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Foreword

Theoretical, applicative and technological challenges, emanating from
nowadays’ industrial, socioeconomic or environment needs, open ev-
ery day new dilemmas to solved and new challenges to defeat. Bio-
inspired Artificial Intelligence and related topic have shown its as-
tounding potential in overcoming the above-mentioned needs. It is
a fact and at the same time a great pleasure to notice that the ever-
increasing interest of both confirmed and young researchers on this
relatively juvenile science, upholds a reach multidisciplinary synergy
between a large number of scientific communities making conceiv-
able a forthcoming emergence of viable solutions to these real-world
complex challenges.

Since its first edition in 2005, ANNIIP international workshop,
within the frame of the prestigious ICINCO International Confer-
ence, takes part in appealing intellectual dynamics created around
bio-inspired Artificial Intelligence by offering a privileged space to
refit and exchange the knowledge about further theoretical advances,
new experimental discoveries and novel technological improvements
in this promising area. The present book is the outcome of the sixth
edition of this annual event.

Within this inveterate philosophy and around a deliberately limit-
ed number of papers, the objective of this fifth volume is to convene
once more relevant recent works focusing this exciting topic, related
fields and issued applications. Conformably to our values, the choice
of publishing a restricted number of papers is persistently motivated
on the one hand by the premeditated desire to give a large space to
exchanges and discussions during the workshop, and on the other
hand by the strong principle of the presentation of each accepted
article by its authors. If “Bio-inspired Artificial Intelligence” and
its real-world applications remain, as in the previous editions of this
international workshop, the foremost premises of this sixth volume,
a special attention has been devoted to the balance between theo-
retical and applicative aspects.

It is important to remind that scientific relevance and technical
excellence of a collective volume emerge from quality of its con-
tributors: those who have contributed by the high quality of their
manuscripts and those who have taken part in reviewing of submit-
ted papers ensuring, by their valuable expertise, the distinction of
the present book. I would like to express again my acknowledge-



ments to contributors of all accepted papers: You are the central
reason of the nobles of this tome. Also, I would like to reedit my
gratitude to Reviewing Board and Program Committee for the valu-
able work that they accomplished: My heartfelt recognition to those
who already were members of ANNIIP Program Committee as well
as my sincere thanks to those who kindly accepted to enlarge the
Reviewing Board of this sixth workshop’s edition.

It is also essential to be reminiscent that creative dynamics is fre-
quently the result of fruitful humans’ contacts within a same scien-
tific field or the consequence of humans’ interactions from different
scientific communities and since 2004, the date of the its first edi-
tion, the ICINCO multi-conference has been an outstanding bench
of such creative synergies. For that, again, I would like to express my
warm appreciation and my particular gratitude to my friend Prof.
Joaquim Filipe, ICINCO 2010 Conference’s Chair, for his faith in
young science of “Bio-inspired Artificial Intelligence” and for his re-
liance on devoting once more this privileged space to the ANNIIP
workshop within his valuable conference.

Finally, if ICINCO Organizing Committee’s professionalism be-
came an obvious skill of this international event’s organization in so
accurate way, it should never be forgotten that the organization of
a prestigious conference remains a challenging undertake requiring
a reliable and a solid team. So, I would like to acknowledge whole
the organizing team, with a special word for Marina Carvalho and
Vitor Pedrosa from Workshops Secretariat who, during the six re-
volved years, have proved their irreplaceable merit as key persons in
ANNIIP workshop’s organization.

June 2010,

Kurosh Madani
University PARIS-EST / PARIS 12, France
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Finding Fuzzy Communities in Directed Networks

Kun Zhao, Shao-Wu Zhang and Quan Pan

School of Automation, Northwestern Polytechnical University, Xi’an, China
zz_kk@126.com, {zhangsw, quanpan}enwpu.edu.cn

Abstract. To comprehend the directed networks in a fuzzy view, we introduce
a new matrix decomposition approach that reveals overlapping community
structure in weighted and directed networks. This method decomposes a
directed network into modules by optimally decomposing the asymmetric
feature matrix of the directed network into two matrices separately representing
the closeness degree from node to community and the closeness degree from
community to node. Their combined result uncovers the community structures
in a fuzzy sense in the directed networks. The illustrations on an artificial
network and a word association network give reasonable results.

1 Introduction

A cogent module representation of a network will retain the important information
about the network and highlight the underlying structures and the relationships in the
network. Many researches have been devoted to the development of algorithmic tools
for discovering communities [1]. Nearly all of these methods, however, are not
intended for the analysis of directed network. Yet, directedness is an essential feature
of many real networks. Ignoring direction may reduce considerably the information
that one can extract from the network structure. In particular, neglecting link
directedness when looking for communities may lead to partial, or even misleading,
results. Very few algorithms [2], [3], [4] currently available are able to handle
directed graphs, since the presence of directed links places a serious obstacle towards
community detection problems.

Another subject that attracts much attention in network studies is the detection of
overlapping communities, or fuzzy clustering. Specifically, many real world networks
exhibit an overlapping community structure, which is hard to grasp with the classical
graph clustering methods [5], [6], [7] where every node of the graph belongs to
exactly one community. Up to now, only a small number of studies [8], [9], [10] have
addressed the problem of overlapping community. Typically, there is an algorithm
takes symmetrical non-negative matrix factorization (s-NFM) [10] into optimization
framework and achieves explicit physical meaning for the clustering results, which
are helpful for the network analysis after clustering. As for directed networks,
however, symmetrical factorization could not treat the asymmetry which is resulted
from the directedness in edges. To solve this problem, we constructed a new
optimization framework based on the approximation to the directed feature matrix
with matrices of two types of directed paths. In order to complete the framework, we
also proposed a directfied and fuzzified variant of the modularity function first



introduced by Newman [11]. New function provides a reasonable basis for the
determination of the optimal number of communities. The clustering results contain
abundant information and equally possess explicit physical meaning. We tested our
method on a computer-generated graph and a real-world graph and gained significant
and informative community divisions in both cases.

2 The Algorithm

2.1  Optimization Scheme for Directed Graphs

Consider a directed and weighted network G(N,E), which can be described by the
weighted adjacency matrix A=[Ajj],xn where n is the number of nodes, and A;; >0 if
and only if (i,j) € E and 0 otherwise. Let the feature matrix of G be Y=[Yjj]nxn where
Yij denotes the similarity from node i to node j. Note that the relationship between a
pair of nodes is easy to grasp in the sense of connecting path. As the path linking a
pair of nodes increases, the relationship of the pair is enhanced. Then, in this paper,
we make the path number as the central metric of various relationships in network.
Undirected graph is defined as a graph in which edges have no orientation. It is,
therefore, no need to distinguish between the paths that start from a given node and
the paths that arrive in it because they are essentially the same in undirected graphs.
However, in directed graphs, these two types of paths are usually not equivalent since
not all edges are bidirectional. Suppose that n nodes can be grouped into r overlapping
communities. Here we introduce the concept of node-community similarity matrix
U°=[U;],,» Which is non-negative, to represents the number of paths (or the

similarity degree) from nodes to communities, and the concept of community-node
similarity matrix V° =[V, ], which is non-negative, to represents the number of
paths (or the similarity degree) from communities to nodes. Generally, U° concerns

the outgoing edges of node, and V° concerns the incoming edges of node. Fig. 1
illustrates the difference between the two types of paths in directed network.

node //,1? nodc
/I/?

Fig. 1. Schematic illustrations of the two types of paths in directed graph (community — node
and node — community).

Since U° and V° respectively denote the number of paths from node to

community and the number of paths from community to node, UV *" could further
be an approximation of similarity between nodes. That is, we canuse U° and V° to
reconstruct Y:



uv’ sy ()
For convenience, we hope to have the following approximation form:
Usv'™ -y 2

where U and V are non-negative matrix which are separately the column
Frobenius normalization form of U° and V°, and the rXr non-negative diagonal

matrix S stores the weights of the columns of U and V . Note that Equation (1)
is essentially equal to Equation (2), then

TSYARSIRY T 3)

Equation (2) leads us to the following Frobenius norm (Euclidean distance
equation), which measures the fitness of the given matrices U, V and S of graph
G(V,E) by quantifying how precisely they approximate the network structural
information Y:

: R — 1 — —
min F (YU, ,V):HY—USVTHZFro :E;[(Y—USVT)o(Y—USVT)]u (4)

where Ao B means the Hadamard product (or element-by-element product) of
matrices A and B.

Now the community detection problem is reduced to the optimization of Fg. In
other words, we must find the optimal U, V and S to minimize Fg. To solve this
optimization problem, we will develope a modified Non-negative Singular Value
Decomposition.

2.2 Method of Compressed Non-negative Singular Value Decomposition

Matrix factorization plays an important role in scientific computation. The commonly
used one is singular value decomposition (SVD) [12]. It approximates one matrix
with three lower rank matrices (including one rectangular matrix and two square
matrices) with orthogonality constraints, in which the left and right singular vectors
correspond to the column and row spaces of the original matrix. SVD has been
successfully applied in both science and engineer areas [13]. However the results by
SVD on real data always lose physical meaning because they usually contain negative
values, and this can not be interpretable easily from intuitive insight. To make the
results more interpretable, Liu [14] took the non-negativity constraints into SVD and
developed a non-negative SVD (NNSVD).

NNSVD is very help for our theme. We only need to make appropriate
modification on it. Firstly, both of U and V are not square matrices and they do
not have orthogonality constraints. Secondly, U and V must be achieved by the
normalization after matrix factorization. We take the above conditions in NNSVD and
propose the iteratively update rules of a compressed Non-negative Singular Value
Decomposition (c-NNSVD):
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where U, and V, are nxr non-negative matrix and S, iS rxr non-negative

diagonal matrix. The iteration starts from random matrices which are chosen from a
normal distribution with mean 0, variance 1. U and V are obtained by the column
normalization of U and V which are the optimal solution of iteration rules in Equation
(4); and the non-negative diagonal matrix S stores the weights of the columns of
U and V . The i’th diagonal element of S corresponds to the i’th community, or
the i’th column of matrix U and V .

According to Equation (3), to gain the number of paths from nodes to communities
(U*) and the number of paths from communities to nodes (V °), the weights in S
should be properly assigned to U° and V °. Intuitively, the weight of the input paths
of node should be quantitively equated with the weight of the output paths of node.

Therefore, the weights in S are equally distributed by:

U S

o —

(6)

=

V° =VS

By Equation (6), we gain the number of paths from nodes to communities and the
number of paths from communities to nodes. Note that their sum can produce an
integrated closeness degree between nodes and communities, which is necessary for
the directed network analysis:

1
W =UV° =U +V)32 ()
If one do not want to separately consider U° and V °, the integrated quantity,
W *°, would give a consolidated result which combines the two directions. To
specifically illustrate the difference among U°, V° and W °, we apply our method
on a 11-nodes network studied in [3], as follows:
Let r have a value of 2; the output of Equations (5),(6) and (7) is:
Ul = 0.533 0.533 0.533 0.550 0.550 0.109 0 0 0 0 0
| 0 0 0 0.004 0.004 0.163 0.543 0.543 0.533 0.533 0.533 ]
Ve _{0‘533 0.533 0.533 0.543 0.543 0.163 0.004 0.004 0 0 0 ]
0 0 0 0 0 0.109 0.550 0.550 0.533 0.533 0.533]

o [1.066 1.066 1.066 1.093 1.093 0.272 0.004 0.004 0 0 0
0 0 0 0.004 0.004 0.272 1.093 1.093 1.066 1.066 1.066 |




Cluster | Cluster 2

(©

Fig. 2. Community assignments for 11-nodes network from the results of (a) U°, (b) V° and
(© w-.

Based on the above results, it is not difficult to find that the status of node 6 in U°
and V° are the exact opposite of each other. In the result from U °, since there is
more number of paths from node 6 to community 2 than that to community 1, node 6
is assigned to community 1, as Fig. 2(a) shows. In the result from V °, since there is
far less number of paths from community 2 to node 6 than that from community 1 to
node 6, node 6 is assigned to the community 2, as Fig. 2(b) shows. However, in the
result from W °, the closeness degrees of node 6 to both communities are exactly the
same, as Fig. 2(c) shows. Therefore, W ° is the integrated similarity degree which
combines the degrees on two directions. In general cases, we use W ° to provide the
clustering result in our framework.

2.3 Feature Matrix

Choosing a feature matrix to store the topological information of a network is a
fundamental problem. Here, we select diffusion kernel [15] as the feature matrix.
Some graph kernels have been developed [16] to decipher the topological
relationships that are implicit in the graph data and make them explicit. One of these
is known as diffusion kernel which captures the long-range relationship between
nodes through enumerating the number of paths connecting them [16].

Firstly, we review the diffusion kernel of a common undirected network. The
Laplacian of undirected network is the following matrix:
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where d; is the degree of node i. Diffusion kernel , the exponential of matrix L, is
defined as:
n 2 3
KzeXp(ﬂL):lim(l-l-’BLj :1+,8L+%L2+%L3+~-~ 9)
N—oo n !
where g is a positive constant to control the degree of diffusion. In undirected

networks, the resulting matrix K is symmetric and positive definite. It is a valid
kernel. A similarity matrix Y can be obtained by normalizing the kernel matrix K in
such a way:

Yy = = (10)

Note that, the diffusion kernel of undirected network starts with a symmetric
adjacency matrix. However, in directed network, the adjacency matrix A is not
symmetric. Therefore, directed networks should have an alternative form of kernel
which could be traced back to a different Laplacian. The Laplacian of undirected and
weighted network is the following matrix:

Aij7 Ii.l
|_'ii_ = 11
) {_diom’ |=j ( )

where d is the out degree (weighted) of node i. It is naturally an asymmetric
matrix. So, its kernel matrix K%=exp( ﬂLd) and the resulted feature matrix are also

asymmetric. Frankly speaking, K® do reflect the number of directed paths from one
node to another in an asymmetric manner. In this paper, we choose A= 0.1 in the

feature matrices in our study.

2.4  Directfied and Fuzzified Variant of the Modularity Function

If a priori knowledge of the community number is absent, the optimal number of
communities should be determined by some computational methods in a self-
consistent way without human intervention. Recently, a concept of modularity
function Q introduced by Newman and Girvan [11]has been broadly used as a valid
measure for community structure. It comes from the notion that: only if the number of
edges within communities is significantly higher than would be expected purely by
chance can we justifiably claim to have found significant community structure. The
original modularity of a network is then defined as:

Q=12%ﬁ

dd;
2m .5Cicj (12)



where Ajj is an element of the adjacency matrix, §j is the Kronecker delta symbol,
and ¢; is the label of the community to which vertex i is assigned.

Then one maximizes Q over possible divisions of the network into communities,
the maximum being taken as the best estimate of the true communities in the network.
So, the optimal number of fuzzy communities can be determined by the modularity
function Q which gains its maximum on a certain value of I.

In the fuzzy clustering method of Nepusz[8], a fuzzified variant of the modularity

Q is presented as:
1 didj
Qf:%” Aij_ﬂ " Sy (13)

1]

.
where S = Z HqHy and H, is the fuzzy membership degree of node i to the
k=1

community k. The probability of the event that vertex i belongs to the same

community as vertex j becomes the dot product of their membership vectors, resulting

in the similarity measure Sj;, which can be used in place of §_. to obtain a fuzzified
i~

variant of the modularity.
As for directed network, Newman [2] presented a new modularity function Qq,
which is generally applicable for directed networks:

d-OUtdi-n
% ZQZ{A" v }5 (14

i.j

where Ajj is defined in the conventional manner to be 1 if there is an edge from j to i
and zero otherwise, and  d°* is the out-degree of node i and d ;” is the in-degree of

node j and M is the total number of directed edges in the network. Indeed edge i-j
make larger contributions to this expression if d}” and/or d°"is small.

Each of the above two modularity, Qs and Qq, has its advantages which the other
one does not has. To combine their advantages, we propose another variant of the
modularity Q as:

1 d_ouldi_n
o w@h—— I ]S“ (15)
which can be applied to fuzzy clustering in directed networks.

The modularity can be either positive or negative, with positive values indicating
the possible presence of community structure. One can search for community
structure precisely by looking for the divisions of a network that have positive, and
preferably large, values of the modularity. In order to determine the optimal number
of fuzzy communities in directed networks, we iteratively increase  and choose the
one which results in the highest modularity Qg;.
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3 Test of the Method

3.1 Random Graph

For illustrative purposes, we consider an artificial computer-generated network,
designed specifically to test the performance of the algorithm. As Fig. 3a shows, this
network is generated with N = 40 nodes, split into two communities containing 20
nodes each. We put 120 directed edges in each community at random and 120
directed edges between the two communities at random. The edges that fall within
groups are biasedly assigned directions so that they are more likely to point from one
group to another. As we apply c-NNSVD on this network, the two communities are
detected almost perfectly: just two nodes out of 40 are misclassified. This is
confirmed in Fig. 3(a), which shows the results of the application of our method. If
we ignore the directions, however, using the algorithm presented in [10], there is
nearly no community structure to be found in this network, as Fig. 3(b) shows.

(b)

Fig. 3. Community assignments for the two-community random network described in the text
from (a) the algorithm of this paper and (b) an undirected clustering algorithm in [10]. The true
community assignments are denoted by vertex shape or shaded region. The different colors
represent different communities obtained by the algorithms.

0.7

- 'OMNINU
/ 0.6
G /]
gu‘:ﬁm\' . g f :Q;‘G“‘ 'oaé.!:nnoora 0.5
L S | ) A N o 0.4
I"FHID&"' 1 J quUUFf 8
L S 03
TUESDAY I - T ~
: | , T :bcmum' 0.2
| PMONTH Loy B
m':nn:_snaa- A *rm: Goser
@ ioncin vl 0.1
: 0
e Boae 2 3 4 5 6 7
ViR Number of communities
(@) (b)

Fig. 4. The communities of the word DAY in the South Florida Free Association coupled with
the determination of the optimal number of communities. (a) By the method presented in this
paper, the word DAY is discovered to be the overlapping node which has the largest
membership degree to the yellow group and the second-largest membership degree to the blue
group. (b) Histogram of Qg for different choices on number of communities.
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3.2  Word Association Graph

We examined a directed network obtained from the South Florida Free Association
norms list [17] (containing 10617 nodes and 63788 links), where the weight of a
directed link from one word to another indicates the frequency that the people in the
survey associated the end point of the link with its start point. We picked a sub-
network with 20 nodes from the list and chose 4 as the optimal number of clusters, see
details in Fig. 4(b) which indicates that the peak for Qg of 0.5745 is achieved at r = 4.
For illustration in Fig. 4(a), we showed the (colour coded) modules of the word DAY
obtained by c-NNSVD, with the overlap emphasized in nested color. According to its
different meanings, this word participates in four, strongly internally connected
modules. The green community can be associated with work days. The yellow
community consists of day times, the gray community contains common adjectives of
day related to weather, and the blue community can be associated with the calendar.
Separately, the closeness degrees of the word DAY to the four communities is 0.018,
1.355, 0.019 and 0.059, which indicate that the yellow group is the dominant
community of node DAY and the blue group follows.

4 Conclusions

In this paper we presented a new algorithm for identifying overlapping communities
in directed networks based on two matrices of similarity between node and
community. An integrated quantity was proposed to give a consolidated result and it
was shown, through several examples that this leads to detection of the overlapping
community structure of the directed network.
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Sear ch Space Restriction of Neuro-evolution through
Constrained M odularization of Neural Networks
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Abstract. Evolving recurrent neural networks for behavior controlrobots
equipped with larger sets of sensors and actuators is difficie to the large
search spaces that come with the larger number of input aipditoseurons. We
proposeconstrained modularizatioas a novel technique to reduce the search
space for such evolutions. Appropriate neural networkslarded manually into
logically and spatially related neuro-modules based onaionowledge of the
targeted problem. Thesonstraint functionare applied to these neuro-modules to
force the compliance of user defined restrictions and miatiFor neuro-modules
this will facilitate complex symmetries and other spatelhtions, local process-
ing of related sensors and actuators, the reuse of funtti@ao-modules, fine
control of synaptic connections, and a non-destructivesmeer operator. With
an implementation of this so called ICONE method severabbiehs for non-
trivial robots have already been evolved successfully.

1 Introduction

The development of recurrent neural networks for behavamtrol of autonomous
robots with evolutionary methods has a long and succesisidrly [10], [4], [6]. Nev-
ertheless, most experiments work with robots having onlgnallsnumber of sensors
and actuators, as in typical experiments described in 9] Although interesting non-
trivial behaviors have to be expected to come up especiallya@mplex robots having
a larger number of sensors and actuators, only few expetshhene been conducted in
this domain. One main reason is that the search space fov+eeutrollers gets incon-
veniently large if more and more sensor and motor neurons trelve used. This often
makes it infeasible to evolve interesting solutions in ozable time.

To cope with such large search spaces, strategies and tiesuhiave to be found
that reduce the search space or that assist the experinteigigide evolution towards
effective network topologies. In this contribution, we pose that the manual segmen-
tation of neural networks into smalle@onstrainedsub-networks, calledeuro-modules
[11][9], can significantly restrict the search space. Tduastrained modularizatiors
based on domain knowledge about the behavior problem tolbedsd he induced re-
strictions on the modules exclude large parts of the searabesand focus the search
on network topologies that have a higher chance to providesaet! solution. The kind
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of solution hereby can be biased by the experimenter to a kxtend during the mod-
ularization. Furthermore resulting network topologietenfare better to understand
than unconstrained ones, allow an easier identificatiorelef/ant network parts, and
make the reuse of already evolved networks structureskgesWVith this approach the
evolutionary algorithm is not used as a universal problelwesdhat creates complex
networks from scratch. Instead evolution is used merely t®hto help the experi-
menter to confirm his specific solution approaches, that swally still too complex to
be constructed by hand.

In the next chapter we define the teromnstrained modularizatigmeuron group
andneuro-modules they are used here. Then, in chapter 3, we describe howlanodu
ization of large neural networks can reduce the search spatehy resulting solutions
of modular neuro-evolution often are easier to understairgt indications of the us-
ability of this approach, based on the implementation of thethod, are discussed in
chapter 4 and 5, followed by a conclusion in the final chapter.

2 Constrained Modularization of Neural Networks

2.1 Constrained Modularization

The decomposition of a recurrent neural network into smaflierarchically and spa-
tially organized sub-networks is here calleddularization A network hereby is, based
on domain knowledge and user experience, manually sgitiomhnected neuron groups
by the experimenter (Fig. 1 shows an example). To each negraupfunctional con-
straintscan be added, that force the compliance of user defined tionitaor structural
restrictions. These constraint functions can implememtrastriction and manipulate
the neural network directly, so that violations of constsaie.g. originating from muta-
tion operators, can be counteracted immediately.

