

Kurosh Madani (Ed.)

Artificial Neural Networks and
Intelligent Information Processing

Proceedings of the
6th International Workshop on
Artificial Neural Networks and Intelligent Information Pro cessing
Workshop ANNIIP 2010

In conjunction with ICINCO 2010
Funchal, Madeira, Portugal, June 2010

SciTePress
Portugal

ii

Volume Editors

Kurosh Madani
University PARIS-EST / PARIS 12
France

6th International Workshop on
Artificial Neural Networks and Intelligent Information Processing
Funchal, Madeira, Portugal, June 2010

Copyright c© 2010
SciTePress
All rights reserved

Printed in Portugal

ISBN: 978-989-8425-03-4
Depósito Legal: 311151/10

iii

Foreword

Theoretical, applicative and technological challenges, emanating from
nowadays’ industrial, socioeconomic or environment needs, open ev-
ery day new dilemmas to solved and new challenges to defeat. Bio-
inspired Artificial Intelligence and related topic have shown its as-
tounding potential in overcoming the above-mentioned needs. It is
a fact and at the same time a great pleasure to notice that the ever-
increasing interest of both confirmed and young researchers on this
relatively juvenile science, upholds a reach multidisciplinary synergy
between a large number of scientific communities making conceiv-
able a forthcoming emergence of viable solutions to these real-world
complex challenges.

Since its first edition in 2005, ANNIIP international workshop,
within the frame of the prestigious ICINCO International Confer-
ence, takes part in appealing intellectual dynamics created around
bio-inspired Artificial Intelligence by offering a privileged space to
refit and exchange the knowledge about further theoretical advances,
new experimental discoveries and novel technological improvements
in this promising area. The present book is the outcome of the sixth
edition of this annual event.

Within this inveterate philosophy and around a deliberately limit-
ed number of papers, the objective of this fifth volume is to convene
once more relevant recent works focusing this exciting topic, related
fields and issued applications. Conformably to our values, the choice
of publishing a restricted number of papers is persistently motivated
on the one hand by the premeditated desire to give a large space to
exchanges and discussions during the workshop, and on the other
hand by the strong principle of the presentation of each accepted
article by its authors. If “Bio-inspired Artificial Intelligence” and
its real-world applications remain, as in the previous editions of this
international workshop, the foremost premises of this sixth volume,
a special attention has been devoted to the balance between theo-
retical and applicative aspects.

It is important to remind that scientific relevance and technical
excellence of a collective volume emerge from quality of its con-
tributors: those who have contributed by the high quality of their
manuscripts and those who have taken part in reviewing of submit-
ted papers ensuring, by their valuable expertise, the distinction of
the present book. I would like to express again my acknowledge-

iv

ments to contributors of all accepted papers: You are the central
reason of the nobles of this tome. Also, I would like to reedit my
gratitude to Reviewing Board and Program Committee for the valu-
able work that they accomplished: My heartfelt recognition to those
who already were members of ANNIIP Program Committee as well
as my sincere thanks to those who kindly accepted to enlarge the
Reviewing Board of this sixth workshop’s edition.

It is also essential to be reminiscent that creative dynamics is fre-
quently the result of fruitful humans’ contacts within a same scien-
tific field or the consequence of humans’ interactions from different
scientific communities and since 2004, the date of the its first edi-
tion, the ICINCO multi-conference has been an outstanding bench
of such creative synergies. For that, again, I would like to express my
warm appreciation and my particular gratitude to my friend Prof.
Joaquim Filipe, ICINCO 2010 Conference’s Chair, for his faith in
young science of “Bio-inspired Artificial Intelligence” and for his re-
liance on devoting once more this privileged space to the ANNIIP
workshop within his valuable conference.

Finally, if ICINCO Organizing Committee’s professionalism be-
came an obvious skill of this international event’s organization in so
accurate way, it should never be forgotten that the organization of
a prestigious conference remains a challenging undertake requiring
a reliable and a solid team. So, I would like to acknowledge whole
the organizing team, with a special word for Marina Carvalho and
Vitor Pedrosa from Workshops Secretariat who, during the six re-
volved years, have proved their irreplaceable merit as key persons in
ANNIIP workshop’s organization.

June 2010,

Kurosh Madani
University PARIS-EST / PARIS 12, France

v

Workshop Chairs

Kurosh Madani
University PARIS-EST / PARIS 12
France

Program Committee

Veronique Amarger, PARIS-EST University, France
Ezzedine Ben Braiek, Ministery of High Studies, Tunisia
Abdennasser Chebira, LISSI, France
Amine Chohra, Images, Signals, and Intelligent Systems Laboratory
(LISSI / EA 3956), Paris-East University, France
Suash Deb, C. V. Raman College of Engineering, India
Khalifa Djemal, University of Evry Val d’Essonne, France
Vladimir Golovko, Brest State Technical University,
Russian Federation
Maria Del Carmen Hernandez Gomez, Grupo de Inteligencia
Computacional Computational / UPV/EHU, Spain
Manuel Grana, Universidad del Pais Vasco, Spain
Robert Hiromoto, University of Idaho, U.S.A.
Dattatraya Kodavade, DKTE Society’s Textile & Engineering
Institute Ichalkaranji, India
Thomas Laengle, Fraunhofer Iitb, Germany
Kurosh Madani, University PARIS-EST Creteil (UPEC), France
Georgy Panev, SPIIRAN - Russian Academy of Science, Russian
Federation
Christophe Sabourin, Signals, Images, and Intelligent Systems
Laboratory, France
María Teresa García Sebastián, University of the Basque Country
(UPV/EHU), Spain
Moustapha Séne, Université Gaston Berger de Saint-Louis (Sénégal),
Senegal
Eva Volna, University of Ostrava, Czech Republic
Qiangfu ZHAO, Aizu, University, Japan

