarity is one with the posi-
tion B. Therefore, the output is the position B as the estimation result. In this paper, the
normalized correlation coefficient(NCC) is applied as a criterion for the similarity.
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Fig. 2. Generation Method of Image Template.
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}2
√

∑M

x

∑N

y {g(x, y)− ḡ}
2

(1)

Eq.1 indicates the normalized correlation coefficient between two imagesF and
G. They are grey-scale images whose size isM × N . The parametersf(x, y) and
g(x, y) are the brightness of the pixel at the coordinate(x, y) in each imageF andG.
The parameters̄f andḡ are the mean value off(x, y) andg(x, y) respectively. When
f(x, y) is entirely identical tog(x, y) , the value ofR is 1.0. On the other hand, when
the imagef(x, y) is completely different fromg(x, y) , R is -1.0. Here, it is assumed
that f(x, y) is an input image obtained at the current position of the robot, and that
g(x, y) is an image template stored in the robot. By the image template matching using
this equation, it is estimated that the robot is around the position which is indicated by
the image template with the highest value ofR in the stored image templates.

2.2 Changing Method of Processing Time

The time for the image template matching occupies most of theprocessing time for
the self-position estimation in this system. This is because NCC is the pixel-based cal-
culation which requires computational resources. According to the above equation, the
computational amount for calculatingR is in proportion to the number of pixels. There-
fore, only image features are utilized for the self-position estimation, and the number
of the image features is changed in order to change its processing time.

The image features are extracted as some rectangle areas from a stored image
through the image processing. shows. A set of extracted rectangles is called as an image
template in this paper, and template generation method is described in the next section.
The similarity between an input image and an image template is the average of NCC
value on all rectangle areas utilized for the self-positionestimation.

2.3 Generation Method of Image Templates

Fig.2 shows the generation method of the image template for the self-position estima-
tion. First of all, feature points in each stored image are extracted with Harris opera-
tor[8] which is widely utilized for image feature extraction. As Fig.2(a) shows, a mass
of feature points is extracted around the distinctive partsin a stored image. Thus, these
points are grouped with hierarchical clustering as Fig.2(b). Then, a rectangle is created
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Fig. 3. Image Feature Importance from Viewpoint of Self-poisitionEstimation.

Fig. 4. Image Feature Importance from Computational Resources.

which covers a group of feature points as Fig.2(c) shows. These rectangle areas are
utilized for image features for the self-position estimation.

3 Addition of Significance to Image Features

3.1 Concept of Image Feature Significance

The processing time for the self-position estimation is varied by changing the number
of the image features utilized for the template matching in this system. In this case,
the more effective image feature for the self-position estimation should be given higher
preference over the others. For example, when the processing time is short, only crucial
image features to the self-position estimation are utilized to guarantee the quality of
the self-position estimation. On the other hand, more imagefeatures are used for the
self-position estimation to realize robust self-positionestimation when the processing
time is long. In order to realize the above idea, it is essential to decide how important
each image feature is for the self-position estimation. Therefore, the following three
concepts are conceived to define the importance of each imagefeature for the self-
position estimation.

Fig.3 shows the relationship between the NCC values for one image feature and
its significance. The horizontal axis is a NCC value between an image feature and an
obtained input image, and the vertical axis is its probability. Input images are influ-
enced by the robot motion, therefore NCC values changes for the same image feature.
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In the self-position estimation system, the current position is estimated as one which is
indicated by the image template with the highest similarityfor an input image. There-
fore, the higher NCC values for the images obtained at correct position are better for
the self-position estimation on an image feature. Moreover, the higher NCC values for
the images obtained at wrong positions is worse for the self-position estimation on the
image feature even if the NCC value is pretty high as Fig.3(a)shows. Therefore, the
difference between NCC values at correct and wrong positions is important for the self-
position estimation in addition to the absolute value of NCCat the correct position.
Moreover, when the NCC values widely changes for various input images, the distri-
bution of NCC value at the correct position overlaps the one at the wrong positions as
Fig.3(b). This overlap causes the error of the self-position estimation. Therefore, the
variance of NCC value should be also considered for stable self-position estimation.

Fig.4 shows the relationship between the size of the image feature and its signifi-
cance. This is the concept from the viewpoint of the computational resources. As men-
tioned in Section 1, the computational resources is limitedin the action planning with
the real-time search, therefore it is important to utilize the computational resources
efficiently. Here, let two rectangles drawn in Fig.4 stand for image features for the es-
timation of a certain position. As mentioned in Section 2.2,the computational amount
for the self-position estimation is in proportion to the number of pixels of an image
feature. Therefore, if the NCC values of these two image features are very similar as
this figure shows, it is apparent that the small image featureis better than the large one.
According to this reason, the size of image features should be considered on the image
feature significance.