With this constrained modularizatiotihe user tries to restrict the network develop-
ment in such a way, that only a certain, promising type of oekvstructures is possi-
ble. Hereby the user constructs a kind of constraint maskh®mneural network, that
specifically limits the network topology and thus leads tonaber search space for the
evolutionary algorithm.

Neurons can be grouped in two different ways: (1) by simpleroe groups, or
(2) by more restrictive neuro-modules. Neuron groups andaiemodules both allow
a detailed topological, hierarchical and functional g of the network to exclude
unwanted areas of the search space. Both types of grouprdgéined in the next two
sections.

2.2 Neuron Groups

The simplest way to group neurons is the creatiomefiron groups These groups
may contain any number of neurons sharing topological,tfanal or other proper-
ties. Hereby neuron groups can arbitrarily overlap. Thuigheseuron can be part of
many neuron groups at the same time. Neuron groups can e tdigpnstraint func-

tions These functions force the compliance of certain, user ddfgonstraints, rules
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and heuristics for their member neurons. This may includeekample, limiting the
number of member neurons or synapses, forcing specific kihsignaptic connection
patterns, allowing synaptic plasticity for its members esalving dependencies be-
tween neurons and synapses. The constraint functiondahedefine the purpose of a
group and contribute significantly to a search space réstnic

2.3 Neuro-modules

A stronger grouping of neurons is represented by so caillgdo-modulesNeuro-
modules are similar to neuron groups, but do not intersettitatly; i.e., neurons can
only be part of a single neuro-module at the same time. Howeesiro-modules can
be members of other neuro-modules and therefore can sesubasodules

Neurons in a neuro-module are encapsulated by the module.tiibse neurons are
only visible to the neurons of the same neuro-module. To eonthe module with
external neurons, it can provide a neural interface. This lma achieved by mark-
ing selected neurons of the moduleiapgut or outputneurons (compare Fig. 1 where
these neurons are marked withand O). During evolution synaptic connections are
inserted only between members of the same neuro-moduledntetface neurons of
sub-modules. Neuro-modules thus can be regarded as efratapsindependent neural
building-blocks with well defined interfaces. Their spégiarpose is to group strongly
related neurons together (e.g. the sensors and motors iot @jahe neurons of a func-
tional structure) and to control the way these neurons canext to neurons outside of
the module.

3 How Constrained Modularization Foster s Successful Evolutions

Modularizing and constraining a neural network accordmgléomain knowledge of
a behavioral problem can restrict the search space for reglotion significantly.
For comparison, an unconstrained minimal neuro-contrftewalking of a humanoid
robot with 42 motor and 37 sensor neurons already allows28@0 synapses, while the
same, but constrained modular network in Fig. 1 only alloB@ihdependent synapses.
In this figure it can also be seen, that the modularized nétvganuch more structured
than an unconstrained one. It shows, that the constraingebriealready biases the
possible network structures, here to get a symmetric né&tfimr walking based on
internal oscillators or on an acceleration sensor (at th@todule). This also shows that
the initial networks for a neuro-evolution have to be spealfy modularized regarding
the given problem to be solved. Therefore, even for the saotdgm, different kinds of
modularization promote different approaches to soluti@xgerimenters can use this
to bias the networks towards desired solution approaches.

Constrained modularization reduces the search space Isyramming the structure,
function and evolution process of the networks, as is desdrin the next sections.

3.1 StructureConstraints

Neuro-modules, with their ability to hierarchically sttue a network and to shield
their members from disruptive connections from arbitravyrses, bias the network
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Symmetry with Left Side

Fig. 1. Left: Constrained modularization of the control network of a hooid robot. The 37

sensor and 42 motor neurons are separated into modulesiaxrty their locations on the robot
(head, arms, middle body, legs). A symmetry constraint keenithe neural structure of the right
side. The upper left module was extended by an evolvableattmodule and a filter module.

Clones of these module€{and F’) have been added to each used motor neuron and acceleration

sensor. Additional functional modules have been adted\( M, L) that can be exchanged during
crossover by modules of the same type. These modules aretedp® implement the actual
behavior controller. During evolution neurons are only edido these functional modules. In
(A) and (M) oscillator modules have been added that might bdified and incorporated into
the control networkRight: This network is the result of executing the constraints Far left
network. To additionally restrict the search space, syioggathways Black Dotted Lineshave
been added.

topologies towards local processing units, rather thamtds/networks with high con-
nectivity. This excludes many — in principle also potemyialuccessful — topologies.
But as a heuristic, large, highly connected networks terfgetanable to evolve com-
plex local processing sub-networks, because synapsesafituitrary sources influence
most neuron clusters in a disturbing way. This problem iases as the number of neu-
rons in the network gets larger, because the probabilitafsynapse to be unrelated,
and therefore potentially disruptive, increases with gveruron. Therefore we expect
highly connected networks to have a lower probability toque interesting, non-trivial
solutions [1]. Therefore neuro-modules can be used to pm@mlausible connections
based on domain knowledge, such as grouping motors andrseofsihe same joint
together. Neuro-modules also allow the definitiorsphaptic pathways.e. to prevent
or permit connections between modules explicitly.

A powerful constraint on the structure of neuron groups ésdéfinition ofsymme-
tries andrepetitive structuresDepending, of course, on the targeted behavior problem,
many evolutions can be greatly restricted when the desieddork is assumed to be
symmetric. Examples are walking or squatting of a humanolmbt or the repetitive
structure of a multi-legged walking machine. Symmetrianaee large parts of the
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search space, because the parameters of all symmetrizexheeund synapses are not
part of the search space any more (e.g. the entire rightsiBliyi 1).

An additional positive effect on the structure using moduakion is the better read-
ability of the resulting networks (see Fig. 1). Functionaheents can be isolated more
easily and signal paths can be better traced, because nmazgis®s are locally con-
nected and have less dependencies to other parts of therketwo

3.2 Functional Constraints

Neuro-modules bias evolution to evolve local processiritsuthat are often related to
local functions. Although, admittedly, it can not be guaegd that the evolved structure
of a module implements a single, well defined function, thredéncy still is towards
functions distributed over only a few, local modules. Thilt simplifies the isolation
of such functions when an evolved network is analyzed.

Neuro-modules can also be used to represent predefineddivalatinits, that may
origin from previous evolutions or analytic reasoning. ®adunctional processing unit
is found by evolution, it can be reused in future evolutioasaural building block.
Forcing evolution to reinvent already known processingauim each evolution from
scratch only blows up the search space without any gain fr@sdientific perspective.
With an additionaheuro-module insertiomutation operator that can insert predefined
neural building blocks from a library, larger, functionathore complex networks can
evolve in shorter time.

Neural building-blocks can also be constrained with \&pgcificconstraint func-
tions. Because building blocks can be constructed by hartheumh often based on
evolved structures — specialized constraint functionsemaadded. Such functions can
be used to ensure, for instance, that the function or congitexcture of a module is
preserved independently of the mutations taking placey Taa also be used to de-
sigh complex modules, such as neural fields [3], memory b8} oscillators [12],
structures with adaptive synapses and the like.

Constraints can also be useddimne a mutable neuro-module and to reuse the
same network structure in multiple places of the networkhia way the function of
this module can still evolve, while it is used with all modétons in several places,
profiting from enhancements immediately. A common usaghisfi$ the definition of
sensor filters or motor controllers (as in Fig. 1), where #rae structure is required for
any sensor or motor of the same type. If the sensor or motdesgdmilar in all places,
then the controller has not to be optimized multiple times.

3.3 Evolutionary Constraints

Neuro-modules are a suitable target for modification opesaduring evolution. Be-
cause neuro-modules are well structured, providing a fpenterface to their sur-

rounding network parts, they can be exchanged and replaiteamly little impact on

the rest of the network. This enables the usageadular crossovetCrossover in most
neural network implementations is highly destructive duthe potentially large struc-
tural differences between parents. Crossover between wuetated networks most
probably produces networks that are less fit than both of feeients, so that most of
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these networks usually do not survive. Modular crossoviass affected by this prob-
lem, because crossover takes place only at well defined rlefwests, namely at the
module level. Modules are only replaced by compatible meslulvhich means that
their interfaces match and the module types are similar.

In addition to module exchange between parents, modulesatsaybe exchanged
by compatible modules from alibrary of predefined builditars or by neuro-modules
co-evolving with the behavior controllers in their own ptgtions.

A particular benefit of constrained modularization for enin is that the approach
to solve a given behavior problem can be biased to a larga@xteadvance. This way
the experimenter does not only specify the problem to beesblbut also influences to
a high degree, how the problem is going to be solved. Alsoiténation of evolutions
becomes much easier: The behavior problem may be solvedyirapplying sharp
restrictions on the evolving networks. Then, iterativéihe network can be opened for
new solution approaches to stepwise enhance the behavior.

4 Application

The modularization approach with the described featuredkan implemented in the
ICONE (Interactively Constrained Neuro-Evolution) madh@urrently the implemen-
tation supports structure evolution based on neuron, $gapd neuro-module inser-
tions. Explicit specifications of neural pathways betweenrn-modules are consid-
ered, as well as connection restrictions induced by theghical interfaces of neuro-
modules. Neuron groups and neuro-modules can be restrigtedrbitrary, user de-
fined constraint functions, such as symmetry, cloning asttictions of neuron and
synapse structures. A library of neuro-modules as basidibgiblocks is under con-
tinuous construction, including neuro-modules for difierkinds of oscillations, mem-
ory, joint controllers, sensor filters, event detectioms)text switches and behavior in-
terpolation. During evolution all aspects of the evoluéionalgorithm can be modified
on-line to guide evolution through the search space.

Manually modularizing large networks is not trivial. Thires a graphical neural
network editor was implemented that supports the visualipugation of all mentioned
aspects of the neural networks. Without such an editor, taoidation is difficult to

apply.

5 Examples

The modularization technique has been applied to develaporeontrollers for sev-
eral complex robots. These robots include for instanceithiegged walking machine
Octaviowith 24 sensor and 18 motor neurons, and Ak8erieshumanoid robot with
37 sensor and 42 motor neurons. The developed behaviotglael among others —
different kinds of walking, squatting and stabilized stisugd

Some examples are shown in Fig. 2 and Fig. 3. Due to spacelfioris, details on
the evolved behaviors will be presented in upcoming pubiboa. But it can be said,
that with pure structure evolution solutions for these kaddoroblems could not be
found at all.



Fig. 2. Network and time-series of an evolved neuro-controllervimtking with the A-Series
humanoid, based on a constrained initial network simildfitp 1. The initial network was con-
strained to search for solutions based on the acceleratimsoss of the shouldeM{d of Upper
Right Modulg. Substantially different networks can be produced stgrivith internal pattern
generators as in Fig. 1. [Evolutios: 400 generations with 150 individuals].

Fig. 3. Network and time-series of an evolved neuro-controllerviatking with the 6-legged
walking machineOctavia Here only one leg controlletdpper Lef) is evolved, all other legs
clone this prototype controller. In addition the networlstaright / left symmetry. The focus
of this experiment is to find a universal leg controller for altinlegged walking machine and
appropriate interconnection patterns. With minor adjestts of the constraints the focus of the
experiment can be changed, e.g. to find specialized legattams for front, mid and hind legs.
[Evolution: =~ 300 generations with 100 individuals].
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6 Discussion

Modularizing a network by applying domain knowledge and esg@erience obviously
restricts the search space for neuro-evolution algorititiempts to restrict the search
space have been conducted by many authors, because wigktridtions the evolution
of large network topologies of non-trivial robots becomdgasible.

A common approach is the use of specific genome represamattmat imply for
instance a fully symmetric network [7], [13]. This approaen be compared to mod-
ularization with symmetry constraints. But because theraginy is embedded directly
in the genome representation or in the genotype-phenotgmpimg, a new genome
type has to be created for each new experimental scenaso.cdimplex, stacked sym-
metries are difficult to set up. During evolution such gensraee rigid and can not
be extended if needed. Using, as proposed here, constuaictidns to influence the
relations of network parts, symmetry can be implementedsasiple extension of the
network genome and can easily be removed or changed withanging the genome
type. Furthermore constraints are not restricted to symymait can enforce any kind
of structural dependency, like complex spatial connestemused in neural fields [3].

Another approach to reduce the search space is to focus nisiyerific parts of the
target robot. For instance, walking may be evolved with dhky legs of a humanoid
robot, replacing the entire upper body by a simple block ofiparable mass [13]. This,
indeed, reduces the search space, because all motors aodssefthe simplified body
parts have been removed. Though, extending such a contmtlee full robot becomes
difficult, because the evolved controllers will ignore th8uence of the other moving
body parts. Also, for each new approach, a new simulated tasoto be designed, that
focuses on the desired motor and sensor aspects, and tieeatfo iterative evolution
in small steps becomes more difficult. With the proposed resthation technique,
the complex target robot can be used right from the begintiimgvanted sensors and
motors can be excluded in the beginning by synaptic pathestyictions and can be re-
enabled at any time during the evolution. Therefore thewdian can start with a min-
imal subset of the robot’s actuators and sensors, but daimstude the non-essential
robot parts to further optimize the controllers.

A third popular search space restriction approach is strageuse. In most cases
structure reuse is implemented within developmental giwisystems, like Cellular
Encoding [5], where the genotype is mapped to a phenotypeplyiag a sequence
of construction rules. These algorithms have been showeuigerstructures in multiple
places while evolving thetructure blue-printonly once. A disadvantage of such de-
velopmental approaches is, that the resulting modulactstres are difficult to isolate
for later usage. Furthermore, it is difficult to translateoanplex starting network with
this kind of modularity into its genotype representatiomd & monitor and manipu-
late these modular structures during evolution. Neuro-ueslas building blocks on
the other hand do not require a complex mapping from gendtypbenotype and thus
can be reused as entire structure with little effort. Otleehtiques [2], such as Mod-
ular NEAT [14], try to automatically define neuro-modulesadding-blocks without
a complex genotype-phenotype mapping. But also here,iiradtmodules have to be
reinvented in every evolution, because predefined modalesot be used. Further-
more, the reused sub-networks are arbitrarily aligned ¢airiput and output neurons
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without domain knowledge, so that — especially in large ek — proper use of the
modules becomes unlikely again.

Constrained modularization allows the utilization of alemioned search space
restriction methods in a uniform, extensible frameworkth\dppropriate libraries of
functional neuro-modules new types of larger control neksa@an be developed, that
might give deeper and even new insights into neural orgéoizaf behavior. Con-
strained modularization as a general principle does ndliynesstrict experimenters in
their approaches, because new approaches can be simpgniapied by introducing
new constraint functions.

7 Conclusions

In this contribution it was discussed hawenstrained modularizationf large neural
networks for robot control can significantly reduce the skapace for neuro-evolution
processes. Large neural networks can be spatially andalbgipartitioned byneu-
ron groupsandneuro-modulesBoth types of grouping can be the targetcohstraint
functions that force the compliance of — partly very specific — coristsasuch as net-
work symmetries, dependencies, module cloning and comvitgdtructures between
or within modules. The modularization is done manually tplgmlomain knowledge
and to bias the search towards desired solution approdohbg way the search space
is restricted by the user to a well defined potential soluspace, which increases the
chance to find appropriate solutions. For modular neuralors new types of evo-
lution operators are definethodular crossoveandneuro-module insertiondlodular
crossover allows the exchange of sub-networks in a minjntabtructive way. Inser-
tions of functional neuro-modules as mutation allow theeegton of a network with
already working functional sub-networks, which easesridwestfer of findings from pre-
vious evolutions and relieves evolution from reinventifrgady known structures. The
described approach has been used to develop differentibehér several robots with
many sensors and actuators, including a multi-legged walkiachine and humanoid
robots. Detailed results are described in upcoming putiidics.
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Abstract. The majority of this paper relies on some forms of automatic decom-
position tasks into modules. Both described methods execute automatic neural
network modularization. Modules in neural networks emerge; we do not build
them straightforward by penalizing interference between modules. The concept
of emergence takes an important role in the study of the design of neural net-
works. In the paper, we study an emergence of modular connectionist architec-
ture of neural networks, in which networks composing the architecture compete
to learn the training patterns directly from the interaction of reproduction with
the task environment. Network architectures emerge from an initial set of ran-
domly connected networks. In this way can be eliminated connections so as to
dedicate different portions of the system to learn different tasks. Mentioned me-
thods were demonstrated for experimental task solving.

1 Reasons for a Modular Approach

The primary reason for adopting an ensemble approach to combining nets into a
modular architecture is that of improving performance. There are a number of possi-
ble justifications for taking a modular approach to combining artificial neural nets.
First, a modular approach might be used to solve a problem which could not have
been solved through the use of a unitary net. A modular system of nets can exploit the
specialist capabilities of the modules, and consequently achieve results, which would
not be possible in a single net. Another reason for adopting a modular approach is
that of reducing model complexity, and making the overall system easier to under-
stand. This justification is often common to engineering design in general. Other
possible reasons include the incorporation of prior knowledge, which usually takes
the form of suggesting an appropriate decomposition of the global task. A modular
approach can also reduce training times and make subsequent modification and ex-
tension easier. Finally, a modular approach is likely to be adopted when there is con-
cern to achieve some degree of neurobiological or psychological plausibility, since it
is reasonable to suppose that most aspects of information processing involve mod-
ularity.

A modular neural network can be characterized by a series of independent neural
networks moderated by some intermediary. Each independent neural network serves
as a module and operates on separate inputs to accomplish some subtask of the task
the network hopes to perform [1]. The intermediary takes the outputs of each module
and processes them to produce the output of the network as a whole. The interme-
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diary only accepts the modules’ outputs. As well, the modules do not interact with
each other.

When a modular approach is adopted, for what ever reason, there are different
ways in which a problem might be decomposed. In particular, task decomposition can
be either explicit or automatic. Explicit decomposition is likely to depend on an un-
derstanding of the task and the capabilities of the modular components. It provides a
way of incorporating prior knowledge and understanding of the task in question. For
instance, a particular decomposition might be implied by the structure of the task, if
for example, the data came from different sources or took different forms [3]. Simi-
larly, modular decomposition might be guided by theories or evidence about the like-
ly modular structures in the human brain, or the human information processing sys-
tem. By contrast, automatic decomposition, where decomposition is accomplished
through the blind application of a data partitioning algorithm, is particularly useful
when expert knowledge of the task is not available.

There has been a considerable amount of research on automatic decomposition
methods, for example, the mixture-of-experts [4] and hierarchical mixtures-of-experts
approaches [6]. Under such methods, the input data is partitioned into several sub-
spaces, and simple systems are trained to fit the local data. Such data partitioning is
often more effective than training on the whole input data space. In general, the con-
cern in this work is to improve performance, and as such it is closely related to the
ensemble approach. Thus performance on a task could be improved by either taking a
modular decompositional approach, or by creating an ensemble of parallel solutions
to the problem, and combining them in some way. As yet, it is not clear where one
approach is likely to be better than the other [7]. It is increasingly recognized that the
effectiveness of ensemble approaches depends on the extent to which their failures
are correlated and a decompositional approach promotes the reduction of such corre-
lation. However, there are few direct comparisons of the relative effectiveness of a
modular approach relying on automatic decomposition, and an ensemble-based ap-
proach. Neither are the two alternatives necessarily mutually exclusive, since it is
possible to envisage an ensemble system, where each member was composed of a set
of modules created through automatic decomposition. The majority of this paper
relies on some forms of automatic decomposition tasks into modules. In this way can
be eliminated connections so as to dedicate different portions of the system to learn
different tasks.

2 Automatic Task Decomposition

An artificial neural network may show slow learning because it is being trained to
simultaneously perform two or more tasks. For example, suppose that the mapping
from the input units to each output unit constitute separate tasks and that the network
is trained via backpropagation algorithm. During training, each output unit provides
error information to the hidden units from which it receives a projection. It is possible
that the error information from one output unit may indicate that a hidden unit’s acti-
vation should be lager and, at the same time, the error information from another out-
put unit may indicate that the same unit’s activation should be smaller. This conflict
in the error information is called spatial crosstalk. Although spatial crosstalk is clearly
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seen in terms of the backpropagation algorithm, it is limited to networks trained using
this algorithm. Therefore, spatial crosstalk may be considered as resulting from the
connectivity of the network and not from the learning algorithm used to training the
network. By maintaining short connections and eliminating long connections, spatial
crosstalk can be reduced and tasks can be decomposed into subtasks. Although the
three systems show in Fig. 1 [5] can be trained to perform the same mapping. System
in Panel A has its hidden units fully interconnected with its output units and is most
susceptible to spatial crosstalk. System in the Panel B has its hidden units on the top
fully interconnected with its top output units and its hidden units on the bottom fully
interconnected with its bottom output units. Thus, it consists of two separate networks
(two 4-4-2 networks). If the mapping that this system is trained to perform can be
decomposed so that the mapping from the input units to the top set of output units
may be thought of as one task and the mapping from the input units to the bottom set
of output units may be thought of as a second task, then this system has dedicated
different networks to learn the different tasks. Because there is no spatial crosstalk
between the two tasks, such a system may show rapid learning. The Panel C has hid-
den unit project to only a single output unit. It therefore consists of a separate net-
work for each output unit (four 4-2-1 networks) and is immune to spatial crosstalk.

Fig. 1. A: One 4-8-4 network. B: Two 4-4-2 networks. C: Four 4-2-1 networks [5].

Artificial neural network with many adjustable weights may learn to training data
quickly and accurately, but generalize poorly to novel data. One method of improving
the generalization abilities of network with too many “degrees of freedom” is to de-
cay or eliminate weights during training. A second method is to match the structure of
the network with the structure task. For example, networks, whose units have local
receptive fields, can learn to reliably, detect the local structure that is often present in
pattern recognition tasks. A system that maintains short connections and eliminates
long connections should generalize well because its degrees of freedom are reduced
and because its units develop local receptive fields.

Artificial neural network often develop relatively not interpretable representations
for at least two reasons. Networks whose units are densely connected tend to develop
representations that are distributed over many units and, thus, are difficult to interpret.
In addition, not interpretable representations often develop in networks that are
trained to simultaneously perform multiple tasks. In contrast, networks, whose units
tend to have local receptive fields, towards short connections may develop relatively
local representations. Furthermore, such a system may be capable of eliminating
connections so that different networks learn different tasks.
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3 Evolutionary Module Acquisition

There is a simple model of evolutionary emergence of modular neural network topol-
ogy introduced in the chapter [10]. We describe a method of optimization of the
modular neural network architecture via evolutionary algorithms that uses a fix part
of network architecture in the genome. Every individual is a multilayer neural net-
work with one hidden layer of units. We have to fix its maximal architecture (e.g.
number of input, hidden and output units) before the main calculation. Population P
consists of P = {au, op,...,a}, where p is equal to a number of chromosomes in P.
Every chromosome consists of binary digits that are generated randomly with a prob-
ability 0.5. Chromosome, with m hidden units a n output units is shown in Fig. 2,
where e; = 0, if the connection between i - th hidden unit and j - 4 output unit of the
individual doesn’t exist, and e; = 1, if the connection exists (i = 1,...,m; j=1,...n).
Connections between input and hidden units are not included in chromosomes, be-
cause they are not necessary for modular network architecture creation. Each individ-
ual (e.g. the network architecture) is partially adapted by backpropagation, its fitness
function is then calculated as follows (1):

Fitness, = EL (1)
k

where k=1, ..., p (p = number of individuals in the population);
E, is the error after backpropagation adaptation of the k-individual.