vii

Table of Contents

Foreword . iii

Workshop Chairs . v

Program Committee . v

Papers

Finding Fuzzy Communities in Directed Networks 3
Kun Zhao, Shao-Wu Zhang and Quan Pan

Search Space Restriction of Neuro-evolution through

Constrained Modularization of Neural Networks
13

Christian W. Rempis and Frank Pasemann

Automatic Modularization of Artificial Neural Networks 23

Eva Volna

GMPath - A Path Language for Navigation, Information

Query and Modification of Data Graphs
33

Karsten Wendt, Matthias Ehrlich and René Schüffny

A Software Framework for Mapping Neural Networks to a

Wafer-scale Neuromorphic Hardware System
43

Matthias Ehrlich, Karsten Wendt, Lukas Zühl, René Schüffny,
Daniel Brüderle, Eric Müller and Bernhard Vogginger

Design of a Multi-Agent System for Hierarchical Network

Management inWireless Sensor Network
53

Mubashsharul I. Shafique, Haiyi Zhang and Yifei Jiang

Evolutionary Optimization of Echo State Networks: Multiple

Motor Pattern Learning .
63

André Frank Krause, Volker Dürr, Bettina Bläsing and Thomas
Schack

viii

Application of Self-organizing Maps in Functional Magnetic

Resonance Imaging .
72

Anderson Campelo, Valcir Farias, Marcus Rocha, Heliton
Tavares and Antonio Pereira

Neural Networks with AR Model Coefficients Applied to the

EMG Signal Classification .
81

Marek Kurzynski and Andrzej Wolczowski

SPIDAR Calibration based on Neural Networks versus Optical

Tracking .
87

Pierre Boudoin, Hichem Maaref, Samir Otmane and Malik
Mallem

On Human Inspired Semantic SLAM’s Feasibility 99
Dominik Maximilián Ramík, Christophe Sabourin and Kurosh
Madani

Author Index . 109

PAPERS

Finding Fuzzy Communities in Directed Networks

Kun Zhao, Shao-Wu Zhang and Quan Pan

School of Automation, Northwestern Polytechnical University, Xi’an, China
zz_kk@126.com, {zhangsw, quanpan}@nwpu.edu.cn

Abstract. To comprehend the directed networks in a fuzzy view, we introduce
a new matrix decomposition approach that reveals overlapping community
structure in weighted and directed networks. This method decomposes a
directed network into modules by optimally decomposing the asymmetric
feature matrix of the directed network into two matrices separately representing
the closeness degree from node to community and the closeness degree from
community to node. Their combined result uncovers the community structures
in a fuzzy sense in the directed networks. The illustrations on an artificial
network and a word association network give reasonable results.

1 Introduction

A cogent module representation of a network will retain the important information
about the network and highlight the underlying structures and the relationships in the
network. Many researches have been devoted to the development of algorithmic tools
for discovering communities [1]. Nearly all of these methods, however, are not
intended for the analysis of directed network. Yet, directedness is an essential feature
of many real networks. Ignoring direction may reduce considerably the information
that one can extract from the network structure. In particular, neglecting link
directedness when looking for communities may lead to partial, or even misleading,
results. Very few algorithms [2], [3], [4] currently available are able to handle
directed graphs, since the presence of directed links places a serious obstacle towards
community detection problems.

Another subject that attracts much attention in network studies is the detection of
overlapping communities, or fuzzy clustering. Specifically, many real world networks
exhibit an overlapping community structure, which is hard to grasp with the classical
graph clustering methods [5], [6], [7] where every node of the graph belongs to
exactly one community. Up to now, only a small number of studies [8], [9], [10] have
addressed the problem of overlapping community. Typically, there is an algorithm
takes symmetrical non-negative matrix factorization (s-NFM) [10] into optimization
framework and achieves explicit physical meaning for the clustering results, which
are helpful for the network analysis after clustering. As for directed networks,
however, symmetrical factorization could not treat the asymmetry which is resulted
from the directedness in edges. To solve this problem, we constructed a new
optimization framework based on the approximation to the directed feature matrix
with matrices of two types of directed paths. In order to complete the framework, we
also proposed a directfied and fuzzified variant of the modularity function first

introduced by Newman [11]. New function provides a reasonable basis for the
determination of the optimal number of communities. The clustering results contain
abundant information and equally possess explicit physical meaning. We tested our
method on a computer-generated graph and a real-world graph and gained significant
and informative community divisions in both cases.