3.2 Equations of Image Feature Significance

Based on the above concepts, the three kinds of equations areformulated as a indicator
of significance on image features.

E1 = k1µc + (µc −max
j
µw(j)) (2)

E2 = k1µc + {(µc − k2σc)−max
j

(µw(j) + k2σw(j))} (3)

E3 = E2 − k3
Sp

∑h

q=1 Sq

(4)

µc, µw : mean value of NCC of correct or wrong images

σc, σw : variance of NCC of correct or wrong images

j : number of positions

k1 ∼ k3 : weight

Sp : number of pixels of image features

h : number of image features

Eq.(2) indicates the significance on an image feature which considers only the mean
value of NCC at the correct position and the difference of NCCvalues between the cor-
rect position and wrong ones.In this equation, the first termis the absolute value of NCC
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for an input image obtained at the correct position. The second term is the difference of
NCC values between the correct and wrong positions.k1 is a weight in order to balance
these two parameters. The larger this value becomes, the more important the image fea-
ture becomes for the self-position estimation. Eq.(3) indicates the significance on an
image feature which considers the variance of NCC values at the correct and wrong
positions.The larger the variance of NCC values becomes, the smaller the second and
third terms become. Eq.(4) indicates the image feature significance which considers the
computational amount for the self-position estimation in addition to the quality of the
self-position estimation. The second term is a percentage of the pixel of an image fea-
ture for all image features. Therefore, the second term becomes large when the size of
an image feature becomes large.

4 Experimental Results and Verification

4.1 Experimental Setup

In order to examine the proposed method, we performed some experiments. First of all,
six image templates were generated which respectively distinguished from the position
A to the position F. The value of significance was calculated for each image feature in
a image template according to the above equations. The weights in Eq.2, Eq.3 and Eq.4
were 0.14, 1.20, and 1.20 respectively. These parameters were decided experimentally.
Then, a real robot performed the self-position estimation with the acquired image tem-
plates in a real environment. In this experiment, the numberof the image features was
changed from one up to five according to the priority given by each equation of the im-
age feature significance. The self-position estimation wasperformed a hundred times at
each key location.

4.2 Generated Image Templates

Fig.5 shows the image templates which were generated with the method in Section
2.3. As this figure shows, rectangles which cover distinctive parts in each stored image
were generated as an image template. Fig.6 shows the top five rectangles ranked by
each equation expressed in Section 3.2 for the templates of Position E. This is because
the rank of the image features in this image template changedcharacteristically. As
this figure shows, unique image features have higher priority in each image template.
Moreover, comparing image features ranked by Eq.(2) with ones by Eq.(3), the ranking
of some image features changes. This is because image features which are ranked lower
in Eq.(3) are much influenced by the robot motion, therefore,the variance of NCC
values becomes large. In addition, image features with a larger size are ranked lower by
Eq.(4) in comparison with ones ranked by Eq.(4). This is because larger image features
are ranked by Eq.(4) from the viewpoint of the computationalresources.

4.3 Performance of Self-position Estimation

In order to examine the image feature significance ranked by Eq.(2), Eq(3) and Eq.(4),
the experiment of the self-position estimation with a real-robot was performed. In this
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Fig. 5. Generated Templates.

Fig. 6. Comparison of Image Feature Ranking(Position E).

experiment, the number of the image feature changed according to the priority ranked
by each equation, and the self-position estimation was performed with only selected
image features. The robot succeeded the estimation of its current position at all positions
in all trials. In order to compare the quality of each equation, the relationship between
the performance of the self-position estimation and each equation on image feature
significance was examined. In addition, the relationship between the processing time
and each equation on image feature significance was also examined.

Fig.7 shows the difference of NCC values between the correctand wrong positions
on the image template of the position E. The larger this valuebecomes, the more clearly
the image template can distinguish the correct position from wrong ones. According to
this result, all image templates have almost same quality Fig.8 shows the processing
time for the self-position estimation when the number of theimage features in an image
template changes. As Fig.8 shows, the processing time with the image template ranked
by Eq.4 is the shortest in all equations. This is because Eq.4considers the computational
resources for the self-position estimation. According to these results, Eq.4 is the best
indicator of image feature significance.
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Fig. 7. Difference of NCC values between the correct and wrong positions for the template.

Fig. 8.Processing Time for Self-position Estimation.

5 Conclusions

A new self-position estimation method with variable processing time was proposed
based on image feature significance in this research. It was demonstrated that the stable
and efficient self-position estimation could be realized with an image template based on
image feature significance even if the number of the image feature was changed. For the
future work, the self-position estimation with an omni-directional image will be tackled
based on the proposed method. Moreover, it will be examined how the environmental
change influences the performance of the self-position estimation.
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