Population P:
| individual: ey |...  [individual: g4 ... lindividual: @, |

INDIVIUAL e:

1611, . Clp, €ml, e Chn |

Fig. 2. A population of individuals.

Only two mutation operators are used, no crossover operators. The first mutation
operator is defined in following way. In the every generation, one individual is ran-
domly chosen and each bit is changed with probability 0.01 (e.g. if the connection
exists — after mutation it does not exist and vice versa) in its chromosome. The
second mutation operator is defined in following way, see Fig. 3. First, we define a
pattern of z-consecutive zeroes that will be fixed during whole calculation. The pat-
tern is determined by number of neurons in the output layer, which represent individ-
ual modules. Output neurons are organized into d modules, t = min (ti, i =1 ,..., d),
where ¢ is number of neurons in the pattern, and # is number of neurons in the i-th
module. Defined pattern is represented as a continuous chain of #-zeros, which is not
changed during applications of the second mutation operator. Fixation of #-zeros
chain can be defended by biological motivation, where the protection against muta-
tion is usually related to continuous section. Defined pattern in the chromosome al-
lows temporary fixing the existing module against the application of the second muta-
tion operator. Then we find the define pattern in each chromosome. If we find only
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one continuous pattern, we fix it. If we find more than n-consecutive zeroes, we ran-
domly choose n-consecutive zeroes from them and fix them. The fixed pattern
represents a single atomic unit and the second mutation operator is not applied to it.
Only to the rest of bits from chromosomes are changed with probability 0.01. Thus,
each individual has a unique collection of fixed patterns. The second mutation opera-
tor is applied to every individual r - times, where r is a parameter and its value is
define before calculation. Only the best individual or its best mutation is included into
the next generation. Next, all individuals in the new generation release a portion of
the pattern that was fixed that way they can once again be manipulated by reproduc-
tion operators. The process of evolutionary algorithms is ended when the population
achieves the maximal generation or if there is no improvement in the objective func-
tion for a define sequence of consecutive generations.

A: 001000101010...01100100...000...0000010...
4] DU 0 0 0 0
k<t k=t k>t
B: 001000101010...01100100...000...0000010...
001000101010...01100100...000...0000010...

Fig. 3. The second mutation operator. The fixed pattern is #- consecutive zeroes, k is number of
consecutive zeroes in the chromosome. A: An individual before mutation. B: Possible chromo-
somal representation of the individual after mutation.

4 Modularization Via Evolutionary Hill — climbing Algorithm

The second presented method is based on hill-climbing algorithm with learning [8].
Evolution of the probability vector is modeled by a genetic algorithm on the basis of
the best evaluated individuals in this algorithm, which are selected on the basis of the
speed and quality of learning of the given tasks [11]. Population P is presented in Fig.
2 and is defined in the same way as in the previous chapter. Individuals in the next
generation are generated from the updating probability vector. Every individual (e.g.
its neural network architecture) is partially adapted by backpropagation [2] and eva-
luated by the quality of its adaptation. The number of epochs is a very important
criterion in the described method, because modular architectures start to learn faster
than fully connected multilayer connectionist networks [9]. Our goal is to produce
such a neural network architecture that is able to learn a given problem with the smal-
lest error. A backpropagation error is a fitness function parameter. A fitness function
value Fi of the i - th individual is calculated as follows (2):

con

2 S
F =4
' con

2

where i=1, ..., p (pis number of individuals in a population);
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fo=— is a fitness function value of the i-th individual in the k-th
ik
adaptation;
k=1, ..., con (con is a define constant, con>1);
E, is the backpropagation error of the i-th individual in the

k-th adaptation.

Crossover and mutation operators are not used in the described method. This algo-
rithm is based on the probability vector emergency. The probability vector is updated
on the basis of well - evaluated individuals in the population. Entries 0 <w; <I of
the probability vector w = (wii,..., Win,..., Wai,..., wm) € [0,1]™ , (m is number of
hidden units; n is number of output units) determine probabilities of appearance of
‘1° entries in given positions.

Entries of the Probability Vector are Calculated in the Next Generation as
follows:

— We calculate Fay , e.g the average fitness value of the population in the given
generation (3):

P
2 3
Favg = l:]p 4
where p  is anumber of individual in the population;
Fi  is afitness function value of the i-th individual, see a formula (2).

— We choose a set of ¢ individuals with Fi>Fag ,e.2. a1 @2, ..., g (I <q<p,
where p is a number of individuals in the population.

— Entries of the probability vector of the population w’x € [0,1] are calculated as
follows (4):

wi = (1= 2w, + ] 4)
where k=1, ..., mn (mn is a number of the probability vector w entries);

W, is a value of the k-th entry of the probability vector in the last gen-

eration;
A isaconstant (0 < A< 1);

W,Z is a value of the k-th bit of the probability vector w that is calcu-
lated as follows (5):

G 5)

where (ex)iis a value of the k-th bit of the chromosome of the indi-
vidual i (i=1, ...,q) and it is true Fi > Fa for these individuals.
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The best individual in the population is included to the next population automati-
cally. Values of the chromosomes of the rest of individuals @ (i = 2, ...,p) are calcu-
lated for the next generation as follows: if wk = 0(1), then (ex)i = O(1); if 0 <wk< 1
the corresponding (ex)i is determined randomly by (6):

U if random < w,
(ek )i B {O otherwise ©)

where k=1, ..., p (p = number of individuals in the population).
The process of the evolutionary algorithm is ended if the saturation parameter
7o(w)" is greater than a predefined value.

5 Experiments

In the experimental task, a system (neural network) recognizes a binary pattern and
its rotation. Neural network with one hidden layer of units with topology 9-13-8
adapted by backpropagation represents a system here. The creation of such modular
system that would solve partial tasks correctly was our target. Basic set of training
patterns are organized into a matrix (grid) 3x3, which is represented by binary vector.
The direction of rotation is defined towards the basic pattern by four possibilities: (a)
0°-state without rotation, (b) turn 90°, (¢) turn 180°, and (d) turn 270°. The training
set includes four patterns that are defined in four different states, see Fig 4. Thus, we
get 16 different combinations of shapes and their rotations. Eight output units are
divided into two subsets of four units. Units in the “shape” subset are responsible for
indicating the identity of the input. Each input is associated with one of the four
“shape” units, and one of the four rotations. The system is considered to correctly
recognize and locate an input.

Parameters of the Experimental part.

— Population (both methods):
Number of individuals: 100.
Neural network architecture: 9 — 13 — 8.
Training algorithm: Backpropagation
(learning rate: 1; momentum: 0; training times: 150 epochs in the partial training).

— Parameters of method from chapter 3:
Probability of mutations: 0.01.
Fix pattern in the second mutation: “0000”.
r: 5.
Ending conditions: Maximal number of generations: 500.

* #(w) = a number of entries (wi) of the probability vector w that are less then wey or (1- wep),
where wer is a small positive number.
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— Parameters of method from chapter 4:
con: 100; see formula (2).
A: 0.2; see formula (4).
Ending conditions: The saturation parameter, o{w): 0.99*m*n
(m=13, number of hidden units; n=8, number of output units); wey = 0.01.

g 5z o=l K Sty

WHICH SHAPE SHAPE EOTATION
ARARRRRR ™

| HIDDEN LAYER |

E INPUT: shape 1. rotation 90°

Fig. 4. A defined pattern in a training set.

Table 1 shows a table of results. The table shows an evolution of the best individ-
ual in the population. It is evidently seen, the connections among modules are elimi-
nated faster than connection inside modules. These results support also the fact that
systems were created dynamically during a learning process. Method from chapter 3
gives the following results: six hidden units of the best individual realise the “shape”
task and its four units realise the “rotation” task in the last generation. Method from
chapter 4 gives the following results: seven hidden units of the best individual realise
the “shape” task and its four units realise the “rotation” task in the last generation.
Calculation was terminated, when ending conditions were fulfilled, e.g. for method
from chapter 3 was calculation terminated in the 498-th generation and for method
from chapter 4 was calculation terminated in the 353-rd generation. Other numerical
simulations give very similar results.

Table 1. Table of results.
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Method from chapter 3: Method from chapter 4:
nurpber of number of number of number of
hidden . . number of . . . . number of
. o hidden units: | . hidden units: | hidden units: | .
generation units: " interferen- o " interferen-
hape” »rotate cos: Shape LHrotate cos:
”Stask' task: ' task: task: '
1 1 1 11 0 0 13
100 2 3 8 1 3 9
200 3 3 7 4 3 6
300 4 3 6 6 3 4
400 5 4 4 GENERATION: 353
GENERATION: 498 7 | 4 | 2
6 | 4 | 3

We made the following experiment. Neural network with modular architecture (the
best individual) and network with the same arrangement of neurons, but by all con-
nections between layers have been adapted via backpropagation to solve the above
defined task. For each model was done 10 adaptations, the weight vector was at the
beginning of each simulation generated randomly. In Fig. 5 the average error function
values is shown: (a) modular neural network and (b) fully connected neural network
during the whole calculation. Adaptation of each neural network was terminated after
1500 iterations. The figure shows that the network with a modular architecture, which
includes only a limited number of connections, allows to learn the considered prob-
lem as efficiently as a monolithic networks designed within an appropriate architec-
ture.

modular architecture

“““““““ fully connected individual

modular architecture |} fully connected individual

0 500 1000 0 500 1000

iterations

A B

Fig. 5. The history of average error function value during whole calculation A: method from
chapter 3; B: method from chapter 4.

6 Conclusions

Both described method are methods of automatic neural net modularization. The
problem specific modularisations of the representation emerge through the iteration
of the evolutionary algorithm directly with the problem.

When interpreting solutions, we have to be careful, because algorithms’ parame-
ters are not the object of the optimization process, but we obtain solutions just in
dependence on these parameters. Both numerical simulations reflect the modular
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structure significance as a tool of a negative influence interference rejection on neural
network adaptation. As the hidden units in the not split network are perceived as
some input information processing for output units, where a multiple pattern classifi-
cation is realized on the basis of diametrically distinct criteria (e.g. neural network
has to classify patterns according to their form, location, colors, ...), so in the begin-
ning of an adaptation process the interference can be the reason that output units also
get further information about general object classifications than the one which is
desired from them. This negative interference influence on running the adaptive
process is removed just at the modular neural network architecture, which is proved
also by results of the performed experiment. The winning modular network architec-
ture was the product of emergence using evolutional algorithms. The neural network
serves here as a special way of solving the evolutional algorithm, because of its struc-
ture and properties it can be slightly transformed into an individual in evolutionary
algorithm.
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Abstract. This paper presents a newly developed path language nG@ivi€th
intended to ease the navigation, information query and fivation of general,
directed model graphs for the FACETS Stage 2 Large ScalerfRgaoable Neu-
ral Hardware Simulator. Furthermore it introduces the eedd the relevant as-
pects of the FACETS system and its software framework aaogisd

1 Introduction

The projecfast Analog Computing with Emergent Transient States — FFSJE] aims
at the exploring of various computational aspects of bimlagneural networks. This
encompasses the development of a novel neural hardwarrsyst a joined effort
of research groups of thRuprecht-Karls-Universitt Heidelbergand theTechnische
Universitat Dresden|[2], [3]

The complexity of such a hardware system also requires aguatie software sys-
tem, to configure, control and validate results. A graph tasedel description was
developed, representing all aspects of the system. Taaicttenith and query the mod-
els, the description is extended by a query interface.

This paper is split into three sections. The first sectiorcdless the current state
of the FACETS systems, focusing modelling and mapping sskenbedded in the
FACETS software framework, the graph model itself will bedtluced. The next sec-
tion characterizes the motivation and requirements fodthelopment of the path lan-
guageGMPath and distinguishes it from existing query languages. Afeends, basing
on a meta description the grammar of the language is defindtharsemantics of its
elements are explained. lllustrating the us&MPath the last section provides several
examples, based on a given concrete graph model by exganime queries in more
detail.

2 Current State of the FACETS Systems from the Mapping
Viewpoint

The systems involved in the FACETS mapping and configurgiiocess can be sep-
arated into the hardware model on the one hand and the bialagiodel on the other
hand, which should be simulated on the hardware system tatteconfiguration. To
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encompass the modelling and mapping problem a so cgitigzh models used and in-
tegrated in the FACETS software framework. The models aaddftware framework
are characterized in the following sections.

2.1 Biological Model

The biological systems, intended to be mapped to the FACEF&#are, can be con-
sidered as networks of neurons and synapses. A neuron igc®anto a number of
synapses and characterized by a set of parameters. A syo@apsects a source and
a target neuron and is as well assigned to parameters. Tis&ralion of an example
model is shown in figure 1.

2.2 Hardware Model

package based
bus

wafers

system level

digital bus

system \
[

csross points / wafer level

switches

synapse blocks

synapse

neuron blocks block level
(param, .., param )

neuron
(parama, . paramn)

Fig. 1. Example of a biological system wiffig. 2. Hierarchical view of the FACETS hardware
7 neurons and1 synapses. system.

The current FACETS Stage 2 system [2] consists of analog teddE (integrate-
and-fire) neurons and synapses, which implement a STDPe(sipile-dependency-
plasticity) mechanism. The neuron’s and synapses’ behaviefined by a set of con-
figurable parameters.

A hierarchical view of the system is illustrated in figure Z€Theural signals gen-
erated by the hardware neurons (block level), are propdgadea complex transfer
network to be fed as stimuli into the hardware synapses oe teborded externally. It
is also possible to generate external stimuli and applyethoshe neural network.

The transfer network is designed to provide as much topcéddiexibility as pos-
sible, while complying with the technological constrair@enerated neural signals are
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encoded blockwise to a digital bus- (wafer level) and anlayarg package based net-
work (system level). These contains configurable crosspaimd switches, duplicating
and routing the signals to their destined synapses. Afteodiag the signals stimulate
their assigned hardware dendrites, whose combinationstioe receiving neurons. [3]
Due to the system complexity and network properties seveagiping and configura-
tion constraints result, forming a multi-criteria optiration problem, which will not be
discussed here further. [8]

2.3 FACETS Software Framework
The FACETS software framework consists of

— acollection of programs to carry out experiments (e.g. camaf/e experiments on
neural software simulators and the FACETS hardware [4]),

a database of benchmarks provided by FACETS partners 8. §6]),

a system simulation of the FACETS hardware [7],

software for mapping and configurati¢®,

andvisualization and analyzation toolE8]

As presented in previous work [10] we developed a modelgnatting the FACETS
model descriptions for the mapping, configuration, visatlon and analyzation soft-
ware. Based on a graph, it stands for an universal data esgegon for the software
framework. The mapping, routing and configuration algonitretrieve their informa-
tion from thisGraph Model (GM) process, transform them and write back the results.
Furthermore the decentralized structure makes the moiabseifor parallelization. A
summarized model characterization is given in the nexi@etd clarify the structure
whereon the newly developed query languédéPath(see 3) bases.

2.4 The Graph Model to Navigate

The graph modef7 = (V, E), basing on a hyper graph [11] [12], consists of single
nodesy; € V, that may hold a name or a value as a data item respectivelyndties
can be assigned to each other by three types of directectsdges; € E as shown
figure 3:

— hierarchical edgesmodelling a hierarchy of two nodes, i.e. to represent aaioet-
component relationship

— named edgesmodelling a labeled relationship between two nodes

— hyper edgesassigning a named edge to a node, i.e. to model a detailedptéon
of a node-node relationship.

Because of its structure the model is fully navigable, whindans every node or
edge is reachable from every position in the graph. So it ssipte to create flexi-
ble models with respect to the biological networks and haréveystem complexity,
although it consumes more memory and setup time than morpaxtrdescriptions.

Given this model the biological and the hardware system eaddscribed as two
combined graph&'s = (Vs, Eg) andGy = (Vy, En) respectively, also containing
meta information, e.g. algorithm configurations and resdlhe model transformation
is not discussed here further [9] [10].



36

nod
value

hierarchical
edge

*

Seenn % hyper edge

Fig. 3. Graph Model (example).

named edge

3 @GwPat h - A Language for Graph Model Navigation

The flexible and universal use of the GM by placing and roudilygrithms, configura-
tion, visualization and analyzation tools as well as the deéined modifications during
run-time calls for an adequate and multi-purpose interfahe main requirements are:

— access from every node or edge as entry point

— step by step navigation along all elements (nodes and efiilsgng a path
— list based results, assignable to variables

— GM modification support

Inspired by theXMLpath languag&Path [13] we developed a textual interface,
namedGMPath, to navigate in and retrieve information from the GM by eimgrat

any node or edge, and address parts of it locally. Thus it Isancéassified akokator-
sprache

system
node start
hyper node
edge

’____....

[e outgoing
edges

incoming
edge

subjacent
nodes

Fig. 4. Logical environment of GM nodes and edges.



37

Fig. 4 shows the logical environment of a GM node or edge ietsdy. Each adja-
cent element requires to be accessible within one "separatep”, i.e. one basic navi-
gational operation. Following the hierarchical structiinenavigational focus should be
able to shift from the current nodadde valug up- or downward to theuperior node
or thesubjacent nodefRegarding th@amedandhyper edged should be possible to
move along these connections forward and backward to steirandend nodes

Since allGMPath queries return result lists, containing the matching GMnalets,
they should be storable to variable names. By selectingthases, all nodes and edges
can be used as an entry point for a n@MPath query. Furthermor&MPath requires
to be able to address GM elements unambiguously to createnodes and edges by
this way. Thus, paths can built up during run-time by thewgafe tools and processed
with implemented API functions, parsing the paths and reng the result elements.
This provides a dynamic interface to retrieve data from aadipulate the GM.

In the following sections the characteristics ®@MPath and the query language
XPath will be compared before the grammar and semantics are defimdxplained
consecutively.

3.1 Comparison toXPATH

As shown in the previous section the used data model is mufetethan a XML
document, it does not include attributes and types of théadoed data. However it is
possible to interconnect nodes semantically via namedsadgaodel distinct relation-
ships between GM elements.

In opposition toXPATH GMPathdoes not distinguish between localization steps,
axes tests or predicates, it only performs navigation saépsy the GM structure with
a matching result. Tests on subjacent nodes have to be exaasitests of reachability,
comparisons of their assigned values are realized by kB MPath queries.

In addition to the navigation along the hierarchy, known xesan XPATH local-
ization or separation steps for named and hyper edges agssay, to navigate strictly
along the semantic relationships beside the hierarchicaitsre.

Furthermore irCreation ModeGMPath can be used to generate nodes and edges
by addressing them unambiguously.

3.2 Grammar and Semantics

The grammar o6MPathis defined with th&sOLD Meta-Languageand written, tested
and validated in th&old Parsing Systeifid4]. The meta-description uses the following
elements to specify the MPathgrammar:

— terminal symbolsrepresented through Regular Expressions
— rules using the Backus-Naur Form
— character setsbased on set notation

Terminal Symbols As shown in Tab. XGMPath contains five terminal symbols that
cover the comment lin€§ and two different general entry pointSystem N ode and
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HERE) for the next query to start. Furthermore a wildcard symbblehcapsulates
groups of GM elements without naming them and identifiersdresand represent node
and edge lists.

Table 1. GMPath terminal symbols.

terminal symbol  [description

% comment line

* wildcard, placeholder for groups of nodes and edges
SystemNode root node of the current GM, entry point of a query
HERE current start element, entry point of a query

(Edge—)Identifier|(#) + alphanumerics + special characters for node and esigedines

Rules Rules define the syntax of the grammaiGMPath program is a sequence of
operations  of arbitrary length, interpreted sequentially in ordertadit appearance.

<Program> ::= <operation> <Program>

GMPath differs between four different types of operations as showFab. 2, which
are explained below. Any operation@MPath is delimited by a\nl symbol.

Table 2. GMPath operations.

operation |description
commands switch between search only and manipulation mode
assignment node or edge list assignment to variable names

nodepathoperation|path operation with a node list as result
edgepathoperation |path operation with a edge list as result

<commands> ::= 'EnableCreateMode’ | 'EnableFindMode’

By default theFindMode is enabled. This means a query ending at non existing GM
elements (e.g. a node name was not found) returns an empiy &idist with the invalid
element respectively.

EnablingCreateMode causes the insertion of missing elements if addressed by a
guery unambiguously (e.g. a hode name at a distinct posititte GM hierarchy).

<assignment> ::= ldentifier '=" <node path operation> |
Conldentifier '=" <edge path operation>

This operation assigns the result list of node- or edge ppénations to identifiers to
serve as substitutes. It is possible to embed identifiersarernomplex operations to
concatenate queries.
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<node path operation> ::=
<node path operation> {/,//',\',/\\'} <name> |
<node path operation> '?(" <path operation> ') |
<edge path operation> {>'/'<'.”"} <name> |
<name>

<edge path operation> :=
<node path operation> {>'/'<’,"”'} <name> |
<edge path operation> '?(" <path operation> ') |
<connection list name>

<path operation> ::= <node path operation> |

<edge path operation>
<name> := |dentifier | ’ *' | 'SystemNode’ | 'HERE’
<connection list name> ::= Conldentifier | 'HERE’

Node- andedge path operation s are used to 'navigate’ through the GM, using
separators  defining the logical direction (see also Fig. 4). On the onalthis can
be done by moving along the hierarchy structure upward omsicawd node by node.
On the other hand the GM elements are also accessible byatangjglong the named-
and hyper edges, passing alternately from node to edge ffdaval backward.

In general anode- or edge path operation is a concatenation nbde - and
edge names divided byseparators , forming a path.

Table 3. GMPath separators.

separator |description

/ one step downward in hierarchy

// all nodes below in hierarchy

\ one step upward in hierarchy

\\ all nodes above in hierarchy

> outgoing edge(s), forward connected node(s)

< incoming edge(s), backward connected node(s)
A to and from hyper connected node

?(local query )|intersection with local query

Separators The Separators are listed in Tab. 3. They are used to regiaceutrent

list of nodes or edges by a list of adjacent GM elements filtdrg the given name,

if not the wildcard symbot is used alternatively. In other words the separators stand
for basic 'moves’ inside the GM as illustrated exemplary ig.F5. The intersection
"?(local query )’ processes an independent local query for every GM element a
start position in the current list. Forming a filter functiahthe current path position,
each GM element whose local query returns no result will beatded.