2 The Algorithm

2.1 Optimization Scheme for Directed Graphs

Consider a directed and weighted network G(N,E), which can be described by the
weighted adjacency matrix A=[Aij]n×n where n is the number of nodes, and Aij >0 if
and only if (i,j)∈E and 0 otherwise. Let the feature matrix of G be Y=[Yij]n×n where
Yij denotes the similarity from node i to node j. Note that the relationship between a
pair of nodes is easy to grasp in the sense of connecting path. As the path linking a
pair of nodes increases, the relationship of the pair is enhanced. Then, in this paper,
we make the path number as the central metric of various relationships in network.

Undirected graph is defined as a graph in which edges have no orientation. It is,
therefore, no need to distinguish between the paths that start from a given node and
the paths that arrive in it because they are essentially the same in undirected graphs.
However, in directed graphs, these two types of paths are usually not equivalent since
not all edges are bidirectional. Suppose that n nodes can be grouped into r overlapping
communities. Here we introduce the concept of node-community similarity matrix

rnikUU ×=][, which is non-negative, to represents the number of paths (or the
similarity degree) from nodes to communities, and the concept of community-node
similarity matrix

rnikVV ×=][, which is non-negative, to represents the number of
paths (or the similarity degree) from communities to nodes. Generally, U concerns
the outgoing edges of node, and V concerns the incoming edges of node. Fig. 1
illustrates the difference between the two types of paths in directed network.

Fig. 1. Schematic illustrations of the two types of paths in directed graph (community → node
and node → community).

Since U and V respectively denote the number of paths from node to
community and the number of paths from community to node, TVU could further
be an approximation of similarity between nodes. That is, we can use U and V to
reconstruct Y:

4

YVU T
→ (1)

For convenience, we hope to have the following approximation form:

YVSU T → (2)

where U and V are non-negative matrix which are separately the column
Frobenius normalization form of U and V , and the r×r non-negative diagonal
matrix S stores the weights of the columns of U and V . Note that Equation (1)
is essentially equal to Equation (2), then

TT VUVSU = (3)

Equation (2) leads us to the following Frobenius norm (Euclidean distance
equation), which measures the fitness of the given matrices U , V and S of graph
G(V,E) by quantifying how precisely they approximate the network structural
information Y:

∑ −−=−=
≥ ij

ij
TT

Fro

T
GW

VSUYVSUYVSUYVSUYF)]()[(
2
1),,,(min

2

0
 (4)

where A B means the Hadamard product (or element-by-element product) of
matrices A and B.

Now the community detection problem is reduced to the optimization of FG. In
other words, we must find the optimal U , V and S to minimize FG. To solve this
optimization problem, we will develope a modified Non-negative Singular Value
Decomposition.

2.2 Method of Compressed Non-negative Singular Value Decomposition

Matrix factorization plays an important role in scientific computation. The commonly
used one is singular value decomposition (SVD) [12]. It approximates one matrix
with three lower rank matrices (including one rectangular matrix and two square
matrices) with orthogonality constraints, in which the left and right singular vectors
correspond to the column and row spaces of the original matrix. SVD has been
successfully applied in both science and engineer areas [13]. However the results by
SVD on real data always lose physical meaning because they usually contain negative
values, and this can not be interpretable easily from intuitive insight. To make the
results more interpretable, Liu [14] took the non-negativity constraints into SVD and
developed a non-negative SVD (NNSVD).

NNSVD is very help for our theme. We only need to make appropriate
modification on it. Firstly, both of U and V are not square matrices and they do
not have orthogonality constraints. Secondly, U and V must be achieved by the
normalization after matrix factorization. We take the above conditions in NNSVD and
propose the iteratively update rules of a compressed Non-negative Singular Value
Decomposition (c-NNSVD):

5

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=

=

=

+

+

+

][
][

][
][

][
][

1

1

1

kk
T
kkk

kk
T

kk

k
T

kkk
T
k

kk
kk

kk
T

kkk

kk
kk

SUUSV
SUY

VV

VVSUU
YVU

SS

SVVSU
SYV

UU

(5)

where kU and kV are n×r non-negative matrix and kS is r×r non-negative
diagonal matrix. The iteration starts from random matrices which are chosen from a
normal distribution with mean 0, variance 1. U and V are obtained by the column
normalization of U and V which are the optimal solution of iteration rules in Equation
(4); and the non-negative diagonal matrix S stores the weights of the columns of
U and V . The i’th diagonal element of S corresponds to the i’th community, or
the i’th column of matrix U and V .