Thus concatenating names of nodes and edges or wildcafseparators shapes
complex GM queries by readdressing iteratively adjacent &&ments (see also Fig.
4). To clarify the usage dBMPath paths, some more advanced examples are appended
in section 4.
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Fig. 5. Examples of basics operations (separators) to navigataghra simplified GM.

4 Examples ofGVPat h Usage

Based on the GM in Fig. 6 a few example queries may ease thersiadding of
GMPath and its application.

First a simple search query along the hierarchy and nameesddglemonstrated,
followed by a filter query based using local requests. Thel thkample shows how to
add new elements to the model.

result 1

result 3

result 2

oL 1vno3

oL vno3

Ol Tvno3

Fig. 6. Example GM for demonstratingMPath queries.

4.1 Query 1 - Searching and Assignment
LikedPeople = SystemNode/  *>LIKES>=*

This query starts from the master no&y$temNodend advances down hierarchically
one 'separator step’/{, collecting all subjacent nodes froRersonAto PersonCdue
to the wildcard symbol*). Defined by the next separatar), the outgoing edges of
all these three nodes are chosen. The following edge h3kieS selects only the edge
from thePersonAnode. The last separatas ) finalized by the wildcard symbol returns
the target node of this edge regardless of the nodes name.

The resulting node listRersonB is stored to a variable named "LikedPeople” for
later use.
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4.2 Query 2 - Filtering

SystemNode/ * ?(HERE/Gender>EQUAL_TO>M)
?(HERE<KNOWS)/Age>EQUAL_TO>32

After collecting all person nodes two local queri@s¢.() are started. The first one se-
lects only these with the gender &fI’ (PersonA Person(, the second one checks for
incomingKNOWSedges Person(. Afterwards the path steps down to the age of the
resulting persons.

The query returns with the age of all male persons, who arevkrimy someone
(32).

4.3 Query 3 - Creating

EnableCreateMode

NameNode = SystemNode/PersonB/Name
NameValueNode = NameNode/Anna
NameNode > EQUAL_TO > NameValueNode

This example consists of more then dA®Path queries to create new GM elements,
where the new line symbol is not shown.

First the creation mode is set by tReableCreateModeommand. In the next two
lines new subjacent nodellgmeandAnng are created below theersonBnode, ad-
dressed by their hierarchical locations. Assigned to twiatde namesNameNodand
NameValueNodéoth new nodes are stored. The fo&NMPath query, using the previ-
ous stored nodes, i.e. navigating from one list to the otgexdvancing forward along
a not existingcQUAL TO edge, creates the new connection and results in a strucure a
shown in Fig. 6.

5 Conclusions

This paper introduced the newly developed query lang@gath. GMPath bases on
iterated basic localization steps through the logical mmrhent of the current position,
providing searching, filtering, storing and manipulatiomdtions to the user. Queries
start from every entry point of the model and can be build upedyically by a program
through available API functions.

In the FACETS software framewoi®MPath is used to provide the user with an
universal interface to the internal graph models. Filega@ioing GMPath commands
are parsed before and after the programmatic GM creatioppimg and configuration
process to allow modifications of parameters, of the modectsire itself and the addi-
tion of user data. Furthermo@MPath forms an interface to graph models, which are
displayed, debugged and analyzed by external visualizidgaaalyzation applications,
allowing them to extract well-defined parts of the examinathanodel.

For the future we aim to expand the functionality@iMPath. We plan to imple-
ment set operations for the result lists, which are curyestibred in variables (e.g.
set unions, intersections and difference sets). Furtleeintiusion oflGMPath queries
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stored as strings in the data model itself should make thdlimgnof complex queries
more comfortable. Finally more options should be availabimanipulate the GM (e.g.

re

naming or deleting elements).
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Abstract. In this contribution we will provide the reader with outcosnef the
development of a novel software framework for an unique wadéale neuromor-
phic hardware system. The hardware system is describedabstract manner,
followed by its software framework which is in the focus ofstipaper. We then
introduce the benchmarks applied for process evaluatidnpaovide examples
of the achieved results.

1 Introduction

Several current neuromorphic research projects, suétastsAnalog Computing with
Emergent Transient States — FACETH or the Spiking Neural Network Simulator —
SpiNNaker{2], aim at the exploration of novel computational aspedttamge scale,
biologically inspired neural networks with over a milliorurons, simulated in real-
time or even with a speed-up in respect of the biological etsghes on full custom or
modified general purpose hardware.

The undertaken hardware research of FACETS encompasseég\thmpment of
a novel neuromorphic wafer-scale hardware system in amtwalhtive effort of the
Ruprecht-Karls-Universéit Heidelberg — UHEland theTechnische Universit Dres-
den—TUD The current level of developme®tage dncorporates the design of a wafer
element and its dedicated software framework for the mappfmeural architectures
onto the hardware substrate as well as the configuration@mtdot of said system.

The wafer-scale hardware system is first described in gedtib followed by the
details of the software framework in section 2. The benclksapplied are presented
in section 3 along with examples. An outlook concludes thistgbution.

1.1 FACETS Stage 2 Architectural Overview

For the description of the FACETS Stage 2 hardware systemtesluced by [1], [3]
and in the following referred to 4552 hardware we will focus on details of the architec-
ture that influence the mapping of given neural networks trgdardware. Figure 1 (a)
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shows an abstract view of one wafer element of 82 hardware system. The foun-
dation layer of the=S2 hardware is an array of reticles shown as light gray squares,
housingHigh Input Count Analog Neural Network — HICAN HC circuitry that was
developed at UHEI [1] and implements neural functionalitgls as neurons, synapses
and weight adaptation. On top resides a layer of communpicaiicuits calledigital
Network Chip — DNGdeveloped at TUD [3]. The third and topmost layer represents
a regular grid of FPGA% colored dark gray. Disabled or inoperable components are
colored white.
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¥
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W;fer ni
Fig. 1. Abstract view of a) one wafer from top and b) the communicati@rarchy from side.
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Figure 1 (b) depicts the communication networks, theirdrigny and connectivity.
Two distinct communication networks can be distinguistfedasynchronous, address
coded, namedlayer 1 — L1utilized by HCs at wafer level foiintra-wafer communi-
cation and a second one, nameader 2 — L2utilized by DNCs and FPGAs for syn-
chronous, packet basé@uer-wafercommunication. Host computers are connected via
Ethernetto the FPGAs to handle the mapping, configuration and copnatess de-
scribed in the following.

1.2 TheHICANN

A simplified view of theHC chip following [1], [4] is drawn in figure 2 as a symmetric
array of neural and communication elements. @eadritic membraneor denmems

are the neural core components. Each denmem provides tvaptsyrinput circuits
emulating ion channels. Up & denmems can be grouped, i.e. connected together to
form a neuron with a higher synaptic input count or a moreitketanodel by increasing

the number of conductive time constanBynapsessituated in an adjacersynapse
array are connected to the denmems. Whether a synapse is contethiedexcitatory

or inhibitory input of a denmem is decided row-wise in #ymapse drivepr syndriver

A syndriver is fed from one of x 27 vertical L1 bus lanes viaelect-switcheer from

a neighboring syndriver. It drives the synapsesstiabe linesas depicted as thin lines

in figure 2 lenq 1) , and selects the receiving synapse via an address, thelitiésk

A fixed part of the synapses address determines the strabéolinse and follows the
address pattern shown in lefi8) . Each synapse belongs to the denmem located below
the synapse array in the same column. A group of denmems igcted to one o2°

3 Field Programmable Gate Array
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horizontal L1 bus lanes and L2 bypaiority-encoderthat multiplexes and prioritizes
the bus access.

select switch. [ &
o[

horizol
dendritic membrane

synaptig drivers.
synapfic.array.

Fig. 2. A schematic view of one HICANN [1], [4].

Repeaterandcross-barsare then configured to interconnect the vertical and hori-
zontal buses withunidirectionalconnections. The neural pulses generated by the den-
mems are transmitted asynchronously on L1 as bit sequemceli@g the senders ad-
dress or arbitrarily on L2 encoding the address and the pinfseg.

1.3 Parameter Space

Every denmem implements the dynamics of &daptive Exponential Integrate-and-
Fire — AdExmodel [5] including model’s mechanisms such as spike fraquadaption
and active spike generation. A total of 24 parameters déterthe behavior of a den-
mem, some of which correspond directly to the AdEx modelerthare of technical
naturé.

The synaptic weight of a synapse is determined by an indafidigital weight
value of4-bit resolution and a fixed maximum conductamgggy, which can be set for
every synapse row by a programmable analog parameter. Tlapsg circuit generates
a square current pulse, which is injected into one of the gyménput circuits of the
denmem, where it modulates a transient synaptic conduetdiine amplitude of this
square current pulseiseight X gmax and its length isstpr, whererstpr is modulated
by the short term depression or facilitation — STOB] plasticity mechanism in the
synapse driver.

We assume a hardware model setup for configuration df 8&hardware follow-
ing [1], [4]. With an8 x 8 HCreticle array oB HCs per reticle and8 functioning reticles
per wafer, thus a total ¢f12 HCs. Furthermore§ HCs per DNC result int8 DNCs and
4 DNCs per FPGA give a total of2 FPGAs. WithNye.nc € {23,24,...,28}° a

4 As configurable parameters allow to vary time constants ofalend synaptic dynamics it is
possible to operate tHeS2 hardware system with a speed-up fraf? to 10° compared to
biological scale, depending on the system’s load, as exeesgeed-up may lead to pulse loss
due to limited bandwidth.

5 Numazmc is held constant for a network and determined by the detedll lef the neuron
model [1] or the synaptic input count of a neuron [4].
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maximum neurons pdtiC the total number of available neurons is given/Byy =
H x Nyaerc, WwhereH denotes the number 6fCs available for mappirfg The num-
ber of synapses available on the hardwégey = H x Sy, with Sge being number
of synapses pefiC, which for the used configuration is constant wizth: 2562 and the
number of dendritic elements pEIC D which equal® x 256. With 26 denmems per
priority encoder this results i priority encoders and thus@abit L1 address.

2 TheFACETS Stage 2 Software Framewor k

The FS2 software framework provides the functionality to map a givetwork onto
the hardware, configure it, control the simulation and exantihe results of the map-
ping and simulation process.

2.1 PyNN & Hardware Abstraction Layer

For the FACETS hardware systems, a user interface is novablaithat provides a
novel way to bridge the gap between the domains of pure sodtaienulators and neu-
romorphic hardware devices [7], [8]. The Python-based alewgtwork modeling lan-
guage PyNN [9], see Figure 3 has been developed by FACETS mranibrepresents
a simulator-independent set of functions, classes andlatda for units and random
number generation that can be used to describe complex mafdebtworks of spiking
neurons using a biological terminology - either in an int&ike or in a scripting fashion.
Models written with the PyNN API can be executed with variestablished software
simulation tools such as NEURON [10], NEST [11], Brian [12RCSIM [13]. For all
supported back-ends a specific Python module automaticatiglates the PyNN code
into the native scripting language of the individual sintafaand re-translates the re-
sulting output into the domain of PyNN. Thus, PyNN allows &si¢y port experiments
between all supported simulators and to directly and gteiviely compare the results.
Among many other benefits, this unification approach carease the reproducibility
of experiments and decreases code redundancy.

Network Event /O
Setup _ Experiment Control
T T

PYNN

PYNN. PYNN. PyNN. PYNN. PyNN.
nest pcsim brian neuron facets:\w

Simulator specific
PYNN modules

! ' ! |

Python Interface PyPCSIM

Native Interface
)

Simulator Kernel NEST PCSIM Brian NEURON

L
HIM Configurator

Wafer  Spike Train
Config  1/0

Communication

1
Fs2 HWIInterface

Fig. 3. PyNN framework following [9] and th&S2 HAL.

The integration of the FACETS hardware systems into the Pgihcept adopts
these benefits. Additionally, the PyNN hardware modulersfégransparent method via
which the communities of computational neuroscience amglamorphic engineering

® H is not necessarily equal to the total numbeHas available in the system.
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can exchange experiments and results. With the novel apiproan-hardware-experts
can be provided with a well documented interface that is eémjlar to interfaces of
most established software simulators [14].

While PyNN itself represents a precise definition of the ustrface, théHardware
Abstraction Layer — HAlmodule actuallymplementshe automated translation of any
given network setup into the data model described in thevigiig, which performs the
mapping of the experiment onto the available hardware ressand into the hardware
parameter domain. The said translation process also ctsithedransition between the
Python domain of PyNN and the C++ objects of the mapping fraonke and all lower
software layers.

2.2 DataMod€

To cope with the hierarchical structure of the hardwareesyst data model resembling

a hierarchical hyper graph was developed [15]. The graphetnoahsists ofvertices
representing data objects aedgesas relationships among them. Where a vertex holds
atomic data, an edge can behirarchical a namedor a hyper edge. Hierarchical
edges model a parent-child relationship, thus structutiegnodel. Named edges form

a directed and named relation between two vertices fronmgdecation in the model
and hyper edges assign a vertex to a named edge, charageérizi more detail. Its
flexibility allows to store every information during the dauration process, i.e. the
models itself as well as the placement, routing and parartratesformation data.

2.3 Datalnterface

To overcome the access of nodes and edges or subsets of s giaments by navi-
gating the native data structure we provide a npath-based query-languageamed
GWPat h. Via GMPath, along with its corresponding API as descrilvethe accompa-
nying publication [16] data can be retrieved from or stor@the models by a program
via static or dynamically created queries.

2.4 TheMapping Process

With regard to topology constraints between hardware ldgcich as connectivity, con-
nection counts, priorities and distances as well as saarget counts the mapping
determines a network configuration and parameter set fdrdahdware. This is accom-
plished in the three steps pfacementrouting andparameter transformatian

During placement, the mapping process assigns neural eterlike neurons or
synapses to distinct hardware elements. As placement csgspdifferent optimiza-
tion objectives, it can be characterized as a multi-catproblem the solution quality
of which influences the overall mapping results significarflossible objectives are,
e.g. to minimize the neural input/output variability cleistise, to minimize the neural
connection count, also clusterwise, or to minimize routilances while maintaining
compliance with constraints such as parameter limitat@rigardware element capac-
ities. As the optimization problem is NP-complete a foreesdd optimization heuristic
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with user-defined weightings, namBEC, was developed to achieve these objectives in
acceptable computation time. This algorithm balancesc#st, the implementation of
said optimization objectives in an n-dimensional spacé antequilibrium is reached.

In a subsequent separation step it assigns its data objedtssters with affine proper-
ties. We distinguish between the simple algorithms deedrib [17] and theNFC.

The routing subsequently determines a configuration fossyimaptic connections
on L1 and L2 and can be split into the two subsequent stepdraf iand inter-wafer
routing. The intra-wafer routing algorithms [4] route cewtivity exclusively on L1
and reserve L2 for inter-wafer routing which is inactive &owafer-scale system.

Parameter transformation finally maps the model parametagiwven neurons and
synapses, such as weights, types or thresholds into haggwaameter space. As not
every biological parameter, or its corresponding modedeater in the PyNN descrip-
tion, has its individual counterpartin hardware but is o#enulated by a set of correlat-
ing parameters, an adequate biology-to-hardware parairatsiation has to be found,
e.g for the membrane circuits a transformation from 18 lgjwlal parameters of the
PyNN AdEx neuron model description into a configuration ofé24ustable electrical
hardware parameters.

The desired speedup factor betweér to 10° which is determined by the temporal
dynamics of the membrane and synaptic circuitry is finaltyoseadjusting parameters
as the size of the membrane capacitances, conductancessésp for charging it or
the current controlling the synaptic conductance.

2.5 Analyss

A new standalone application nam@&daph Visualization Tool — GraViTaids the user
with the analysis and debugging of mapping data. GraViTorporatesnvi si oNN
andH3 graph viewer [18] modules that display graph models in t@ixtund graphical
form and gathers statistical data. One can selectivelysaciagle nodes inside the data
structure and visualize its context, dependency and ogisitwith other nodes in the
system.

Views of GraViTo are shown in figure 4, such as thee viewto browse the hierar-
chical structure of the graph model, the GMPaqtlery viewand the3D view The 3D
view is specialized on renderigMand HVMand the mapping between them in three
dimensional form to provide a contextual view over the medgleir components and
connectivity. It also provides a global overview over thedveare components and the
networks. To support the analysis of the mapping resultewaistatistics are gathered
and displayed, e.g. as histograms for utilization of thessbars, théiC blocks or the
synaptic connection lengths.

3 Benchmarks

Benchmarks aid in evaluating the mapping process. Firsthmaarks concerning map-
ping efficiency with focus on intra-wafer routing and hardevatilization were car-
ried out at UHEI [4] with random networks, macrocolumns amchlly dense/globally
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Fig. 4. Screenshot of GraViTo'’s viewers.

sparse connected networks in order to explore the systessigm space. New bench-
marks are listed in table 1. The new benchmarks are implesdéntPyNN and were
provided from FACETS project partners but also from the nearphic research com-
munity outside of FACETS.

Table 1. Selected Benchmarks.

Benchmark  Description

INCM ALUF Synfire Chain based on [19], provided by
L'Institut de Neurosciences Cognitives de la Méeditegan
—INCM, Marseille, Franceén cooperation with
Albert-Ludwigs-Universitat Freiburg — ALUF, Freiburg,&Bmany

KTH Layer 2/3 Attractor Memory following [20], provided by
Kungliga Tekniska Hogskolan - KTH, Stockholm, Sweden
UNIC Model of Self-Sustained Al States following [21], pided by the

Integrative and Computational Neuroscience Unit — UNIfGhe
Centre national de la recherche scientifique — CNRS, GiYatette, France

As an example we apply the mapping process to the scaled imamksin ad x 4 ret-
icle configuration with aiV 7. rrc = 2° to evaluate the mappirguality. As a measure
of the overall mapping quality the parameters as defined iyjgly. Therouting quality
qRoute = Smap/SB10, With Sprep being the number of mapped synapses dgro,
which is the number of synapses in BB Thus,(1 — groute) IS therelative synapse
loss Thehardware efficiencys described by rw = Sarap/Sew, WhereSgy de-
notes the synapses available on#82 hardware for mapping. As a further parameter
for network classification we define the connection density, = Sero/N3;0-
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Fig. 5. Connection matrices of the (a) INCM, (b) KTH and (c) UNIC netks.

Connection matrices for networks o neurons as shown in figure 5 illustrate the
benchmarks synaptic connectivity types. Darker areagsepit groups of neurons with
anps,, above average.

As stated in [2] the worst scenario are randomly connectegarks with a constant
psyn due to their absent locality. In case of a0 above the configurelWIlimit
one may reduce the neurons pE, provide more synapses and thus improwg,:.
at the expense of lesgyyy, but an expanded distribution of neurons and thus longer
connections may consume even more routing resources irat@icertain point again
reducingqroute-

The pg,, of the benchmarks however decrease with apptgx, see 6 (a) leading
to an almost constant or only slightly increasing averageptic input count. Never-
theless the mapping results for networks wit ;o abovel0® show a clear decrease in
qroute DY €xceedind 5% compared to fully routed which may be caused by intra-wafer
routing resources utilized to capacity, invigorated by beesvation of the steepest de-
cline ingroute for UNIC, the network with the lowest avggs,, .

Tests also showed that theC algorithm can minimize the routing losses compared
to the simple algorithms up t20% for networks with a higher locality, such as the
INCM, the more efficient the larger the network.

0.09 800 600

INCM o INCM o
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Fig. 6. Networks avgpsy» (a), BMsize (b) andNFC algorithm runtime (c).

connection density [%]
Model Size [MByte]
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As a second major requirement for the usability of #®2 hardware simulator
platform a fast configuration and reprogramming is ineléaio we use the scaling test
also to determine the software proceszalabilityin terms of time and space.

Figure 6 (b) shows that tH&Mgraph grows almost linearly depending on the number
of neurons and the synaptic density. So for the given bendtsrihe model sizes for
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networks with a neuron count dfz;0 < 10° and an approximate average,, <
10% stay within a acceptable limt DG B. The simpler algorithms runtime scales with
O(n) and remains within an upper bound of approximately 3 hoursreds the NFC
algorithms, in spite of the cubical problem, grows betow:?), as can bee seen in 6 (c)
fulfilling the requirement of a resonable runtime for conqxieapping problems.

Test where carried out und&ed Hat4.1.2 running on arAMD Opt er on'" 875
Dual Core CPUQ2.2G H =z quad processor system witRhG Byte of RAM.

4 Conclusions

Although theFS2 hardware system is on a higher level of abstraction similarther
reconfigurable hardware architectures it is unique in bistfuinctionality and the sys-
tems dimension. So new algorithms and heuristics are negeset take into account
the peculiarities of such a system. We presented outconubisemmchmark examples of
the completd=S2 software framework which seamlessly integratesRB2 hardware
system into PyNN.

As shown by the benchmarks, a mapping is found in a reasotiat@ehowever, the
networks structure of larger networks is modified by thewgafe process and through
hardware resource limitations. To examine the impact cd¢Hesses on the networks
behavior comparative simulations with pre- and post- nagppietlists are carried out
on simulators introduced in section 3. As a further conseqe@ve consider the incor-
poration of L2 into intra-wafer communication as esserdmit will alleviate the L1
losses. Iterative optimization of the mapping results thiéin trade-off between simula-
tion speedup, hardware efficiency and routing quality bystilig the software process
parameters.

An in depth evaluation of the benchmark results will follovittwthe upcoming
publication of the NFC algorithm.
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Abstract. In order to manage a sensor network efficiently, we can divide it logi-
cally into disjoint parts, called clusters. As sensor nodes are resource-constraint,
it is desirable to chose suitable cluster heads and do role-switching of the cluster
heads wherever appropriate. In this work, we design a system that selects new
cluster head through collaboration of multiple software agents in each cluster.
Our system allows to pick up cluster heads dynamically based on current net-
work status. Agents in our design use Fuzzy Logic-based controller to find new
cluster heads.

1 Introduction

Wireless Sensor Network is a deployment of sensor nodes that do data reporting to in-
terested user via sink node. It offers a great facility to remotely monitor an unattended
environment. Due to this feature, sensor networks are widely used in military surveil-
lance, habitat monitoring, industrial plants, and in many other places. Once a sensor
network is deployed, it is necessary to manage it efficiently in order to optimize net-
work life-time.

A sensor network can be managed by hierarchical or flat organization. However,
as hierarchical organization has several benefits over flat network structure, normally a
sensor network is divided into clusters. Here in this work, we design a multi-agent sys-
tem to rotate the role of cluster head nodes. Software agents in our design autonomously
collaborate with each other in the distributed sensor network environment. The remain-
ing part of this paper is organized as follows: section 2 presents some background
knowledge and section 3 defines the problem that his work addresses. Next, section
5 explains the design of our system and inter-agent communication is presented in sec-
tion 6. We conclude our paper in section 7.

2 Background Knowledge

2.1 Wireless Sensor Network

Wireless Sensor Network(WSN) consists of autonomous sensor devices (known as
nodes or motes) that can sense an environment. For example, MicaZ sensor nodes from
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Crossbow! can sense ambient light, barometric pressure, GPS, magnetic field, sound,
photo-sensitive light, photo resistor, humidity and temperature.

Often times, these sensor nodes are battery-powered, and equipped with limited
processing capacity and memory. However, WSNs are very effective and efficient at
monitoring remote environment and communicate real-time data. Sensor nodes can de-
tect events or phenomena, collect and process data, and transmit sensed information to
the interested users.

2.2 Virtual Organization in Sensor Network

WSN differs from an IP network in regards to network backbone because, often times a
WSN does not have any fixed infrastructure. Sensor nodes may run out of battery power
or network topology may change due to some mobile nodes. So, in order to support
data routing, WSN relies on virtual infrastructure which forms on-the-fly during system
operation. One way to manage a sensor network, is to logically divide it into some
disjoint clusters. A particular node in each cluster works as cluster head, and gathers
data from other nodes of the cluster. The cluster head then forwards data to the next hop
node towards the data sink, which is the final destination of any data. Figure 1 shows
an example sensor network with three clusters. We show data reporting from a normal
sensor node to the sink by arrow heads.

# Cluster head
O Normal Node

Fig. 1. Virtual organization in WSN.

3 Problem Definition

In a static network topology, cluster heads of a sensor network die quite early due to
excessive relaying of data stream towards sink. So, in order to prolong network life-
time, a network should rotate the role of cluster heads. For example, if a current cluster
head had drained a significant amount of energy, network should keep the provision to
pick a new cluster head for that cluster. This kind of dynamic load balancing can delay
the first node death and help decrease data packet loss in the network thereby.

Due to the large number of sensor nodes in a typical sensor network, it is not real-
istic to run any centralized algorithm to switch cluster heads. A network needs to have
distributed architecture which can select new cluster heads with local information, and
further, the role-switching should remain quasi-transparent to the remaining network.

! http://www.xbow.com/.
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4 Related Works

For Wireless sensor Networks (WSNs), the major design goal is to minimize energy
consumption and maximize the network lifetime. In the last few years, plenty of at-
tempts of exploring advanced power conservation approaches have been used by re-
searchers for wireless sensor networks. Cluster-based routing approach is one of the
famous energy efficient routing approaches in WSNs. LEACH (Low Energy Adaptive
Clustering Hierarchy) in [1], is the first hierarchical cluster-based routing protocol for
WSNs. This algorithm uses random and periodic rotation of the Cluster Heads (CHs)
for load balancing, which can evenly disperse the energy load among the sensor nodes
in the network. More specifically, the cluster heads belonged to the corresponding clus-
ters will only use for certain number of rounds. After a predefined round, new cluster
heads will be randomly generated, which is based on a role that if the random number
is less than a calculated threshold T'(n), the corresponding sensor node will be selected
as the cluster-head for the current round. This randomized periodic role rotation en-
sures that all the nodes are equally likely to be cluster head nodes. However, simply
random cluster head rotation will select unfavorable cluster heads, which will turn out
high energy consumption in later rounds.

Due to the above reason, in [9], Energy-LEACH protocol improves the procedure
of CH rotation. Similar to LEACH protocol, the process of CH rotation of E-LEACH
is divided into rounds. In the first round, each sensor node has the same probability
to be turned into CH, which means sensor nodes are randomly selected as CHs. In
the next rounds, since the residual energy of each sensor node is different after every
communication round, residual energy of node is considered as the main metric that
decides whether the sensor nodes turn into CHs or not after the first round. The sensor
nodes who have more remaining energy will become CHs rather than the ones with less
remaining energy.

As for the aforementioned two LEACH algorithms, there is a shared drawback, that
is, both of them consumes more CPU cycles, since each sensor node in WSNs has to
calculate the threshold and generate the random numbers in each round. To overcome
this shortcoming, a improved LEACH, called LEACH-C protocol, is proposed in [10].
LEACH-C is a centralized clustering algorithm and uses the same steady-state phase as
in LEACH algorithm. This protocol also produces better performance on cluster heads
rotation. During the set-up phase of LEACH-C, each sensor node sends information
about its current location (this may determine by using GPS) and residual energy level
to the Base station (BS). In order to ensure that the energy load is evenly distributed
among all the sensor nodes in WSNs, The average node energy is computed by the BS,
and then, determines which sensor nodes have energy below this average. Once the CHs
and associated clusters are found, the BS broadcasts a message that obtains the cluster
head ID for each node. If a cluster head ID matches its own ID, the node will be selected
as a cluster head; otherwise the node determines its TDMA slot for data transmission
and goes sleep until it’s time to transmit data. The steady-state phase of LEACH-C is
identical to that of the LEACH protocol.

Based on the above approach, in [11], cluster heads election using fuzzy logic
is proposed, which can minimize energy consumption and provide a substantial in-
crease in network lifetime compared with the probabilistically cluster heads selecting
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approaches. According to this proposed approach, for a cluster, the node elected by the
base station is the node having the maximum chance to become the cluster-head, which
is based on three fuzzy descriptors: energy level in each sensor node, sensor node con-
centration and node centrality with respect to the entire cluster. The operation of this
fuzzy logic cluster-head election scheme is divided into two rounds with each consisting
of a setup and steady state phase similar to LEACH algorithm. During the setup phase,
fuzzy knowledge processing is used for determining the CHs, and then the cluster is
organized. In the steady state phase, the aggregated data is collected by CHs. After that,
CHs perform signal processing functions to compress the data into a single signal. This
composite signal is then sent to the base station. Fuzzy logic control model is core part
of this proposed approach; it includes a fuzzifier, fuzzy rules, fuzzy inference engine,
and a defuzzifier. To be specific, fuzzifier is used to take the crisp inputs from each
of variables of energy, concentration and centrality and determine the degree to which
these inputs belong to each of the appropriate fuzzy sets. Then, these fuzzified inputs
are applied to the antecedents of the fuzzy rules. As for the defuzzification, the input
for this process is the aggregate output fuzzy set chance and the output is a single crisp
number. For fuzzy inference engine, Mamdani Method [13] is commonly used. In [12],
similar cluster heads selections based on fuzzy logic algorithm are also presented.

To our knowledge, several attempts have also been used by some researchers to re-
duce energy consumption based on mobile agents [2][3][4][5]. Due to the constraints
of bandwidth in wireless sensor network, the network’s capacity may not satisfy the
transmission of sensory data. In order to handle the problem of overwhelming data traf-
fic, Qi, et al. [6] proposed Mobile Agent-based Distributed Sensor Network (MADSN)
for multi-sensor data fusion. For this proposed approach, it not only achieves data fu-
sion, but also reduces energy expenditure. However, the application of this approach
can only be applied on cluster-based topologies. MADD approach in [7] is introduced
to deal with this problem. Currently, most energy-efficient proposed approaches are fo-
cused on data-centric model, such as the directed diffusion. By selecting good path to
drain quality data from source nodes, directed diffusion approach can achieve substan-
tial energy gain. However, it still allows redundant sensory traffic to flow back to the
Base station. The main advantage of MADD is to reduce the redundant sensory data.
Through using mobile agent, data is aggregated at each source node and is brought back
to sink. This allows substantial energy gain toward the network lifetime.

To explain the process of MADD approach, it starts when the mobile agent is dis-
patched from the BS with the interest and ends when it returns to the sink with the
aggregated data. The processes involved in MADD are divided into three phases. First,
the mobile agent is dispatched from BS to the first source node. Second, the mobile
agent shifts from the first source node to the last source node, visiting selected source
nodes in between. The drawback for this approach is that it doesn’t always guarantee
the best sequence of nodes to be visited.

To deal with the aforementioned limitations, Shakshuki et al. in [8] proposed a
mobile agent for efficient routing approach (MAER) by using both Dijkstra’s algorithm
and Genetic Algorithms (GAs). As we know, the order of source nodes to be visited by
the mobile agent greatly affects the energy consumption. Although MADD, the work
presented in [7], allows the agent to autonomously select visit sequence of source nodes
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for achieving data aggregation, it does not always provide an optimal sequence. To
address this shortcoming, MAER in [8] introduces Genetic Algorithm (GA) to produce
an optimal route.

S Agent Architecture

An agent in our design consists of four modules: Problem Solver, Knowledge-base
Updater, Scheduler, and Communicator. Further, each agent maintains own knowledge
base in its memory, which gets updated as a result of inter-agent message communi-
cation. Here in this section, we describe different components of individual agent in
detail.

v Communicator

[y

v

‘ KB Updater Module ‘

!

{ Knowledge Base ]

Other Agents

Fig. 2. Agent Architecture.

In our design, the role of an agent software switches between two modes- Cluster
head Mode and Normal Mode. However, at any particular time, within each cluster,
agent software of only one sensor node works in Cluster head Mode, others execute in
Normal Mode.

5.1 Scheduler Module (SM)

This module is in charge of scheduling a new round of cluster head selection. It is active
in Cluster head Mode only. It interacts with Problem Solver Module and Communicator
Module. After periodic interval, it checks the remaining energy of the cluster head node
and initiates new cluster head selection if necessary.

5.2 Problem Solver Module (PSM)

This is the basic working module of an agent. Based on current working mode, PSM
does two distinct tasks:
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Weight Calculation in Normal Mode. We define the weight of a sensor node as a
function of two parameters: Centrality(C) and Remaining Energy(RE). As sensor nodes
are resource-constraint, we use simple Fuzzy Logic based controller in agents to cal-
culate node weight. During Fuzzification phase, we followed the mapping presented in
[11] to convert crisp values to fuzzy values. Figure 3 portrays this Fuzzification process.
We define our own rule-base for fuzzy controller in table 1. PSM uses this rule base to
determine current weight value in fuzzy variable.

1.0 /\ Vo 1.0
N, / \ )
0.5 low med high 05
e close adequate far
0.0 0.0
0 10 50 90 100 0 10 50 90 100
energy centrality
(a) Fuzzy set for fuzzy variable energy (b) Fuzzy set for fuzzy variable centrality

Fig. 3. Fuzzy Sets used in Fuzzy Controller.

Table 1. Fuzzy Rule Base.

Rule Centrality Energy Result

1 Close High High
2 Adequate High High
3 Far High High
4 Close Medium High
5 Adequate Medium Medium
6 Far Medium Medium
7 Close Low Medium
8 Adequate Low Low
9 Far Low Low

New Cluster Head Selection in Cluster head Mode. PSM of cluster head agent op-
erates on all Fuzzy weight values of normal sensor nodes. After comparing multiple
Fuzzy weight values, if some nodes are equally suitable to be the new cluster head,
PSM runs following scheme to break a tie:

In order to Defuzzify, we assign numeric values against different Fuzzy values
High/Close=3, Medium/Adequate=2, and Low/Far=1 and bias the decision by putting
60% importance to energy. For example, if two nodes n; and n; are in a tie with Fuzzy
values {Far, Medium} and {Close, Low} respectively, then PSM computes Defuzzified
values as d; = 1%0.4 + 2*%0.6 = 1.6 and d; = 3*0.4 + 1*0.6 = 1.8. Here d; and d; are
crisp values for node n; and n; respectively. Even after this computation, if PSM can
not break the tie, it compares node IDs and selects node with minimum ID as next
cluster head.
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5.3 Communicator Module (CM)

This module is in charge of sensor radio component and communication with other
agents in the system. If agent software is running in Cluster head Mode, it does two
things: (a) Upon receiving request from SM, it sends out Discovery Message to other
agents; (b) If it receives Weight Message(s), it forwards weight value(s) to PSM.

On the other hand, if the agent is working in Normal Mode, CM does only one thing:
it receives Weight Message(s) and forwards to the Knowledge-base Updater Module.

5.4 Knowledge-base Updater Module (KBUM)

This is the only module that interacts with agent Knowledge-base. KBUM uses a ded-
icated area of sensor node’s memory to maintain the Knowledge-base. Any change in
shared knowledge like- weight updates or rule updates are propagated to it by PSM
and/or CM; and as a result, KBUM synchronizes agent’s local memory with global
state.

5.5 Knowledge-base (KB)

Knowledge-base in an agent holds a local copy of the shared knowledge. An agent’s
KB houses a snapshot of a fragment of global information, that it is interested in. KB
includes rules for Fuzzy controller, latest weights of all neighbor nodes and current
cluster head’s node ID.

6 System Dynamics

6.1 Protocol Message Types

In a collaborative multi-agent system, message passing is an integral part which facili-
tates distributed processing. In this section, we present four different message types that
agents in our design exchange during system operation.

Discovery Message. Once remaining energy of the current cluster head goes below
a threshold value (which is 40% of initial energy in our implementation), cluster head
agent broadcasts Discovery Message. A Discovery Message initiates new cluster head
selection within a cluster.

Weight Message. Weight Message contains latest weight value of a node. This mes-
sage is broadcasted by agent in a normal node as a response to an incoming Discovery
Message from current cluster head.

Control Message. Control Message is used to broadcast any change in routing topol-
ogy. After determining new cluster head, current cluster head agent broadcasts Control
Message indicating new cluster head node ID.
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Data Message. Data Message originates from normal node agents and is used to report
current data readings to the cluster head.

6.2 System Work-flow
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T T
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Fig. 4. Sequence diagram for cluster head mode.

In this section we explain the sequences of operation in our agent-based system.
First, figure 4 shows action sequences for an agent operating in Cluster head Mode.
After periodic interval, SM measures remaining energy of the cluster head node, and if
it is bellow the threshold (i.e., less than 40% of initial energy), SM starts a new cluster
head selection round. It notifies PSM that a new cluster head selection process is in
effect and also requests CM to send out Discovery Message.

CM then sends out Discovery Message in the wireless medium, and in response, it
receives Weight Messages from other agents. CM forwards these node-weights to PSM
for calculation. In turn, PSM requests KBUM to update Knowledge base with newly
received weight values and once PSM receives weights from all nodes, it uses Rule
base to select new cluster head as explained in section 5.2. After finding the new cluster
head, PSM requests CM to convey other nodes about new cluster head, and as a result,
CM sends out new Control Message containing newly chosen cluster head ID.

Figure 5 portrays action sequence of an agent working in Normal Mode. If its CM
receives a Discovery Message from current cluster head, CM requests PSM to compute
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own node weight. Upon computation, PSM returns own weight to CM. CM then en-
capsulates this weight value in a Weight Message and broadcasts that message in the
neighborhood. Besides, if CM receives Weight Message from a different node, it re-
quests KBUM to update agent’s Knowledge base. In a similar way, KB update is also
performed if an agent receives Control Message from current cluster head.

: CM : PSM : KBUM
Recetved | T T :
== ' !
Discovery Pkt - Request to » : Compute Weight !
Compute Weight !
i
Request to ;
{ |
. Broadcast Weight :
Received - : |
Control / Weight Pkt 1 .' !
» | Request to L Update KB
: Update KB
|
i
' Update Done
I pine Do |
. I I
x I

Fig. 5. Sequence diagram for normal mode.

7 Conclusions

In this work, we design a system to rotate the role of cluster heads in a Wireless Sensor
Network. Multiple agents, each residing in individual sensor node, interact with each
other and participate in new cluster head selection. In our design, agent-based archi-
tecture provides flexibility to network management. At the same time, as we use fuzzy
controller, this design can be easily extended by adding new rules in the rule-base. Our
future work focuses on implementing this design in TinyOS operating system for Wire-
less Sensor nodes.
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Abstract. Echo State Networks are a special class of recurrent neetabrks,
that are well suited for attractor-based learning of motdtgrns. Using structural
multi-objective optimization, the trade-off between neti size and accuracy
can be identified. This allows to choose a feasible modelagp@r a follow-up
full-weight optimization. Both optimization steps can l®rbined into a nested,
hierarchical optimization procedure. It is shown to praglsenall and efficient
networks, that are capable of storing multiple motor pattén a single net. Es-
pecially the smaller networks can interpolate betweemkdipatterns using bi-
furcation inputs.

1 Introduction

Neural networks are biological plausible models for pattgeneration and learning.
A straight-forward way to learn motor patterns is to storenthin the dynamics of re-
current neuronal networks. For example, Tani [1] arguetl tthia distributed storage
of multiple patterns in a single network gives good gensadilbn compared to local,
modular neural network schemes [2]. In [3] it was shown thas inot only possi-
ble to combine already stored motor patterns into new ongsalso to establish an
implicit functional hierarchy by using leaky integratorumens with different time con-
stants in a single network. This can then generate and leaguresices by use of stored
motor patterns and combine them to form new, complex bebasidani [3] uses back-
propagation through time (BPTT, [4]), that is computatibneomplex and rather bio-
logically implausible. Echo State Networks (ESNSs, [5]) argpecial kind of reccurent
neuronal networks that are very easy and fast to train cosdptar classic, gradient
based training methods. Gradient based learning methdfés som bifurcations that
are often encountered during dynamic behaviour of a netweridering gradient in-
formation invalid [6]. Additionally, it was shown mathenlly that it is very difficult
to learn long term correlations because of vanishing oragliph gradients [7]. The
general idea behind ESNs is to have a large, fixed, randomvoesef recurrently and
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sparsely connected neurons. Only a linear readout layetahs this reservoir needs to
be trained. The reservoir transforms usually low-dimemaigbut temporally correlated
input signals into a rich feature vector of the reservoirteinal activation dynamics.

Typically, the structural parameters of ESNs, for exampke fteservoir size and
connectivity, are choosen manually by experience and tagkadds. This may lead
to suboptimal and unnecessary large reservoir structores §iven problem. Smaller
ESNs may be more robust, show better generalisation, ber fastrain and computa-
tionally more efficient. Here, multi-objective optimizati is used to automatically find
good network structures and explore the trade-off betwedwark size and network
error.

Section 2 describes the ESN equations and implementatemiio 3 introduces
the optimization of the network structure and explains hmalsand effective networks
can be identified. Good network structures are further dpéithat the weight level in
section 4. Section 4.1 shows how to combine structural arnighté&evel optimization
into a single, nested algorithm, facilitating a genetidare of good solutions. In sec-
tion 5, the dynamic behaviour of the optimized ESNs is shawifferent bifurcation
inputs.

w back

J/ sensor readings

Fig. 1. General structure of an echo state network. Solid arrowisatel fixed, random connec-
tions, while dotted arrows are trainable readout connestidhe output [???7?] sets the joint
angles of a bi-articular manipulator, e.g., an bio-ingpmetive tactile sensor. Joint angles are fed
back via the backprojection weight matii <",

2 Echo State Network

A basic, discrete-time ESN with a sigmoid activation fuans was implemented in
Matlab©2009b. The purpose of this ESN was to control the joints of-articular
manipulator that could serve as a bio-inspired, activaléasénsor. The overall goal
was to use the input to the ESN to set the tactile samplinge#ts desired. The state
update equations used are:

y(n) = Wx(n) ) (1)
x(n + 1) = tanh(W"z(n) + Winu(n + 1) + Wb,y (n) 4+ v(n))

whereu, x andy are the activations of the input, reservoir and output nesireespec-
tively. v(n) adds a small amount of uniformly distributed noise to thévatibn values
of the reservoir neurons. This tends to stabilize solutiespecially in models that use
output feedback for cyclic attractor learning [8V?, W, Weut and Wbe<* are
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the input, reservoir, output and backprojection weightrinas. All matrices are sparse,
randomly initialised, and stay fixed, except Mf°“*. The weights of this linear output
layer are learned using offline batch training. During tirainthe teacher data is forced
into the network via the back-projection weights (teacloecihg), and internal reser-
voir activations are collected (state harvesting). Afteltecting internal states for all

training data, the output weights are directly calculatemhg ridge regression. Ridge
regression uses the Wiener-Hopf soluti** = R~'P and adds a regularization
term (Tikhonov regularization):

WUl — (R + o2T)"'P @)

whereq is a small number is the identity matrix R = S’S is the correlation
matrix of the reservoir states altl= S’D is the cross-correlation matrix of the states
and the desired outputs. Ridge regression leads to morke stalutions and smaller
output weights, compared to ESN training using the Mooner&ee pseudoinverse. A
value ofa = 0.08 was used for all simulations in this paper.

3 Multi-objective Network Structure Optimization

Multi-objective optimization (MO) is a tool to explore traebffs between conflicting
objectives. In the case of ESN optimization, the size of #servoir versus the net-
work performance is the main trade-off. In MO, the conceptahinance replaces the
concept of a single optimal solution in traditional optiatinn. A solution dominates
another, if strictly one objective value is superior andadtier objectives are at least
equal to the corresponding objective values of anothetisoluFollowing this defini-
tion, multiple (possibly infinite) non-dominated solut®ecan exist, instead of a single
optimal solution. The set of non-dominated or pareto-ogtisolutions is called the
pareto front of the multi-objective problem. The goal of M&te find a good approx-
imation of the true pareto front, but usually MO algorithnaseerge to a local pareto
front due to complexity of the problem and computationalstraints.

Usually, the structural parameters of an ESN are choosemnafigiby experience
and task demands. Here, the full set of free network parametas optimized using
MO. The MO was performed with the function 'gamultiobj’ frotne Matlab Genetic
Algorithm and Direct Search (GADS) Toolhdkat implements a variant of the 'Eli-
tist Non-dominated Sorting Genetic Algorithm version IN$GA-1I algorithm, [9]).
The network structure was encoded into the genotype as a-skweensional vector of
floating point numbers. The first six structural parametersavthe sparsity and weight
range of the input-, reservoir- and backprojection weighte seventh parameter was
the number of reservoir neurons. The search range of theithigpwas constrained
to [0, 1] for the sparsity values, tp-5, 5] for the weight values and td, 100] for the
reservoir size|(, 500] for the 4-pattern problem). The optimization was startetth\ai
population size of 1000 and converged after around 120 g&oges. In each iteration of
the MO, all genomes were decoded into network structures)étworks were trained
and then simulated with random initial activations for 1&20nes per pattern. In order
to neglect the initial transient behaviour, the first 50&atems of network output were
rejected. The network output and the training patterns aually not in-phase. The
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best match between training pattern and network output easked by phase-shifting
both output time courses by 50 frames relative to the training pattern and calculat-
ing the mean Manhattan distance across all pairs of datagdihe training error was
then defined as the smallest distance found in that rangeaddentable error threshold
(fig.2) is expressed as the percentage of the amplitude dfdireng patterns, that is
1.0 units for all patterns. The pareto front for a circulatt@an (Fig.2a) reveals that
even very small networks are capable of learning and gengriato sine waves with
identical frequency and 90 phase shift. The smallest nétfeamd had only 3 reservoir
neurons. Including the two output neurons, the overall nétwize was 5. In compar-
ison, 7 neurons are required for this task when using gradiased learning methods
[10]. Network size increases with the complexity of the nmgiattern, and especially
when having to store multiple patterns in a single netwottti8g 4 patterns in a single
network required 166 reservoir neurons to reach an errombg%o (Fig.2d).
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Fig. 2. Minimum reservoir size depends on task complexity. All parghow a set of pareto-
optimal solutions (red circles) and the final populatioruébtrosses). (a) Learning a simple,
circular pattern. All networks with 3 or more neurons showearor below 1%. (b) Pareto-front
for the figure eight pattern. Learning this pattern requaemtably larger reservoir. Please note
the different scaling of the error compared to the easi@lectask. Networks with 17 or more
neurons have an error below 5%. (c) Storing two motor padtérincle and figure-eight) as cycli-
cal attractors in a single networkrequires 37 or more reseneurons for errors below 5%. (d)
Simultaneous learning of four patterns required 166 neuron
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4 Full Optimization of the Network Weights

From the pareto front of the two-pattern task, four candidedtwork structures were
selected and optimized further, using a single-objectaeetjc algorithm. This time,
all network weights except the output layer were fully opsded. The output layer was
still trained by ridge regression. An initial random pogida of 200 parents was cre-
ated from the network structure information of the selectadidate solutions with 4,
14, 26 and 37 reservoir neurons. Network weights were caingtd to[—5, 5] and de-
coded from the genome with a threshold function that presesparsity. The threshold
function sets a weight to zero, if the genome value is betwéemd 1, see fig.3.