According to Equation (3), to gain the number of paths from nodes to communities
(U) and the number of paths from communities to nodes (V), the weights in S
should be properly assigned to U and V . Intuitively, the weight of the input paths
of node should be quantitively equated with the weight of the output paths of node.
Therefore, the weights in S are equally distributed by:

⎪
⎩

⎪
⎨

⎧

=

=

2
1

2
1

SVV

SUU (6)

By Equation (6), we gain the number of paths from nodes to communities and the
number of paths from communities to nodes. Note that their sum can produce an
integrated closeness degree between nodes and communities, which is necessary for
the directed network analysis:

2
1

)(SVUVUW +== (7)

If one do not want to separately consider U and V , the integrated quantity,
W , would give a consolidated result which combines the two directions. To
specifically illustrate the difference among U , V and W , we apply our method
on a 11-nodes network studied in [3], as follows:

Let r have a value of 2; the output of Equations (5),(6) and (7) is:

⎥
⎦

⎤
⎢
⎣

⎡
=

533.0533.0533.0543.0543.0163.0004.0004.0000
00000109.0550.0550.0533.0533.0533.0TU

⎥
⎦

⎤
⎢
⎣

⎡
=

533.0533.0533.0550.0550.0109.000000
000004.0004.0163.0543.0543.0533.0533.0533.0TV

⎥
⎦

⎤
⎢
⎣

⎡
=

066.1066.1066.1093.1093.1272.0004.0004.0000
000004.0004.0272.0093.1093.1066.1066.1066.1TW

6

(a)

(b)

(c)

Fig. 2. Community assignments for 11-nodes network from the results of (a) U , (b) V and
(c) W .

Based on the above results, it is not difficult to find that the status of node 6 in U
and V are the exact opposite of each other. In the result from U , since there is
more number of paths from node 6 to community 2 than that to community 1, node 6
is assigned to community 1, as Fig. 2(a) shows. In the result from V , since there is
far less number of paths from community 2 to node 6 than that from community 1 to
node 6, node 6 is assigned to the community 2, as Fig. 2(b) shows. However, in the
result from W , the closeness degrees of node 6 to both communities are exactly the
same, as Fig. 2(c) shows. Therefore, W is the integrated similarity degree which
combines the degrees on two directions. In general cases, we use W to provide the
clustering result in our framework.

2.3 Feature Matrix

Choosing a feature matrix to store the topological information of a network is a
fundamental problem. Here, we select diffusion kernel [15] as the feature matrix.
Some graph kernels have been developed [16] to decipher the topological
relationships that are implicit in the graph data and make them explicit. One of these
is known as diffusion kernel which captures the long-range relationship between
nodes through enumerating the number of paths connecting them [16].

Firstly, we review the diffusion kernel of a common undirected network. The
Laplacian of undirected network is the following matrix:

7

⎩
⎨
⎧

=−

≠
=

jid

jiA
L

i

ij
ij ,

, (8)

where di is the degree of node i. Diffusion kernel , the exponential of matrix L, is
defined as:

++++=⎟
⎠
⎞

⎜
⎝
⎛ +==

∞→

3
3

2
2

!32
11lim)exp(LLL

n
LLK

n

n

βββββ (9)

where β is a positive constant to control the degree of diffusion. In undirected
networks, the resulting matrix K is symmetric and positive definite. It is a valid
kernel. A similarity matrix Y can be obtained by normalizing the kernel matrix K in
such a way:

jjii

ij
ij KK

K
Y = (10)

Note that, the diffusion kernel of undirected network starts with a symmetric
adjacency matrix. However, in directed network, the adjacency matrix A is not
symmetric. Therefore, directed networks should have an alternative form of kernel
which could be traced back to a different Laplacian. The Laplacian of undirected and
weighted network is the following matrix:

⎪⎩

⎪
⎨
⎧

=−

≠
=

jid

jiA
L

out
i

ijd
ij ,

, (11)

where out
id is the out degree (weighted) of node i. It is naturally an asymmetric

matrix. So, its kernel matrix Kd=exp(β Ld) and the resulted feature matrix are also
asymmetric. Frankly speaking, Kd do reflect the number of directed paths from one
node to another in an asymmetric manner. In this paper, we choose β = 0.1 in the
feature matrices in our study.

2.4 Directfied and Fuzzified Variant of the Modularity Function

If a priori knowledge of the community number is absent, the optimal number of
communities should be determined by some computational methods in a self-
consistent way without human intervention. Recently, a concept of modularity
function Q introduced by Newman and Girvan [11] has been broadly used as a valid
measure for community structure. It comes from the notion that: only if the number of
edges within communities is significantly higher than would be expected purely by
chance can we justifiably claim to have found significant community structure. The
original modularity of a network is then defined as:

jiCC
ji

ji
ij m

dd
A

m
Q δ⋅⎥

⎦

⎤
⎢
⎣

⎡
−= ∑

, 22
1 (12)

8

where Aij is an element of the adjacency matrix, δ ij is the Kronecker delta symbol,
and ci is the label of the community to which vertex i is assigned.

Then one maximizes Q over possible divisions of the network into communities,
the maximum being taken as the best estimate of the true communities in the network.
So, the optimal number of fuzzy communities can be determined by the modularity
function Q which gains its maximum on a certain value of r.