A

weight value

&

1 5
genome value

-5

Fig. 3. Threshold function that decodes genome values into weighteg, preserving sparse
weight coding.

The Genetic Algorithm (GA) options were set to ranked rdeletheel selection,
20 elitist solutions, 80% crossover probability with seett crossover and self adap-
tive mutation. Other options were left at their default s {see GADS toolbox, Mat-
lab2009b). The GA-optimization was repeated 20 times faheasetwork size. Fig.
4a shows the improvement in performance compared to the M@tste optimiza-
tion run. A small network with only 14 reservoir neurons abtgproduce the learned
patterns with an error of 2.3%. Weight range and connegtafiter optimization was
analysed with an unpaired Wilcoxon rank sum test. Signifidéfferences in connec-
tivity and weight range were found (Fig. 4b) with a clear ttdor smaller reservoir
weights and less reservoir connectivity with increasintywoek sizes. Both input- and
backprojection weights tend to increase with reservog @rig. 4a). Although standard
ESNs usually have full connectivity for input- and backgaijon weights, evolutionary
optimization seems to favor sparse connectivity for smalktworks, when given the
choice (Fig. 4b).

4.1 Hierarchical Evolutionary Optimization
In the previous section, individual solutions of the MO stural evolution were se-

lected and optimized further on the weight level, using a Béth steps can be com-
bined by performing a full-weight GA optimization for eadhration of the MO. This
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crosses indicate the best fitness values of each run. Blaekes)indicate the overall best solu-
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Fig. 5. Optimal weight range and connectivity depends on resesipé. Network structure after

full-weight optimization of the selected networks from figa) Weight range of all non-zero

weights of the reservoir (red), the backprojection weidgteen) and the input weights (blue).
b) Connectivity (percentage of non-zero weights). Boxpkltow 5%, 25%, 50%, 75% and 95%
guantiles of N=20 datapoints. * p j 0.05; ** p j 0.01.

way, the pareto front improves by moving closer towards thigiro of both optimiza-
tion objectives. This nested, hierarchical optimizatisrcomputationally demanding.
To speed up the convergence of the MO, good solutions of thevéight GA are stored
in an archive, keeping each iteration of the MO accessihlsubsequent iterations, the
archived genome having the closest structure is injectedlire new population of the
full-weight GA. Good networks can emerge faster by fadilitg cross-over with the
archived solutions. This way, the full-weight optimizatidoes not need to start from
scratch in each iteration. See Fig.6 for hierarchical ojziition of the two-pattern task.
The MO had a population size of 200, running - at each itematia full-weight opti-



69

error

30 2 30
network size network size

Fig. 6. Left graph: Average pareto front from N=30 repetitions af gtrucural MO. Blue crosses

show the final populations, red crosses show the paretosfrand the red circles show the mean
and standard deviation of the pareto-optimal solutiongémh network size. Right graph: Hier-

archically nesting a full-weight GA optimization into the@/bptimization gives a more accurate
approximation of the true pareto front, as compared to &tratMO alone. The plot shows a sin-

gle run of the nested MO-GA optimization over 25 generati@r®sses show the population at
each generation in grey levels ranging from light grey (fiesteration) to black (last generation).
A single run outperforms the best solutions found in 30 rurte® structural MO, see Fig.7.
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Fig. 7. Comparison of the different optimization runs. The struatMO is shown in red (cir-
cles), full-weight optimization of selected solutionsrfréhe structural MO in green (diamonds),
and the hierarchical optimization in magenta (squares)ngles run of the nested, hierarchical
optimization shows almost the same performance as thevkittht optimization from section 4.

mization with a population size of 20 individuals for 50 geat®ns. Fig. 7 compares
the pareto fronts of the different optimization strategiesingle run of the nested op-
timization algorithm achieves almost the same result asdinebination of structural
and subsequent full-weight optimization.
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5 Dynamic Networ k Behaviour

Most of the smaller networks show an unexpected behavidway &re able to interpo-
late between the learned patterns, generating novel, pdicily trained outputs. Fig.
8 shows the dynamical responses from the fittest networkeatiom 4.1. The first in-
put value was changed gradually in 15 steps from 1.0 to 0.Qewine second input
was changed from 0.0 to 1.0. A gradual morphing from the tarcio the figure-eight
pattern can be observed. Itis surprising, that already # E8&l with six reservoir neu-
rons can store two different patterns. Larger networks termbnverge to fixed points
for input values other than the trained ones. This intettieeffect might be applied
to complex and smooth behaviour generation for neural mitaantrolled robots.
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Fig. 8. Dynamic behaviour of selected networks with different resi sizes (blue trajectories).
Shifting the dynamics of the networks by gradually changhfirst input value (red) from 1.0
to 0.0 and the second input (green) from 0.0 to 1.0 in 15 st@panging the input to the network
causes a slow morphing between the two learned patteragjad to generate new patterns that
were not explicitly trained. Especially the small netwokeep stable with no chaotic regions.
Larger networks tend to converge to fixed points for inputigalother than zero or one.

6 Conclusions

Using MO, good candidate network structures can be selextesiarting points for a
followup whole-network optimization and fine-tuning usiggnetic algorithms. Both
steps can be combined into a nested, hierarchical muléetigg optimization. The re-
sulting pareto front helps to identify small and sufficigrefficient networks that are
able to store multiple motor patterns in a single networkisTdistributed storage of
motor behaviours as attractor states in a single net is itrasirto earlier, local module
based approache8f sequences contain similarities and overlap, howevegoaflict
arises in such earlier models between generalization amgingatation, induced by
this separated modular structuref3]. By choosing a feasible model capacity, over-
fitting and the risk of unwanted - possibly chaotic - attractates is reduced. Also,
with the right choice of the network size, an interestinggyatinterpolation effect can
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be evoked. Instead of using a classic genetic algorithm fertiuning of the network
weights, new, very fast and powerful black box optimisatdgorithms [11] [12] could
further increase network performance and allow to find evealler networks for bet-
ter generalisation. ESNs can be used for direct controktéskee [13]) and scale well
with a high number of training patterns and motor outputg.[Admore complex simu-
lation, for example of a humanoid robot, will show if direatfractor-based storage of
parameterized motor patterns is flexible enough for comipddsaviour generation.
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Abstract. In the present work, we used Kohonen’s self-organizing mgp-a
rithm (SOM) to analyze functional magnetic resonance imggiMRI) data. As
a first step to increase computational efficiency in data lagdy the SOM al-
gorithm, we performed an entropy analysis on the input @atdshe resulting
map allowed us to define the pattern of active voxels coedlatith auditory
stimulation in the data matrix. The validity of the algontlwas tested using both
real and simulated data.

1 Introduction

Functional magnetic resonance imaging (fMRI) is a non-giwatool widely used for
studying the human brain in action. The fMRI has been apptedognitive studies
and also in a clinical setting to monitor tumour growth, gregical mapping, and
to diagnose epilepsy, Alzheimer’s disease, etc [1]. The fkhiRasurements are based
on blood-oxygen-level-dependent correlations (BOLD)[R] with hemoglobin being
used as endogenous contrast agent, due to the magnetictiepé oxy-hemoglobin
(diamagnetic) and deoxy-hemoglobin (paramagnetic) [4].

The BOLD signal was obtained using two experimental paradigrhe first used a
blocked design, with the subject being exposed to alterggteriods of stimulation and
rest. The event-related paradigm, on the other hand, redjthiat the subject performs
a simple task, intercalated by long resting intervals.

A fMRI dataset consists of images in 3D spdeex y x z), with each image point,
named a voxel, changing a long tir(e. Most fMRI analysis try to identify how signal
related to voxels in a region of interest (ROI) vary in timedao find out whether
these variations are somehow correlated with the stimilis. analysis, however, is a
computational challenge due to the low signal to noise iatthe BOLD response and
the usually large amount of data that needs to be processaty &halytical methods
have been developed to deal with this complexity, some ohtivere created earlier to
analyze positron emission topography-generated sigR&s)

Most methods available in the literature use statistiogthégues to identify active
regions, includingtudent’s t test [5], crossed correlation [6], and the general linea
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model (GLM) [7]. These methods are based on the standard dygmamic function,
which models the BOLD response in the brain. Other populdhots are independent
component analysis (ICA) [8], [9] and principal componemalysis (PCA) [10].

Clustering techniques have also been used successfullyding K-means, fuzzy
cluster and hierarchical clustering. Clustering techagare based on the similarity
observed in voxel's time series. The present study uses ¢theien’s self-organizing
maps algorithm (SOM) to analyse fMRI data. The SOM [11] ispetgf clustering tech-
nigue which transforms a signal input pattern of an arbjtcimension into a discrete
map and implements transformations in a topologically oizgd way.

2 Material and Methods

2.1 Simulated Data

We simulated the fMRI experimeri64 x 64) depicted in Figure 1 with 120 slices by
convoluting a block-like stimulus function with the cancali hemodynamic response
function generated as a sum of two distribution functior®:[1

h(t) = (2) exp (@) — c(%) exp (#) (1)

witha = 6,a’ = 12,b =1 = 0.9 andc = 0.35, having been determined experimen-
tally by Glover in 1999 with auditory stimulation [13].
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Fig. 1. Diagram showing the spatial distribution of active voxeisl gheir intensity along time in
simulated data.

The active area corresponds to 49 voxels, while 1349 voxaiesponded to the
remaining grey matter. The other 2698 voxels correspormléfietbackground and are
not time modulated. We added uniform Gaussian noise to r@&XR of 2dB, which
was calculated with the following expression:

0%
SNR=10log | — |. @)
R

wheres%2 ando? are signal and noise variances, respectively.
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2.2 Real Data

The fMRI experimentused a 1.5 T Siemens scanner (Magnetsion/iErlangen, Ger-
many), with the following parameters for EPI (echo-plamaaging) sequences: TE =
60 ms, TR=4.6s, FA =90, FOV =220 mm, and slice thickness & ;&. 64 cerebral
volumes with 16 slices each were acquired with a matrix dsienof128 x 128.

During the experimental procedure the subject receivedt@ydstimulation in a
blocked design, with 5 stimulation blocks (27.5s eachyoakated with 6 resting blocks
(27.5 s each). During the task, the subject listened pdgsivea complex story with a
standard narrative structure. After, the test the subjedtd inform to the experimenter
its comprehension of the story content.

Acquired images were preprocessed with the software SPk8gtcal Parametric
Mapping) in order to increase the signal-to-noise ratioRpEnd to eliminate incident
noise associated with the hardware, involuntary movemeftise head, cardiac and
respiratory rhythms, etc.

2.3 Sdf-organizing Maps

fMRI data was analyzed with Kohonen’s SOMs using an impletat@n available in
the literature (see [14], [15], [16], [17], [18], [19]). Kohen's SOM is an artificial
neural network where neurons are disposed as a uni- or l@fdiional grid layout. In a
bi-dimensional layout, geometriy is free and can be reatirghexagonal, triangular
etc. Ina SOM, each neuronin a grid is represented by a priyatistribution function
of the input data.

The SOM algorithm responsible for map formation begingatiting the grid neu-
rons weights with random values, which can be obtained fleeninput data. In the
present work we used a bidimensional grid of dimengiox 10 (¢ = 100) [19]. Each
neuron in the grid is connected to every element of the inptagbt, i.e., the dimension
of weightsm,; is the same as the input dataset:

m; = [m, Mg, ..., min]" € R, ©)

wheren indicates the total amount of points available in the tinesegenerated by
the fMRI experiment.
After each iteratiort of the ANN, we selected randomly a vector from the input
dataset, given by:
X = [I17I27~~-axn]T€§Rv (4)

which indicates the time series of a given voxel from the f\MRtaset.

Then,x is compared to weights:; in the grid using the minimun euclidean distance
as criteriom for choosing a winner in the ANN [15],[19]. Sénihe correlation distance
metric, however, seems to be a better method to discernasitids than conventional
Euclidean distance [16], the winner neuron is selected by:

m, = arg max {corr(x(t), m;(¢))}, (5)
with i = 1..., M whereM is the total number of neurons in the grich,.(¢) repre-

sents the time series of the winneand cor(x(¢), m;(¢)) is the correlation coefficient
betweenx(t) andmy; (¢).
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The updating of the weight vecten(¢ + 1) in time¢ + 1, with¢ = 0,1,2,...1is
defined by:
m;(t + 1) = my(t) + he; (1) [x(t) — my(1)], (6)

which is applied to every neuron on the grid that is withinttiy@ological neighborhood-
kernelh.; from the winner. Thus, Equation (6) has the goal of approkimgahe weight
vectorm; of neuron: towards the input vector, following the degree of interattQ,.
This approach transforms the grid, after training, in a togizally organized charac-
teristic map, in the sense that adjacent neurons tend todiaviar weights.

A function frequently used to represent the topologicajhbbrhood-kernél,; is
the Gaussian function, which is defined by:

hei(t) = a(t) exp { ;Tt)r” } @)

wherea(t) is the learning rate, which has to gradually decrease aliomg to avoid
that new data gathered after a long training session couftpboamise the knowledge
already sedimented in the ANM; andr; determine the discrete position of neurons
¢ andi in the grid; ando(t) defines the full-width at half-maximum (FWHM) of the
Gaussian kernel. Parametet(s) and«(¢) gradually decrease kiyr (7 is a time cons-
tant) after each iteratiot) following an exponential decay.

2.4 Evaluating the SOM Quality

There are several mechanisms that can evaluate the qubttye generated map ob-
tained after the learning process. In the present work we theequantization error:

1
By =5 Ix—m* (8)

The quantization error is defined as the mean error correlspgito the difference
between each characteristic veckoand the winner neurom,., whereN is the total
number of patterns.

2.5 Analysisof Entropy

Some authors recommend the ad-hoc reduction of voxel sartplgptimize the algo-
rithm implementation [20]. Thus, in order to improve ariaét efficiency, only signals
originating from the brain were actually processed. Beside performed an entropy
analysis to each voxel of the characteristics set and editathall voxels with an en-
tropy level below an empirically determined threshold. Biennon's entropy, as well
as other techniques based on Information Theory, has ptoveslsatisfactory in fMRI
experiments [21].

The Shannon entropy of a random varialflewith probability vector(ps, ..., pn)
is defined by:

H(X) = - Zpi'10g2 i 9)
i=1
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with H(X) being the entropy of variabX. The Shannon entropy [22] measures the
uncertainty present in any dataset and allows the compeoisits properties with other
datasets of similar dimensions, by representing the anafunformation contained in
each as a probabilistic event.

To calculate the entropy, the time series of each voxel igldi/into two levels of
intensity, then is calculated the probabilities of leveisntensity from the amount of
time points at each level. Finally, the entropy of each tierées is calculated according
to Equation (9). The entropy of signals corresponding to-active voxels tends to
have low value because of an irregular configuration of tgeai On the other hand,
the signal of a probable active voxel tends to present a hadirevof entropy, which is
associated with a wide distribution of probability.

3 Results

In this work, the configuration parameters of the SOM weré&adlized according to
previous studies [16],[19], both in real and simulated dis&quation (7), the learning
rate was initialized a&(0) = 0.1 and the parameter effective width @&) = 7. The

number of SOM iterations was regulated dinamically aceardo error stabilization

(Eq. 8).

3.1 Simulated Data

First, we calculate Shannon’s entropy for each voxel of theikated data. The values
of entropy for the 1398 voxels contained in the interior & #rtificial brain had varied
of 0.4949 to 1, where the 49 voxels with activation signal pegbented one high value
of entropy (Figure 2a). After that, abo6i#; of 1398 voxels were eliminated from the
input data of SOM, these voxels had presented a value ofmnfiio < 0.85 (Figure

2b).

Fig. 2. (a) Entropic map of the artificial data; (b) Entropic anadysf synthetic data. The dark
dots in the image were eliminated, the equivaleni%fof the input data.
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From the final conformation of the neuronal grid achievedref00 algorithm itera-
tions (Figure 3), we can observe that voxels with similargenal patterns are clustered
together in the SOM.

[ e

MM AARMAMAI M Pl
"‘h"“’u"hnah”"’I*MI'H"“MW’NN"*' A

1 r!{n-rlm'v WW#M\“W«I‘WMWW

Koo b o ik gt b m N 5

'uh\'l"'lvjrr'ﬁ* |h’¢ml M l““"m'r mr‘v;l'w'l h“r'v’nm r|]‘w r“}‘ml Mrl"'ll'nﬁlﬂ! MrVLWWFWLv “r llly";ul"v;r
A v kbt bt b ettt otk Rkt A Lot st ond e, 1ol
kel b el sl b Ut b b et M L)
i b, A bR gt it I T
ko s L s bl it A N o i i
e W T T T T
TN PRE T T PR e TN R A R TY KRN () "MMWW
WLl LU L T L T S
Lon by 4 | f \
bR o A JluJ"u?‘.: "Jﬁ.lv.mww

Fig. 3. 10 x 10 grid of neurons after implementation of the SOM algorithing, tluster of neurons
in yellow match the patterns of activity.
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For better visualization of these clusters, there are sbetustering methods that
can be used, such as K-means [23], fuzzy logic [24] and tiosl as a measure of
similarity in a hierarchical clustering [16]. We use thistlaeference utilizing a simple
correlation as a measure of similarity between neuronsdrgtid.

Figure 4 shows the active regions defined using the averggaldrom the neurons
demarcated in the Figure 3. A correlation coefficient (CC3$ determined between this
average and each voxel in a fMRI dataset, showing only thae@C > 0.7056.

Fig.4. The dark regions in the brain correspond to active regiordeéined by the SOM after
100 iterations.
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3.2 Real Data

The same analytical procedure used for simulated data veaktasieal with real data.
However, we adopted the quantization error (Eq. 8) to esérttee amount of steps of
the algorithm and also act as quality controller of learnkigure 5 shows the evolution
of error to each 10 iterations, using normalized data. Bahef/the error has begun to
stabilize at around 100 repetitions, the training is carghuntil 250 iterations in order
to perform a fine tuning of the map features and thus producatistgally accurate

guantization of the input space. Analyzing the same figtiie dossible verify that the
magnitude of error for the case where it was applied to aeallge entropic prior to

SOM (Fig. 5a) presents lower, also have begun to stabilineesdat earlier than the
case where not used the Shannon’s entropy (Fig. 5b).
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Fig. 5. Graph of the quantization error for a total of 250 iteratidja$ quantization error with the
application of entropy; (b) quantization error without rexy.

Figure 6 reveals the active voxels, according to our methothe eighth slice of
fMRI data CC> 0.6. In it you can see two main regions as a result of the auditsly t
located in the temporal lobe.
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Fig. 6. Active regions correlated with the auditory stimulatiorfided after 250 iterations with
the SOM.

4 Conclusions

The Kohonen’s self-organizing map was applied in data otfiomal magnetic reso-
nance in synthetic and real models, this last one repregeati auditory experiment
with the paradigm in block. With the purpose of increasing ¢ffficiency of the analy-
sis method was proposed to Shannon'’s entropy, which elbedna range 0§ — 10%
of the set of input data. The configuration of the data afterttitropy analysis allowed
more likely to find groups of neurons active in the SOM gridhaatsmaller number of
iterations. Moreover, in the temporal evolution of the diztion error of the SOM, it
can be verified that entropy analysis decreased the amgldtitis error and admitted
his slightly faster stabilization. The results of SOM, b@ithsimulated data, as for real
data, reaffirmed that it can be used as a tool for interpretati fMRI data. And it has
the advantage that the shaped of the hemodynamic respamstecisnsidered, that is, a
HRF modeled mathematically is not used.
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Abstract. The paper presents a concept of hand movements recognition on the
basis of EMG signal analysis. Signal features are represented by coefficient of
autoregressive (AR) model, and as classifier the MLP and Adaline networks
are applied. The performance of the proposed method was experimentally com-
pared against four different classifiers using real datasets. The systems developed
achieved the highest overall classification accuracies demonstrating the potential
of neural network classifiers based on AR coefficients for recognition of EMG
signals.

1 Introduction

The activity of human organism is reflected in characteristic biosignals, which can be
measured and next can be applied to the control of the work of technical devices. Elec-
trical potentials accompanying skeleton muscles (called EMG signals) are an example
of such biosignals. They can be detected and registered through the skin and used to the
control of bio-prosthesis.

Although in the last decade many attempts have been made to determine the hand
movements on the base of EMG signal analysis ([5, 10, 11, 13]), the reliable recognition
of kind of grasp is still a hard problem. The difficulty increases along with the prosthesis
dexterity (prosthesis movement repertoire), therefore it is still a need for research in
developing EMG signal recognition.

The paper presents a concept of recognition of hand movements (type of grasp) on
the base of EMG signal analysis. Signal features are represented by autoregressive (AR)
model coefficients, and as classifier the MLP and Adaline network are applied.

The performances of proposed classification systems were compared against four
(statistical (Bayes, kernel), fuzzy and k-nearest neighbours) classifiers using real datasets.
For the purpose of experimental investigations a special measurement stand was elabo-
rated which allow us synchronous recording the image of the moving hand and multi-
channel registration of EMG signals.

The paper is divided into three sections and organized as follows. In section 2 we
provide an insight into the analysis of EMG signals which is the basis for the recognition
of grasps. In Section 3 computer experiments on real data are described and their results
are discussed.
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2 EMG Signal Analysis

The recognition of hand movement on the basis of the myopotentials comprises three
stages [13]: (1) the acquisition of the EMG signal; (2) extraction of the features differ-
entiating the movements; (3) classification of the signal.

Each stage has an influence on the quality of the whole process, i.e. reliability of
the grasping movement recognition.

2.1 EMG Signal Acquisition — the Measurement Stand

The block diagram of the designed measurement stand for EMG signal acquisition
and identification of the relation between the hand movement and simultaneously cre-
ated myopotentials, is presented in Fig. 1. The stand includes: (1) a video camera for
recording the image of the moving hand; (2) specially designed 8-channel EMG sig-
nals measuring circuit (Bagnoli Desktop EMG System, DelSys); (3) the PC computer
recording the results of the acquisition, equipped with high fidelity measurement board,
containing 8 independent A/D converters (24 bits per channel) and USB port for USB
video camera; (4) an application for synchronous recording of the video and EMG data
streams and their analysis.

Synchronisation sub-system

Video sub-system

g

EMG sub-system

Computer

Garvani NI-4472
board

Electrode

Fig. 1. The measurement system for identifying the relation between the hand movement and
EMG signals.

2.2 Features Extraction

The extraction of features consists in determining such parameters that best differentiate
the received signals for the sake of movement recognition. The extraction of features
can be accomplished using various techniques including signal amplitude, EMG fre-
quency characteristic and power spectrum analyzed by fast Fourier transform (FFT)
method [6], the integral of the absolute value (IAV) and zero crossing signal [6, 7], time
and frequency histograms [11], among others. In this paper it is proposed an efficient
method to determine the input features based on autoregressive (AR) model.

The AR model belong to a group of linear prediction methods that attempt to predict
an value y,, of a time series of data {y,, } based on the previous values (¢, —1, Yn—2, - - -)-
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Deriving the linear prediction model involves determining the coeffiecients (a1, az, . .., ap)
in the equation:

p
@n = Zakyn—lm (1)
k=1

where g, is the estimated value of signal in a time n, a; are the AR coefficients and p
is the order of AR model.

Several estimators of AR coefficients are well known in the field of signal process-
ing. We chose the Burg algorithm because of its many remarkable advantages (it does
not apply window data, minimizes forward and backward prediction errors, gives high
resolution for short data records, always produces a stable model) [9]. The Burg algo-
rithm estimates the AR coefficients by fitting an autoregressive linear prediction filter
model of a given order to the signal. Consequently, the Burg algorithm determines for
each channel the set of p AR coefficients, which create the feature vector describing the
EMG signal (7 is the number of channels):

T = [011#12, <oy A1p, A21, 422, - -, A2py - -« 5 Qpl, Arly - - - 7arp]- ()

2.3 Classification

Two types of artificial feedforward neural networks were used in this study for classifi-
cation of EMG signal: multilayer perceptron (MLP) and Adaline network.

1. The MLP Classifier (MLP). The network consists of the input, hidden, and output
neuron layers. The input layer plays the role of a data buffer so that the data are
normalized to belong to the [0, 1] range. There have been various numbers of input
and hidden layer neurons, depending on the actual quantities of data. The number
of output layer neurons is equal to the number of classes (types of grasps). The final
classification is made according to the maximum rule. Both the hidden and output
layer neurons have the sigmoid transition function. Neurons of the successive layers
are connected on the each-to-each basis. In the experiments, the corresponding lay-
ers were trained by means of the error back propagation method with momentum
term.

2. The Adaline Classifier (ADA). The single layer neural network that contains neu-
rons with (positive) linear transfer functions. As previously, the number of neurons
is equal to the number of classes and the final classification is made according to
the maximum rule. In the experiments the Adaline network was trained by Widrow
and Hoff learning procedure, also known as the delta rule.

3 Experiments

The proposed methods of EMG signal classification based on ANN techniques were
experimentally tested and their performances were compared against the four following
pattern recognition techniques: (1) Naive Bayes method (NB) [4]; (2) Parzen classifier
with the Gaussian kernel and the optimal smoothing parameter (PAR) [4]; (3) 5-nearest
neighbours classifier (5-NN) [4] and (4) classifier based on fuzzy relations (FR) [13].
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3.1 Experimental Setup

The experiments were carried out on healthy persons. The electrodes, connected to
the respective measuring channels, were put over the following forearm muscles: (1)
the extensor muscle of the fingers, (2) the radial extensor of the wrist, short, (3) the
superficial flexor muscle of the fingers, (4) the ulnar flexor muscle of the wrist, (5) the
extensor muscle of the thumb, short, and (6) the flexor muscle of the thumb, long (see
Fig. 2).

The experiments were conducted in MATLAB using PRTools and NN Toolbox.

Fig. 2. The layout of the electrodes on the forearm.

In experiments five different types of grasps (classes) presented in Fig. 3 were cho-
sen for recognition from the set defined by Schlesinger ([8]): 1) palmar, 2) tip, 3-4)
cylindrical and cylindrical tight, 5) spherical. Our choice is deliberate one and results
from the fact that the control functions of simple bioprosthesis are hand closing/opening
and wrist pronantion/supination, however for the dexterous hand these functions differ
depending on grasped object [2].

1 2 3-4 5

Fig. 3. Types of grasps recognized in experiment.

Each measurement lasted 2.5 s and was preceded with a 10 s break. In that way for
the single grasp movements the discrete signals were obtained each of a size of 2500
samples (1 kHz sampling frequency) x 6 channels, together with the video sequences
related to them, that picture the movement types (classes). The 300 measurements (60
measurements for each grasp type (class)) were created, and next gathered EMG signals
were subjected to the feature extraction procedure for different orders of AR model p
equal to 2, 3, 5, 7 and 10. Consequently, we got 5 datasets, each containing 300 pat-
terns described by 12, 18, 30, 42 and 60 features, respectively. The training and testing
datasets were extracted from each dataset using two-fold cross-validation method.
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The ADA classifier comprised 5 neurons which inputs number was equal to the
number of features (different for each dataset). Similarly, the MLP classifier comprises
5 neurons in the output layer and the number of input neurons (hidden neurons) was
equal to 12 (8), 18 (10), 30 (15), 42 (20) and 60 (30) for the successive datasets, respec-
tively. The number of epochs in the learning procedure for the both ANN classifiers was
equal to 200.

3.2 Results and Discussion

Classification accuracies (i.e. the percentage of correctly classified objects) for meth-
ods tested are listed in Table 1. The accuracies are average values obtained over 10 runs
(5 replications of two-fold cross validation). Statistical differences between the perfor-
mances of the ADA, MLP classification methods and the four classifiers were evaluated
using Dietterich’s 5x2cv test [3]. The level of p < 0.05 was considered statistically sig-
nificant. In Table 1, statistically significant differences are given under the classification
accuracies as indices of the method evaluated, e.g. for the dataset with p = 5 the MLP
classifier produced statistically different classification accuracies from the NB, 5-NN
and FR methods. The row ”‘Mean’” contains results averaged over all datasets.

Table 1. Classification accuracies of classifiers compared in the experiment (description in the
text). The best score for each dataset is highlighted.

Classifier / Mean (SD) accuracy [%]
AR order NB; PAR, 5-NNj3 FR4 ADA MLP
p=2 73.2(5.2) 82.8(2.8) 86.5(4.2) 72.4(6.3) 84.2(3.1) 87.72.2)
1.4 1,24
p=3 79.3(4.6) 90.2(1.9) 94.2(1.6) 80.6(2.4) 91.0(1.3) 93.6(1.2)
1.4 124
p=>5 81.5(2.2) 97.6(0.3) 85.3(1.4) 83.5(3.6) 94.8(1.1) 97.4(0.6)
1.4 13,4
p="T 80.4(2.5) 98.2(0.7) 95.8(0.9) 87.2(1.3) 98.3(0.2) 100 (0.0)
13,4 13,4
p=10 82.7(2.3) 98.1(0.5) 96.9(0.4) 91.5(1.2) 100(0.0) 100(0.0)
12,34 12,34
Mean 79.4(3.4) 93.4(1.2) 93.8(1.7) 83.029) 93.7(1.1) 95.7(0.8)
1.4 12,34

The MLP classifier achieved the highest overall classification accuracy averaged
over all datasets — it outperformed the NB, PAR, 3-NN and FR classifiers by 16.3%,
2.3 %, 1.9% and 12.7% on average, respectively. The ADA neural network that was
the third best-scoring classifier, outperformed the NB, PAR and FR systems by 14.3%,
0.3% and 10.7% on average, respectively. The both ANN-based classifiers produced
statistically significant higher scores in 29 out of 40 cases (5 datasets x 4 classifiers
x 2 systems developed). The ADA and MLP classifiers also achieved the highest clas-
sification accuracy (i.e. 100%) when the datasets with 42 and 60 features were used.
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Furthermore, they produced the best stability (the SD values of 1.1% and 0.8% aver-
aged over all datasets), followed by the PAR classifier (1.2%). Results obtained indicate,
that proposed methods of grasping movement recognition based on the AR model as an
EMG signal feature extraction procedure, produced accurate and reliable decisions, es-
pecially in the cases with greater number of features.
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Abstract. This paper aims to present all the study done on the SPIDAR tracking
and haptic device, in order to improve accuracy on the given position. Firstly we
proposed a new semi-automatic initialization technique for this device using an
optical tracking system. We also propose an innovative way to perfom calibration
of 3D tracking device using virtual reality. Then, we used a two-layered feed-
forward neural network to reduce the location errors. We obtained very good
results with this calibration, since we reduced the mean error by more than 50%.

1 Introduction

Virtual reality is a domain which is highly dependent on tracking systems. Users in-
teract in 3 dimensions, with virtual entities in digital environments. In order to provide
the best user experience, it’s very important that 3D interaction has to be without any
interruption. This interaction relies on the transformation of a real movement into an
action in the virtual world. This work is done by a tracking solution. This tracking sys-
tem has to be reliable and the most available as possible. This point is crucial in order to
preserve data continuity and, so, data processing continuity and finally, 3D interaction
continuity. The main device used in our system is an optical tracking solution, it’s a
very accurate device. On the other hand, it suffers from a huge defect: tracking-loss.
That’s a particular true defect when only one marker is used. So, it’s essential to be
able to switch to another device in these situations in order to compensate this defect.
In our virtual reality system, we’ve got a SPIDAR [1] and we chose it to stand in for the
optical tracking system.

SPIDAR [1], for SPace Interaction Device for Augmented Reality, is an electrome-
chanical device, which has 8 couples of motor/encoder distributed on each vertex of a
cubic structure. A string is attached to each motor via a pulley. These 8 strings converges
to an effector. By winding their respective strings, each motor produces a tension. The
vectorial sum of these tensions produce the force feedback vector to be applied on the
effector, allowing the user to feel on what he is stumbling or to feel the weight of an ob-
ject. By observing the encoders values, the system can compute the 3D position of the
effector. The SPIDAR tracking is always available, but it suffers from a weak accuracy
and repeatability. So it’s impossible, when we want to 3D interact with accuracy, to use
raw position given by the SPIDAR without performing a calibration.

In our case, it’s a huge problem, since we used a 3D interaction technique, called
Fly Over [2], which needs a continuous position vector. This technique is based on
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different interaction areas offering to the user a continuity in the interaction. Indeed,
the least jump of position during the swing of a system, would be likely to pass the
pointer of Fly-Over of a zone of interaction towards another. This phenomenon involves
a behavior of the technique thus, not wished by the user and creating consequently a
rupture of the continuity of the 3D interaction. Thus, it’s important to propose measures
in order to consider the position given by the SPIDAR so that it is closest to the position
given by the optical tracking system, and so, minimizing effects on the 3D interaction.

This research work is presented as follow. First, we talk about similar works on
virtual reality devices calibration and correction. Then, we introduce our contribution
on a new SPIDAR calibration method using multimodal informations. After that, we
speak about the correction of the SPIDAR position using neural networks. Finally, we
discuss about a hybrid tracking system based on a SPIDAR and an optical tracking
solution.

2 Related Work

Since virtual reality systems use more and more devices, especially tracking devices,
it’s important to perform a good calibration of them. But not all tracking devices need
a huge correction, thus infrared based optical tracking devices are accurate enough and
so don’t need to be corrected. On the other hand, it exists some mechanical, electrome-
chanical or electromagnetic tracking devices which need to be calibrated and/or cor-
rected.

Most of research works has been realized on the electromagnetic tracking devices
because they suffers from electromagnetic distortions when magnetical materials are
placed into the tracking range. Moreover, the tracking accuracy falls off rapidly de-
pending on the distance from the emitter and the power of the emitter [3]. These effects
induce non-linear errors on the location. In order to correct them, it exists different
ways.

The easiest method is the linear interpolation [4] but it doesn’t correct non-linear
systems, so it’s very limited. Polynomial fitting [5, 6] allows to correct non-linear er-
rors. But depending on the number of coefficients, it could be very difficult using this
method in near realtime conditions because it will produce a heavy load for the system.
Moreover if the number of coefficient is too important, oscillations can appear, increas-
ing errors rather than decreasing them. Moreover, these techniques often fail to capture
small details in the correction. They are better in determining the overall shape of a
non-linear function. Kindratenko [7] and Saleh [8] worked on a neural network based
calibration of electromagnetic tracking systems and they obtained good results, better
than with other methods.

But all these techniques are based on interpolation and they need a valid set of data
to be effective. This set of data highly is often given by a calibration grid. A calibration
grid is a representation of a set of points. All these point have a known position and can
be compared with the position given by the device that we want to calibrate. But when
we’re working in 3D space, it’s very difficult to make use of it because it’s difficult to
place accurately a device on a 3D points. In order to realize that we can use another
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mechanical device, such a robot arm or a haptic arm [9]. Or we can place accurately
passive sensors respecting a geometrical shape [10].

Our research work reaches these studies because the SPIDAR suffers from same
non-linear distortions and 3D calibration problematic. So, we search solutions in the
same direction.

3 Identification of the SPIDAR

3.1 Context

In order to preserve the data continuity, it is essential to correct a well-known prob-
lem appearing with tracking systems: data loss. Data loss appears when the tracking is
unable to update the position calculation, conducting to a jump in the data when the sys-
tem is re-enable to update the position. This phenomena is often mislead by occultation,
especially in optical tracking system. A data loss can be managed by three methods:

1. Prediction: We can predict the following data state by knowing the previous data
state through mathematical method , such Kalman filter.

2. Compensation: A device tracking loss, don’t forbid us to use another device. It’s
very important in this case that the data incoming from the different devices to be
expressed in the same space representation (same referential). This is necessary in
order to obtain a data continuity when the system switch from one device to another.

3. Correction: The last possibility is to correct data incoming from the most available
device, in our case the SPIDAR. To perform the correction, we could use the a priori
knowledge on the SPIDAR position through another device.

3.2 Design Problems

Motor
Encoder

Fig. 1. Detailled view of a SPIDAR’s motor and its winding guide.



90

SPIDAR is an electromechanical device and consequently it could suffer from de-
sign problems more or less awkward for computing the effector’s position. These are
problems we have identified:

1. Encoders are Directly Mounted on the Motor’s Axis.
This is an important problem because we must define the pulley’s diameter in the
configuration file of the SPIDAR’s interface. However, this diameter is not constant,
depending on the quantity of string winded. So, this information is skewed.

2. Diameter of Pulleys is too Small.
The previous problem become more marked due to the small diameter of the pulley
used. Thus, the diameter being too small, it variates noticeably as strings being
winded go along. This phenomena would be less marked if the diameter used was
more important.

3. Winding Guides Badly Designed.
The present design of the winding guides, don’t prevent a string from missing the
pulley. This phenomena appears when the effector is being moved fast and con-
sequently, that motors have to wind an important quantity of string. This is a real
problem, because the encoder count one revolution but the string doesn’t be winded.

4. Size of Encoders. Encoders’ size is too small for counting the string quantity which
must be winded. When an encoder overflows, the counter is reseted and the winded
string quantity information is biased.

5. Dimensions of the SPIDAR. More dimensions are important and more every prob-
lem cited previously is marked. Some problems that are inconsiderable when di-
mensions are small, become not inconsiderable when dimensions are huge.

3.3 Experimental Protocol

Fig. 2. On the left - A user using our virtual calibration grid in order to retrieve data for the neural
network learning. On the right - Detailed representation of the virtual calibration grid.

We use what we called: a virtual calibration grid (see fig.2), which consists in the rep-
resentation of a virtual scene, composed of many small cubes. Each cube corresponds
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to a sub-space of the SPIDAR workspace. This set of small cubes covers the whole SP-
IDAR workspace. We recorded values, respecting this protocol in a workspace limited
to 1 m? split into 4096 sub-spaces (16 x 16 x 16). The great advantage of this protocol
is the homogeneity distribution of the data set.

The use of virtual reality for calibration allows more flexibility and less complexity
because we don’t have to move the SPIDAR effector with constraints or to place the
effector with a great accuracy on a set of calibration point.

This calibration grid, is represented Fig.2. We can identify the SPIDAR’s problem
with it, following these steps:

1. The user move the real effector (which is in his hand) in order to place the virtual
effector (which is a red sphere in the virtual scene) in each cube represented.

2. Each time the virtual effector is in collision with a cube, we record the position
given by the SPIDAR and the position given by the optical tracking.

3. Once these positions is recorded the cube disappears insuring that there will be only
one point for this sub-space.

3.4 Results

Absolute error space distribution
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Fig. 3. Absolute error 3D distribution in the SPIDAR’s workspace (Dark green is the best).

Figure 3 represents errors’ space distribution. As we can see this is a onion skin dis-
tribution, meaning different spherical layers, the absolute error growing as the effector
is going in outside layers. This identification of the SPIDAR leads us to these observa-
tions:
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- Firstly, the mechanical study tells us that too many design problems

- Moreover, it’s hard to quantify the final effect of these mechanical problems.

- Another problem, is the loss of knowledge towards the mathematical model used
by the SPIDAR to compute the effector’s position.

Finally, the SPIDAR suffers from a set of problems, which have more or less known
causes and for which we don’t know very well the influence on the whole system. In
order to enhance the SPIDAR’s accuracy, it could be interesting to orient ourself to
a solution capable of estimating/correcting the effector’s position without any knowl-
edge on the mathematical model. We choose to test that way using neural networks for
their capacities to learn a situation and to model any continuous mathematical function
without any information on the model.

4 Multimodal Initialization of SPIDAR

4.1 Context

The SPIDAR is a device which needs an initialization at each startup. Initialization
consists to define the origin of the referential in which 3D position will be expressed.
We realize this task by placing the SPIDAR’s effector in the center of its cubic structure
with the greatest accuracy. A worse initialization brings about a decline in accuracy
for the 3D position. Moreover, if the initialization is not identical at each startup, the
new referential won’t be the same and consequently prevent us from applying a data-
processing for correcting the SPIDAR’s position. So, it’s very important to realize this
initialization with a great attention. But, it’s very difficult to hand-place the effector in
the center of the SPIDAR structure with accuracy, due to the lack of markers to estimate
this.

4.2 Proposition

Our contribution brings a semi-automatic SPIDAR initialization. This initialization use
multi-modality in order to guide the user. These modalities are vision, audio and haptic.
In order to carry out the more accurate initialization, we need to determine the initial-
ization point in space with great accuracy. To realize that, our idea is to use the optical
tracking system we have on our VR platform (and in most common VR platform). This
tracking system offers a lower than I mm precision.

The geometrical disposition of IR cameras are known and the origin of the optical
tracking system too. We also know the theoretical initialization point of the SPIDAR.
Thus, we could determine the theoretical initialization point within the optical tracking
referential. In order to know the position of the effector in the optical tracking space, we
put an optical marker on it. Thus, if we compute the vector defined by the initialization
point and the position of the effector, we could get the distance from the initialization
point and the direction needed in order to converge to it.
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Fig. 4. Initialization areas and experimental framework.

4.3 Multimodal Parameters

In order to guide the user in the initialization step, we firstly need to convert these
information into multimodal parameters. So we define a /i function, returning an index,
expressing the distance from the initialization point d. More h(d) tends to 1, more the
effector is near from the initialization point. In the opposite way, more h(d) tends to 0
and more the effector moves away from the initialization point.

h(d) = {h(d) = 0 if d > dpin (1)
With:

d, the distance in millimeter between the effector and the initialization point.
dpmin, the minimal distance in millimeter from which h(d) begins fluctuating, else
h(z) is equal to 0.

In the following part, we define multimodal parameters that help the user to perform a
good initialization.

— Sound Modality. Beep frequency f depends on the distance d.

F(d) = d-1000 if d < 1000 5
f(d) =1 if d > 1000 @

— Haptic Feedback Modality. The direction vector is transformed into a force feed-
back vector to be applied on the effector by this equation.

F =24 -s(d/dy) - Furas 3)
With:
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s(z), the sigmoid function regulating the force applied to the effector.

s(z) = e 20UI=05% ¢ 1 € [—0.5;0.5] 4)

A, the unit vector defining the direction to the initialization point. It’s computed
from the normalization of vector V:

— 1
A=—.V (5)
IV

Frraz, the maximum force to be applied on the effector.

4.4 Initialization Algorithm

Vv

SPIDAR initialization

[

Computing force to
converge to the
calibration point

Retrieving optical
tracking position

Optical tracking
position
= Calibration point

+e

Yes

No

Defining new referential
for SPIDAR

Fig. 5. SPIDAR initialization process algorithm.

Initialization process is done in two steps. A first initialization allows the user to
place the effector in a area near from the initialization point with a 1 or 2 ¢m accu-
racy. We can’t decrease below this distance using directly the SPIDAR’s force feedback
capabilities because it is not enough sensitive for moving the effector on small dis-
tances. In order to get a more accurate initialization, we need to add another step to the
initialization process. Using the different modalities previously cited, the user’s hand,
holding the effector, will be guided to converge to the initialization point witha 1.2 mm
accuracy.
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5 Calibrating the SPIDAR with Neural Network

5.1 Configuration & Learning

We used a two-layered neural network, the first layer having a sigmoid activation func-
tion and the second a linear one. It’s a feed-forward back-propagation network using
the Levenberg-Marquardt learning algorithm [11]. The mean quadratic error is used as
performance function.

For the learning step, we use the SPIDAR’s position vectors in input and the optical
tracking’s position vectors in output because this is what we want in theory. However,
the whole vectors aren’t used, only data where the two tracking systems are available
has been used for the learning. It’s important for the learning step to remove data which
would decrease the neural network performances. Data income from the experimental
protocol described previously. So we obtain 4096 measure points. This data set has been
split into 3 sub-sets.

- 60% of data are used for the learning algorithm.

- 20% of data are used for the validation step, in order to prevent over-fitting phe-
nomenon.