In the fuzzy clustering method of Nepusz [8], a fuzzified variant of the modularity
Q is presented as:

ij
ji

ji
ijf s

m
dd

A
m

Q ⋅⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

, 22
1 (13)

where ∑
=

=
r

k
kjkiij HHs

1

 and kiH is the fuzzy membership degree of node i to the

community k. The probability of the event that vertex i belongs to the same
community as vertex j becomes the dot product of their membership vectors, resulting
in the similarity measure sij, which can be used in place of

jiCCδ to obtain a fuzzified

variant of the modularity.
As for directed network, Newman [2] presented a new modularity function Qd,

which is generally applicable for directed networks:

jiCC
ji

in
j

out
i

ijd M
dd

A
M

Q δ⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= ∑

,

1 (14)

where Aij is defined in the conventional manner to be 1 if there is an edge from j to i
and zero otherwise, and out

id is the out-degree of node i and in
jd is the in-degree of

node j and M is the total number of directed edges in the network. Indeed edge i-j
make larger contributions to this expression if in

jd and/or out
id is small.

Each of the above two modularity, Qf and Qd, has its advantages which the other
one does not has. To combine their advantages, we propose another variant of the
modularity Q as:

ij
ji

in
j

out
i

ijdf s
M

dd
A

M
Q ⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= ∑

,

1 (15)

which can be applied to fuzzy clustering in directed networks.
The modularity can be either positive or negative, with positive values indicating

the possible presence of community structure. One can search for community
structure precisely by looking for the divisions of a network that have positive, and
preferably large, values of the modularity. In order to determine the optimal number
of fuzzy communities in directed networks, we iteratively increase r and choose the
one which results in the highest modularity Qdf.

9

3 Test of the Method

3.1 Random Graph

For illustrative purposes, we consider an artificial computer-generated network,
designed specifically to test the performance of the algorithm. As Fig. 3a shows, this
network is generated with N = 40 nodes, split into two communities containing 20
nodes each. We put 120 directed edges in each community at random and 120
directed edges between the two communities at random. The edges that fall within
groups are biasedly assigned directions so that they are more likely to point from one
group to another. As we apply c-NNSVD on this network, the two communities are
detected almost perfectly: just two nodes out of 40 are misclassified. This is
confirmed in Fig. 3(a), which shows the results of the application of our method. If
we ignore the directions, however, using the algorithm presented in [10], there is
nearly no community structure to be found in this network, as Fig. 3(b) shows.

(a) (b)

Fig. 3. Community assignments for the two-community random network described in the text
from (a) the algorithm of this paper and (b) an undirected clustering algorithm in [10]. The true
community assignments are denoted by vertex shape or shaded region. The different colors
represent different communities obtained by the algorithms.

2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of communities

Q
df

(a) (b)

Fig. 4. The communities of the word DAY in the South Florida Free Association coupled with
the determination of the optimal number of communities. (a) By the method presented in this
paper, the word DAY is discovered to be the overlapping node which has the largest
membership degree to the yellow group and the second-largest membership degree to the blue
group. (b) Histogram of Qdf for different choices on number of communities.

10

3.2 Word Association Graph

We examined a directed network obtained from the South Florida Free Association
norms list [17] (containing 10617 nodes and 63788 links), where the weight of a
directed link from one word to another indicates the frequency that the people in the
survey associated the end point of the link with its start point. We picked a sub-
network with 20 nodes from the list and chose 4 as the optimal number of clusters, see
details in Fig. 4(b) which indicates that the peak for Qdf of 0.5745 is achieved at r = 4.
For illustration in Fig. 4(a), we showed the (colour coded) modules of the word DAY
obtained by c-NNSVD, with the overlap emphasized in nested color. According to its
different meanings, this word participates in four, strongly internally connected
modules. The green community can be associated with work days. The yellow
community consists of day times, the gray community contains common adjectives of
day related to weather, and the blue community can be associated with the calendar.
Separately, the closeness degrees of the word DAY to the four communities is 0.018,
1.355, 0.019 and 0.059, which indicate that the yellow group is the dominant
community of node DAY and the blue group follows.

4 Conclusions

In this paper we presented a new algorithm for identifying overlapping communities
in directed networks based on two matrices of similarity between node and
community. An integrated quantity was proposed to give a consolidated result and it
was shown, through several examples that this leads to detection of the overlapping
community structure of the directed network.

Acknowledgements

We thank Liu Weixiang for the useful discussion. The work was supported in part by
the National Natural Science Foundation of China under Grant NO. 60775012 and
NO. 60634030.

References

1. Danon, L., Duch, J., Diaz-Guilera, A. and Arenas, A. Comparing Community Structure
Identification. Stat. Mech. (2005) P09008.

2. Leicht, E. A. and Newman, M. E. J. Community Structure in Directed Networks. Phys.
Rev. Lett. (2008) 100, 118703.

3. Nepusz, T. and Bazsó, F. Likelihood-based Clustering of Directed Graphs. In: IEEE 3rd
International Symposium on Computational Intelligence and Intelligent Informatics. (2007)
Agadir, Marokkó, 28.

4. Palla, G., Farkas, I., Pollner, P., Derenyi, I. and Vicsek, T. Directed Network Modules.
Phys. New. J. (2007) 186.

11

5. Girvan, M. and Newman, M. E. J. Community Structure in Social and Biological Networks.
Proc. Natl. Acad. Sci. USA, (2002) 99, 7821−7826.

6. Ravasz, E., Somera, A. L. and Mongru. D. A. Hierarchical Organization of Modularity in
Metabolic Networks. Science, (2002) 297, 1551−1555.