- 20% of data are used to perform a generalization, that is the observation of the
neural network’s response to the introduction of set of totally unknown data (data
which haven’t be used for learning) in input.

5.2 Optimal Number of Neurons

Mean absolute learning error

4 6 8 10 12 14 16 18 20 22 24

Number of neurons

Fig. 7. Mean absolute error versus number of neurons in the hidden layer.

The optimal number of neurons in the hidden layers has been defined in an empirical
way, by testing the result of learning with different number of neurons and by observ-
ing the mean absolute learning error. The more this error is high, the less the neural
network is effective. The figure 7 shows the mean absolute error on the SPIDAR posi-
tion according to the number of neurons in the hidden layer. By observing this result, we
could determine that the best configuration among the 3 to 21 neurons configurations,
is 5.
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Fig. 8. Absolute error 3D distribution in the SPIDAR’s workspace after calibration by the neural
network (Dark green is the best).

Table 1. Characteristic values of absolute errors on SPIDAR location for neural network learning.

‘Absolute error‘ Raw NN PFl1 ‘
mean (mm) 72.86 7.44 15.31
std (mm) 47.05 6.24 40.75
max (mm) 211.29 86.90 198.32

5.3 Neural Network Performances

In order to study the neural networks performances, we represent the same absolute
error 3D spatial distribution as previously but after using our neural network. As we
can see, figure 8, shows that the neural network is quite effective and greatly improve
the SPIDAR accuracy in comparison with the figure 3. The neural network performs a
good calibration in the whole workspace except in its corners.

We also traced errors bar graphs before and after using our neural network (see
Fig.9) and we put representative data in arrays comparing them with raw location
(Raw), neural network calibrated location (NN) and for information purpose only, linear
interpolation calibrated location (PF1). Each bar graph is coupled with an array resum-
ing characteristic values of the error distribution, where mean is the empirical mean
error, std is the standard deviation of the data set and max is the maximum error.
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Fig. 9. Absolute errors distribution bar graph before and after calibration by the neural network.
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Fig. 10. Absolute errors distribution bar graph before and after calibration by the neural network
on the 1°* data set.

5.4 Generalization

In order to evaluate neural network performances, we need to observe this response
output with unknown data sets. This step is called generalization. Figures 10 show
results obtained with two generalization data sets. These data sets have been recorded
during two time-split measure campaigns and using our semi-automatic initialization
procedure.

The neural network has been nicely set up and is robust at any data as soon as
the data belongs to the SPIDAR’s workspace. Such results aren’t surprising since the
learning protocol was extremely rigorous and covered all the SPIDAR’s workspace
guaranteeing the neural network to perform a good interpolation. Moreover tables 1
and 2 shows us that the standard deviation with neural networks is smaller than the raw
or the other method ones, which indicates a smoother and a more accurate interpolation.

Table 1 and figure 10 shows us that the used neural network has a good response to
the generalization. Thus, the absolute mean error on the position has been reduced by
2.5 times, going from 13.3 mm to 5.31 mm.
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Table 2. Characteristic values of absolute errors on SPIDAR location in generalization with data
set 1.

lData set 1 [ Raw NN PFl
mean (mm)|13.23 5.31 7.91
std (mm) |8.41 5.14 7.68
max (mm) |37.60 29.42 32.51

6 Conclusions

In this paper we propose a method to calibrate SPIDAR using a feedforward neural
network coupled with a semi-automatic initialization. The semi-automatic initialization
allows us to place the SPIDAR referential at the same 3D position at each startup with an
accuracy of 1.2 mm. This way, we can use a method for calibrating the SPIDAR which,
don’t need to be updated at each startup. We choose a feedforward neural network
in order to compensate non linear errors on location and their abilities to estimate a
targeted output from a source without any knowledge on the mathematical model. We
obtain good results and our whole calibration procedure is efficient. Testing our neural
network in generalization shows us that our calibration is quite robust, even if we reset
the SPIDAR. We plan to make the initialization procedure fully automatic.
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Abstract. Robotic SLAM is attempting to learn robots what human beings do
nearly effortlessly: to navigate in an unknown environment and to map it in the
same time. In spite of huge advance in this area, nowadays SLAM solutions are
not yet ready to enter the real world. In this paper, we observe the state of the
art in existing SLAM techniques and identify semantic SLAM as one of pros-
pective directions in robotic mapping research. We position our initial research
into this field and propose a human inspired concept of SLAM based on under-
standing of the scene via its semantic analysis. First simulation results, using a
virtual humanoid robot are presented to illustrate our approach.

1 Introduction

In mobile robotics, the ability of self-localization with respect to the environment is
crucial. In fact, knowing precisely where the robot is, and what kind of objects sur-
round it in any given moment of the time enables it to navigate autonomously and to
interact with an unknown environment in a conscious manner. An informal definition
of the Simultaneous Localisation And Mapping (SLAM) describes it as a process, in
which a mobile robot explores an unknown environment, creates a map of it and uses
it simultaneously to infer its own position on the map. In the real world SLAM appli-
cations, data association has often to be done under large amount of uncertainty.
Moreover, the real environment is usually very complex and dynamic and it is not
easy for a robot to interpret it in a reliable way. It is this complexity, what makes
SLAM a challenging task. A comprehensive list and principle explications of nowa-
days most common SLAM techniques can be found in [1], [2] and [3]. Although from
its beginning until present days the research community achieved a significant ad-
vance on the field of SLAM [4], it is not yet a solved problem. Autonomous naviga-
tion in dynamic environment [5] or understanding the mapped environment by in-
cluding semantics into maps [6] are the actual challenges of this research field..

In this paper, the state of the art in robotic mapping is investigated. We identify a
relatively new field of research within the field of SLAM, which is attempting to
perform simultaneous localization and mapping with the aid of semantic information
extracted from sensor readings. One of the research interests of our laboratory
(LISSI) is autonomous robotics notably in relation to humanoid robots. We are con-
vinced that the research on semantic SLAM will bring a useful contribution on this
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topic. We position our initial research into this field, drawing our inspiration from
human way of navigation and place description. In fact, contrary to most of current
SLAM techniques, which tend to infer precisely and globally the navigation envi-
ronment, the human way of doing is based on very fuzzy description of the environ-
ment and it gives preference to local surroundings of the navigation backdrop. A
simulation using a virtual humanoid robot (Nao robot) is presented to demonstrate
some of the proposed ideas. The real Nao will be used in our further work.

The paper is organized in the following way: section 2 focuses on the state of the
art in semantic SLAM. In the third section, we are discussing our approach to image
segmentation and scene interpretation. Section 4 gives an overview of the robotic
humanoid platform we use. The fifth section presents our initial results and the paper
concludes with section 6.

2 Semantic SLAM

In this section, one of the latest research directions on the field of SLAM, the so-
called semantic SLAM, is discussed. The concept itself may be perceived as a very
important and pertinent one for future mobile robots, especially the humanoid ones,
that will interact directly with humans and perform tasks in human-made environ-
ment. In fact, it is the human-robot interaction, which is probably one of important
motives for employing semantics in robotic SLAM as humanoids are particularly
expected to share the living space with humans and to communicate with them.

Semantics may be incorporated into the concept of robotic SLAM in many differ-
ent ways to achieve different goals. One aspect of this may be the introduction of
human spatial concepts into maps. In fact, humans usually do not use metrics to lo-
cate themselves but rather object-centric concepts and use them for purposes of navi-
gation (“I am in the kitchen near the sink” and not “I am on coordinates [12, 59]”)
and fluently switch between reference points rather than positioning themselves in a
global coordinate system. Moreover, presence of certain objects is often the most
important clue for humans to recognize a place. An interesting work addressing the
mentioned problems has been published in [7], in which the world is represented
topologically with a hierarchy of objects and place recognition is performed based on
probability of presence of typical objects in an indoor environment. A part of the
work shows a study based on results of questioning about fifty people. The study was
aimed to understand human concepts of self-localization and place recognition. It
proposes that humans tend to understand places in terms of significant objects present
in them and in terms of their function. A similar way (i.e. place classification by pres-
ence of objects) has been taken by [8] where low-level spatial information (grid
maps) is linked to high-level semantics via anchoring. During experiments, the robot
has interfaced with humans and performed tasks based on high-level commands (e.g.
“go to the bedroom”) involving robots “understanding” of the concept of bedroom
and usage of low-level metric map for path planning. However, in this work, object
recognition is black-boxed and the robot is not facing any real objects in the experi-
ments but only boxes and cylinders of different colours representing different real-
world objects.
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An approach treating this “gap” between object recognition and semantic SLAM is
presented in [9]. Here, a system based on a mobile robotic platform with an omni-
directional camera is developed to map an outdoor area. The system generates a se-
mantic map of structures surrounding the robot. Buildings and non-buildings labelled
on the map. In [6], a more general system is presented, employing a wheeled robot
equipped with a laser 3D scanner. Authors show ability of their robot to evolve in an
indoor environment constructing a 3D semantic map with objects like walls, doors,
floor and ceiling labeled. The process is based on Prolog clauses enveloping pre-
designed common knowledge about such an environment (i.e. the doors are always a
part of a wall and never a part of the floor). This enables the robot to reason about the
environment. Further in the paper, an object detection method using the laser range
data is shown with a classifier able to distinguish and to tag different objects sur-
rounding the robot including humans and other robotic platforms. In [10] active ob-
ject recognition is performed by a mobile robot equipped by a laser range finder and a
camera with zoom. A semantic structure is extracted from the environment and inte-
grated to robots map. It allows the robot to reach previously detected objects in an
indoor environment. Another object recognition technique is shown in [11] including
an attention system. Based on recognized objects a spatial-semantic map is built.

3 Image Segmentation and Scene Interpretation

Section 2 showed the pertinence of semantic SLAM in the frame of state of the art
robotic mapping. It is exactly this field, on which we are focusing our research. Our
motivation comes from the natural ability of human beings to navigate seamlessly in
complex environments. Obviously, the way we are orienting ourselves in the space is
very different from what contemporary robots do. To describe a place, we use often
very fuzzy language expressions and approximation (as shown in [7]). This is in con-
trast with most of the current SLAM algorithms. In navigation or place description
people also rarely use “global coordinates” but rather divide the scene into some kind
of hierarchic clusters around distinctive objects, which then act as local origin of
coordinates. Another interesting point is that people are able to infer distance of an
object according to its apparent size and their experience of object’s true size. From
what has been mentioned so far it is clear that recognition of objects and understand-
ing of their nature (semantic treatment) is an integral part of human navigation or
“human SLAM” and not just an extra layer of it. We believe that application of se-
mantics and human inspired scene description could bring a considerable benefit in
development of robust SLAM applications for autonomous robotics.

To initiate a semantic scene interpretation, the image has to be segmented first. Al-
though there exist many approaches to image segmentation (see [12]) for a reference),
not all of them are suitable for purposes of mobile robotics, because it requires image
treatment being done in real time. Our segmentation algorithm breaks the input image
into parts containing similar colors present in different brightness levels. This should
reflect that different shades do not usually mark different objects but only different
light conditions on the same object.
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We have chosen to use the YCbCr color model within our algorithm. This color
model consists of three channels. The Y channel is dedicated to the luminance com-
ponent of the image and stores the information about light and dark parts of the im-
age. The other two channels Cb and Cr contain respectively the blue and the red
chrominance component of the image. The YCbCr color model is more practical for
purposes of our color segmentation algorithm, than classical RGB. It is because
YCbCr separates the luminance of color and the color itself into different channels,
while in RGB both color and its lightness are mixed together. The algorithm works in
two stages, coarse to fine. In the first one, the Cr and Cb components of the image are
acquired, their contrast is stretched and median filter is applied on both of them to
remove noise. Then a single scan is made through rows and columns of the image and
the first position that is not already occupied by a detected component is chosen as a
seed point with coordinates Xgeeq and Vieeq.

Eq. 1 captures how seed point is used to extract a segment of interest (S) from the
image. The P stands for all the pixels in the image, whereas p is the actually examined
pixel. Predicate C is true only if its two arguments (p, pseeq) are in four-connectivity
and I stands for intensity of pixel. Seed pixel is denoted by pseeq. A pixel of the image
belongs to the segment S under the following conditions: the difference of intensities
of the current and the seed pixel is smaller than a threshold and there exists a four-
connectivity between it and the seed pixel. Applying this on both chroma sub-images
(Cr and Cb) we obtain segments denoted as S, and Sc¢,. A new segment S is then
determined following Eq. 2 as the intersection of segments found on both chroma
sub-images without pixels already belonging to an existing segment.

VpeP, C(pa pseed) & |I(p) - I(pseed)| <g— pe S (1)

S =S¢ N Scy - San (2)

At the end of the scan, a provisory map of detected segments is available leaving
out components whose size is below certain threshold. At this stage, the image is
often over segmented due to the method of selection of seed points. However, it
serves as the first guess about the positions of regions. In the second step, all the
provisory segments are sorted according to their area and beginning with the largest
one the algorithm of segmentation is run again. This time the seed points are derived
from centers of segments defined by Eq. 3 and Eq. 4.

The seed point kg is determined as such a pixel from the skeleton whose dis-
tance from its closest contour pixel is maximal. Here, K is the set of pixels of skeleton
belonging to segment S and C is the set of contour pixels of S. D; denotes the minimal
distance between the given pixel k; and the contour. In this step, similar segments
from the previous step are effectively merged. At this point, found segments may
contain distinctive areas of different brightness having similar chroma. The ultimate
step of the algorithm is in constructing a histogram of luminance values of each seg-
ment. The histogram is then polished by application of sliding average. If multiple
significant clusters are found in the histogram, the segment is broken-up accordingly
to separate them. Having finished this step, found segments are stored for further use.
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In the next processing step, the segments are labeled with linguistic terms describ-
ing their horizontal and vertical position and span with respect to the image frame.
Both average color and its variance are computed for each segment along with the
number of pixels forming the segment. The compactness (Q) of the segment is com-
puted following Eq. 5, where n denotes the number of pixels of the segment and o the
number of pixels forming the contour of the element. These features, which represent
each segment, are then used in a set of linguistic rules, acting as a prior knowledge
about the world. The aim is to determine the nature of each segment and its appurten-
ance to an object of the perceived environment. For example, a compact segment
found in mid-height level surrounded by the wall is considered as a “window”.

4 Humanoid Robot Platform

The robotic platform we use for simulation and experiments is described in this sec-
tion. It is based on Nao, a humanoid robot manufactured by Aldebaran Robotics'. The
robot is about 58cm high with height slightly exceeding 4kg. Its degrees of freedom
are as follows: 2 DOF for the head, 5 DOF for each arm, 1 DOF for the pelvis, 5 DOF
for each leg and 1 DOF for hands to control the grasp. Concerning the available sen-
sors, it is equipped with two CMOS cameras with resolution up to 640x480px. One
camera is on the front of the head and the other is covering the space around the feet
of the robot (this one was added specially because of the usage of Nao in RoboCup
robotic football matches). Two channel sonar and 2 IR sensors are in robot’s chest. It
also possesses a tactile sensor, bumpers and inertial sensors. To interact with humans,
robot is equipped with voice synthesizer and a speech recognition unit.

The robot can operate in fully autonomous mode using its AMD Geode S00MHz
processing unit to run programs and behaviors stored in its memory. Alternatively, it
can be operated remotely from another computer via a WiFi (or Ethernet) connection.
To perform simulations, a virtual version of Nao is available for the Webots simula-
tion program developed by Cyberbotics®. The program allows us to create a virtual
world and to simulate robots interaction with it including gathering of sensor data
from cameras and IR/sonar sensors. Nao can be programmed in different manners.

! http://www.aldebaran-robotics.com
2 http://www.cyberbotics.com/
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The choice of languages includes C, C++, Python and URBI and the code can be run
locally on robot’s CPU or distantly via a network connection. After having explored
different ways of programming

3

Simulated Nao in Webots

Co+ {pure and LibUrbi for Cev)

Fig. 1. A scheme describing our humanoid robotic platform, showing different possibilities of
programming it. On the left a photo of the real Nao used in our laboratory.

Nao, we have chosen URBI developed by Gostai® for development purposes (see
Fig. 1). There are several reasons for this choice. First, URBI is a specific language
developed especially for robotics and by its nature allows simple and fast develop-
ment of robotic behaviors. Moreover, it provides a simple way of managing parallel
processes, which may be a complex task in other languages. Although programming
in URBI involves writing in URBI script, which is then interpreted by an interpreter,
URBI programs do not suffer from lose of performance. The code of its internal ob-
jects is written in C++ to keep high efficiency of the language. LibURBI connectors
allow user to develop own objects using so called UObject architecture and to plug
them into the language. These objects can be developed in C++ or Java code (a con-
nector is available for Matlab as well). User-created objects can be run directly on the
robot or transparently on a remote machine via CORBA technology. With these prop-
erties, URBI seems to us to be suitable for developing complex behaviors on robots
as well as computationally intensive tasks as image processing.

For the demo simulation presented in the next sections, we used the simulated ro-
bot described above and we are going to use its real equivalent in our further research
on the field of semantic SLAM. The task itself may be not perceived as being strictly
specific for humanoid robots. However, the motivation to use a humanoid robots
comes from the fact, that they are specially designed with the aim to interact with
humans and to act in human-made environment. If they are already imitating humans
in their physical form, why should not we enable them to do the same on the level of
their software? The concepts we are exploiting here come from human approach to
navigation and orientation in the space. Thus embedding such human inspired seman-
tic SLAM capabilities onto a humanoid robotic platform seems pertinent to us.

3 http://www.gostai.com/
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5 Results

After having the image segmented, all segments are labeled and interpreted by a set of
rules representing prior knowledge about objects. Following the mentioned rules
segments can be even merged so that e.g. multiple fragments of floor partially oc-
cluded by objects laying on it are labeled as belonging to the same object of type
“floor”. Fig. 2 gives an example resulted from the left image (supposed as the original
image acquired by robot’s vision system). Fig. 3 depicts the intermediate steps of
segmentation. This “semantic” information is subsequently used to approximate the
actual distance of certain objects. Having an object of type “window”, it is looked-up
in a table containing usual sizes of different objects and once found the size informa-
tion is used along with the pixel size of the object on the image and the field of view
of the camera to compute the approximate distance of the window (see the right im-
age in the Fig. 2). This is described by Eq. 6 (simplified for horizontal size only). The
distance d to an object is the product of estimated real width w,, of the object and
tangent of its width in pixels w,, on the image multiplied by fraction of the horizontal
field of view ¢ and the width Wip,e Of the image in pixels

d= Wreal * tan ( Wpx * O / Wimage ) (6)

ey N S R LI !
L b T

Fig. 2. A view of the robot’s random walking sequence. The left image is the original one. The
right image shows the result after the interpretation phase. Some of the detected objects are
labeled. The opposing wall is labeled also with its approximate distance with respect to the
robot.

The aim of this computation is absolutely not to infer the exact distance of an ob-
ject, but rather to determine whether it is “far” or “near” in the context of the simu-
lated world or if it is nearer to the robot in comparison to another object. This can
help in the further process of creation of the map of the location.

This demo, however limited, gives a preliminary idea of principles of semantic
mapping and more importantly, it gives a starting point for the research in the area of
semantic SLAM. Resigning to precise metric position of every object in the mapped
world and replacing it only by rough metric and human expressions like “near to” or
“beside of” is believed to enable us to create faster and more robust algorithms for
robotic SLAM. Using of “object landmarks” to navigate in an environment is certain-
ly more meaningful that using e.g. simple points in case of classical SLAM. Knowing
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the nature of an object gives an opportunity to distinguish between important and
random objects. One can imagine a robot with an ability of choosing landmarks for
purposes of its navigation by itself. With the knowledge about available objects, it
could prefer to pick up the most important and stable objects that are unlikely to
change their place or appearance in the lifetime of the map.

Fig. 3. The two segmentation steps relative to the result of Fig. 2.

window box - violetLight
@ cca7,8m+/- 0,7m @ cca 6,9m+/- 0,5m

box - yellowLight
@ cca7,5m +/-0,7m

box- redLight
@cca 4,2m +/- 0,2m

Fig. 4. The same room with different textures (left) and resulted interpreted image (right).

The seed point kg is determined as such a pixel from the skeleton whose distance
from its closest contour pixel is maximal. Here, K is the set of pixels of skeleton be-
longing to segment S and C is the set of contour pixels of S. D; denotes the minimal
distance between the given pixel k; and the contour. In this step, similar segments
from the previous step are effectively merged. At this point, found segments may
contain distinctive areas of different brightness having similar chroma. The ultimate
step of the algorithm is in constructing a histogram of luminance values of each seg-
ment. The histogram is then polished by application of sliding average. If multiple
significant clusters are found in the histogram, the segment is broken-up accordingly
to separate them. Having finished this step, found segments are stored for further use.
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"

Fig. 5. Detection of the wall as a overall (macro) object in robot’s environment.

It is important to notice the robustness of the proposed approach and the fact that
the estimated distances, even if approximated, are relevant enough for extracting
pertinent features relating environmental information. Fig. 4 gives results obtained
from the right image showing the above-mentioned purpose. Fig. 5 gives an example
of extended possibilities of the technique in detecting environmental information. In
fact, it allows potentiality of a higher-level semantic labeling of objects constituting
the robot’s environment. Here, one can notice that in the given example (detection of
the room’s wall including the associated objects as window, etc...) allows the possi-
bility to link previously labeled objects (for example the window) to the “wall” in
term of “room’s wall with the window”.

6 Conclusions and Perspectives

Simultaneous localization and mapping is an important ability for an autonomous
mobile robot. State of the art techniques have been discussed here giving an idea
about the current state on the field of SLAM. In spite of a great advance in SLAM
techniques in past years, most of the existing SLAM solutions can accommodate only
a particular case or environment. A stable and generally usable SLAM solution is still
missing. Given the state of the art of SLAM, one of the basic directions, which are
expected to play a key role in future development of SLAM is so called “semantic
SLAM”: adding a semantic level into robotic mapping should help robots to go
beyond simple “structural” information about the world that surrounds them. It
should enable them to “understand” it.

In this paper, we identify the pertinence of semantic SLAM for the future devel-
opment in mobile robotics and we present our initial research on this field. Our re-
search is strongly inspired by the human way of navigation and place description. The
semantic information about objects in the scene may improve mapping capabilities of
robots. It should enable them to reason about their environment as well as to share
their knowledge with humans and receive commands using human concepts and cate-
gories in a seamless way.

For description of a scene by semantic means, a good algorithm for image segmen-
tation is an important starting point. Preferably, it should perform segmentation using
both color and texture information. For real time use, fast and efficient algorithms are
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required. A part of our future work will be dedicated to further development of such
an algorithm. Another part of our future work will be focused on development of
algorithms of semantic SLAM we outlined in this paper. They will be consequently
implanted and verified in an indoor environment on the real Nao robot.
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