7. Capocci, A., Servedio, V. D. P., Caldarelli, G. and Colaiori, F. Detecting Communities in
Large Networks. Physica A, (2005) 352, 669−676.

8. Nepusz, T., Petróczi, A., Négyessy, L. and Bazsó, F.. Fuzzy Communities and the Concept
of Bridgeness in Complex Networks. Phys. Rev. E, (2008) 77, 1539-3755.

9. Palla, G., Derenyi, I., Farkas, I. and Vicsek, T. Uncovering the Overlapping Community
Structure of Complex Networks in Nature and Society. Nature, (2005) 435, 814–818.

10. Zhao,K., Zhang, S. W. and Pan, Q.. Fuzzy Analysis for Overlapping Community Structure
of Complex Network. In: IEEE International Conference on Chinese Control and Decision
Conference(CCDC), Submitted for publication (2010).

11. Newman, M. E. J. and Girvan, M. Finding and Evaluating Community Structure in
Networks. Phys. Rev. E, (2004) 69, 026113.

12. Golub, G. H. and Van Loan, C. F. Matrix Computations (3nd ed.). Johns Hopkins
University Press. (1996)

13. Jolliffe, I. Principal Component Analysis. Springer (2002).
14. Liu, W., Tang, A., Ye, D., and Ji, Z. Nonnegative Singular Value Decomposition for

Microarray Data Analysis of Spermatogenesis. Technology and Applications in
Biomedicine. (2008) 225-228.

15. Kondor, R. I. and Lafferty, J. Diffusion Kernels on Graphs and Other Discrete Structures.
19th International Conference on Machine Learning (ICML), (2002)315−322.

16. Fouss, F. and Yen, L. An experimental Investigation of Graph Kernels on Two
Collaborative Recommendation Tasks. In: IEEE International Conference on Data Mining
(ICDM), (2006) 18-22.

17. Nelson, D. L., McEvoy, C. L., and Schreiber, T. A. The University of South Florida Word
Association, Rhyme, and Word Fragment Norms. (1998) Retrieved from:
http://www.usf.edu/FreeAssociation/.

12

Search Space Restriction of Neuro-evolution through
Constrained Modularization of Neural Networks

Christian W. Rempis1 and Frank Pasemann1,2

1 Neurocybernetics Group, Institute of Cognitive Science
University of Osnabrück, 49069 Osnabrück, Germany

2 Institute for Advanced Study, Wallotstr. 19, 14193 Berlin,Germany
{christian.rempis, frank.pasemann}@uni-osnabrueck.de

http://ikw.uni-osnabrueck.de/∼neurokybernetik/

Abstract. Evolving recurrent neural networks for behavior control ofrobots
equipped with larger sets of sensors and actuators is difficult due to the large
search spaces that come with the larger number of input and output neurons. We
proposeconstrained modularizationas a novel technique to reduce the search
space for such evolutions. Appropriate neural networks aredivided manually into
logically and spatially related neuro-modules based on domain knowledge of the
targeted problem. Thenconstraint functionsare applied to these neuro-modules to
force the compliance of user defined restrictions and relations. For neuro-modules
this will facilitate complex symmetries and other spatial relations, local process-
ing of related sensors and actuators, the reuse of functional neuro-modules, fine
control of synaptic connections, and a non-destructive crossover operator. With
an implementation of this so called ICONE method several behaviors for non-
trivial robots have already been evolved successfully.

1 Introduction

The development of recurrent neural networks for behavior control of autonomous
robots with evolutionary methods has a long and successful history [10], [4], [6]. Nev-
ertheless, most experiments work with robots having only a small number of sensors
and actuators, as in typical experiments described in [9], [8]. Although interesting non-
trivial behaviors have to be expected to come up especially with complex robots having
a larger number of sensors and actuators, only few experiments have been conducted in
this domain. One main reason is that the search space for neuro-controllers gets incon-
veniently large if more and more sensor and motor neurons have to be used. This often
makes it infeasible to evolve interesting solutions in reasonable time.

To cope with such large search spaces, strategies and heuristics have to be found
that reduce the search space or that assist the experimenterto guide evolution towards
effective network topologies. In this contribution, we propose that the manual segmen-
tation of neural networks into smaller,constrainedsub-networks, calledneuro-modules
[11][9], can significantly restrict the search space. Thisconstrained modularizationis
based on domain knowledge about the behavior problem to be solved. The induced re-
strictions on the modules exclude large parts of the search space and focus the search
on network topologies that have a higher chance to provide a desired solution. The kind

of solution hereby can be biased by the experimenter to a large extend during the mod-
ularization. Furthermore resulting network topologies often are better to understand
than unconstrained ones, allow an easier identification of relevant network parts, and
make the reuse of already evolved networks structures possible. With this approach the
evolutionary algorithm is not used as a universal problem solver that creates complex
networks from scratch. Instead evolution is used merely as atool to help the experi-
menter to confirm his specific solution approaches, that are usually still too complex to
be constructed by hand.

In the next chapter we define the termsconstrained modularization, neuron group
andneuro-moduleas they are used here. Then, in chapter 3, we describe how modular-
ization of large neural networks can reduce the search spaceand why resulting solutions
of modular neuro-evolution often are easier to understand.First indications of the us-
ability of this approach, based on the implementation of this method, are discussed in
chapter 4 and 5, followed by a conclusion in the final chapter.

2 Constrained Modularization of Neural Networks

2.1 Constrained Modularization

The decomposition of a recurrent neural network into smaller, hierarchically and spa-
tially organized sub-networks is here calledmodularization. A network hereby is, based
on domain knowledge and user experience, manually split into connected neuron groups
by the experimenter (Fig. 1 shows an example). To each neurongroupfunctional con-
straintscan be added, that force the compliance of user defined limitations or structural
restrictions. These constraint functions can implement any restriction and manipulate
the neural network directly, so that violations of constrains, e.g. originating from muta-
tion operators, can be counteracted immediately.

With this constrained modularizationthe user tries to restrict the network develop-
ment in such a way, that only a certain, promising type of network structures is possi-
ble. Hereby the user constructs a kind of constraint mask forthe neural network, that
specifically limits the network topology and thus leads to a smaller search space for the
evolutionary algorithm.

Neurons can be grouped in two different ways: (1) by simple neuron groups, or
(2) by more restrictive neuro-modules. Neuron groups and neuro-modules both allow
a detailed topological, hierarchical and functional partition of the network to exclude
unwanted areas of the search space. Both types of grouping are defined in the next two
sections.

2.2 Neuron Groups

The simplest way to group neurons is the creation ofneuron groups. These groups
may contain any number of neurons sharing topological, functional or other proper-
ties. Hereby neuron groups can arbitrarily overlap. Thus each neuron can be part of
many neuron groups at the same time. Neuron groups can be target of constraint func-
tions. These functions force the compliance of certain, user defined constraints, rules

14

and heuristics for their member neurons. This may include, for example, limiting the
number of member neurons or synapses, forcing specific kindsof synaptic connection
patterns, allowing synaptic plasticity for its members or resolving dependencies be-
tween neurons and synapses. The constraint functions therefore define the purpose of a
group and contribute significantly to a search space restriction.

2.3 Neuro-modules

A stronger grouping of neurons is represented by so calledneuro-modules. Neuro-
modules are similar to neuron groups, but do not intersect partially; i.e., neurons can
only be part of a single neuro-module at the same time. However, neuro-modules can
be members of other neuro-modules and therefore can serve assub-modules.

Neurons in a neuro-module are encapsulated by the module. Thus these neurons are
only visible to the neurons of the same neuro-module. To connect the module with
external neurons, it can provide a neural interface. This can be achieved by mark-
ing selected neurons of the module asinput or outputneurons (compare Fig. 1 where
these neurons are marked withI andO). During evolution synaptic connections are
inserted only between members of the same neuro-module and to interface neurons of
sub-modules. Neuro-modules thus can be regarded as encapsulated, independent neural
building-blocks with well defined interfaces. Their special purpose is to group strongly
related neurons together (e.g. the sensors and motors of a joint or the neurons of a func-
tional structure) and to control the way these neurons can connect to neurons outside of
the module.

3 How Constrained Modularization Fosters Successful Evolutions

Modularizing and constraining a neural network according to domain knowledge of
a behavioral problem can restrict the search space for neuro-evolution significantly.
For comparison, an unconstrained minimal neuro-controller for walking of a humanoid
robot with 42 motor and 37 sensor neurons already allows over3300 synapses, while the
same, but constrained modular network in Fig. 1 only allows 180 independent synapses.
In this figure it can also be seen, that the modularized network is much more structured
than an unconstrained one. It shows, that the constrained network already biases the
possible network structures, here to get a symmetric network for walking based on
internal oscillators or on an acceleration sensor (at the top module). This also shows that
the initial networks for a neuro-evolution have to be specifically modularized regarding
the given problem to be solved. Therefore, even for the same problem, different kinds of
modularization promote different approaches to solutions. Experimenters can use this
to bias the networks towards desired solution approaches.

Constrained modularization reduces the search space by constraining the structure,
function and evolution process of the networks, as is described in the next sections.

3.1 Structure Constraints

Neuro-modules, with their ability to hierarchically structure a network and to shield
their members from disruptive connections from arbitrary sources, bias the network

15

Fig. 1. Left: Constrained modularization of the control network of a humanoid robot. The 37
sensor and 42 motor neurons are separated into modules according to their locations on the robot
(head, arms, middle body, legs). A symmetry constraint handles the neural structure of the right
side. The upper left module was extended by an evolvable controller module and a filter module.
Clones of these modules (C’ and F’) have been added to each used motor neuron and acceleration
sensor. Additional functional modules have been added (H, A, M, L) that can be exchanged during
crossover by modules of the same type. These modules are expected to implement the actual
behavior controller. During evolution neurons are only added to these functional modules. In
(A) and (M) oscillator modules have been added that might be modified and incorporated into
the control network.Right: This network is the result of executing the constraints for the left
network. To additionally restrict the search space, synaptic pathways (Black Dotted Lines) have
been added.

topologies towards local processing units, rather than towards networks with high con-
nectivity. This excludes many – in principle also potentially successful – topologies.
But as a heuristic, large, highly connected networks tend tobe unable to evolve com-
plex local processing sub-networks, because synapses fromarbitrary sources influence
most neuron clusters in a disturbing way. This problem increases as the number of neu-
rons in the network gets larger, because the probability fora synapse to be unrelated,
and therefore potentially disruptive, increases with every neuron. Therefore we expect
highly connected networks to have a lower probability to provide interesting, non-trivial
solutions [1]. Therefore neuro-modules can be used to promote plausible connections
based on domain knowledge, such as grouping motors and sensors of the same joint
together. Neuro-modules also allow the definition ofsynaptic pathways, i.e. to prevent
or permit connections between modules explicitly.

A powerful constraint on the structure of neuron groups is the definition ofsymme-
triesandrepetitive structures. Depending, of course, on the targeted behavior problem,
many evolutions can be greatly restricted when the desired network is assumed to be
symmetric. Examples are walking or squatting of a humanoid robot or the repetitive
structure of a multi-legged walking machine. Symmetries remove large parts of the

16

search space, because the parameters of all symmetrized neurons and synapses are not
part of the search space any more (e.g. the entire right side in Fig. 1).

An additional positive effect on the structure using modularization is the better read-
ability of the resulting networks (see Fig. 1). Functional elements can be isolated more
easily and signal paths can be better traced, because most synapses are locally con-
nected and have less dependencies to other parts of the network.

3.2 Functional Constraints

Neuro-modules bias evolution to evolve local processing units, that are often related to
local functions. Although, admittedly, it can not be guaranteed that the evolved structure
of a module implements a single, well defined function, the tendency still is towards
functions distributed over only a few, local modules. This still simplifies the isolation
of such functions when an evolved network is analyzed.

Neuro-modules can also be used to represent predefined functional units, that may
origin from previous evolutions or analytic reasoning. Once a functional processing unit
is found by evolution, it can be reused in future evolutions as neural building block.
Forcing evolution to reinvent already known processing units in each evolution from
scratch only blows up the search space without any gain from the scientific perspective.
With an additionalneuro-module insertionmutation operator that can insert predefined
neural building blocks from a library, larger, functionally more complex networks can
evolve in shorter time.

Neural building-blocks can also be constrained with veryspecificconstraint func-
tions. Because building blocks can be constructed by hand – although often based on
evolved structures – specialized constraint functions canbe added. Such functions can
be used to ensure, for instance, that the function or complexstructure of a module is
preserved independently of the mutations taking place. They can also be used to de-
sign complex modules, such as neural fields [3], memory units[15], oscillators [12],
structures with adaptive synapses and the like.

Constraints can also be used toclone a mutable neuro-module and to reuse the
same network structure in multiple places of the network. Inthis way the function of
this module can still evolve, while it is used with all modifications in several places,
profiting from enhancements immediately. A common usage of this is the definition of
sensor filters or motor controllers (as in Fig. 1), where the same structure is required for
any sensor or motor of the same type. If the sensor or motor works similar in all places,
then the controller has not to be optimized multiple times.

3.3 Evolutionary Constraints

Neuro-modules are a suitable target for modification operators during evolution. Be-
cause neuro-modules are well structured, providing a specific interface to their sur-
rounding network parts, they can be exchanged and replaced with only little impact on
the rest of the network. This enables the usage ofmodular crossover. Crossover in most
neural network implementations is highly destructive due to the potentially large struc-
tural differences between parents. Crossover between suchunrelated networks most
probably produces networks that are less fit than both of their parents, so that most of

17

these networks usually do not survive. Modular crossover isless affected by this prob-
lem, because crossover takes place only at well defined network parts, namely at the
module level. Modules are only replaced by compatible modules, which means that
their interfaces match and the module types are similar.

In addition to module exchange between parents, modules mayalso be exchanged
by compatible modules from a library of predefined building blocks or by neuro-modules
co-evolving with the behavior controllers in their own populations.

A particular benefit of constrained modularization for evolution is that the approach
to solve a given behavior problem can be biased to a large extend in advance. This way
the experimenter does not only specify the problem to be solved, but also influences to
a high degree, how the problem is going to be solved. Also, theiteration of evolutions
becomes much easier: The behavior problem may be solved firstby applying sharp
restrictions on the evolving networks. Then, iteratively,the network can be opened for
new solution approaches to stepwise enhance the behavior.

4 Application

The modularization approach with the described features has been implemented in the
ICONE (Interactively Constrained Neuro-Evolution) method. Currently the implemen-
tation supports structure evolution based on neuron, synapse and neuro-module inser-
tions. Explicit specifications of neural pathways between neuro-modules are consid-
ered, as well as connection restrictions induced by the hierarchical interfaces of neuro-
modules. Neuron groups and neuro-modules can be restrictedwith arbitrary, user de-
fined constraint functions, such as symmetry, cloning and restrictions of neuron and
synapse structures. A library of neuro-modules as basic building blocks is under con-
tinuous construction, including neuro-modules for different kinds of oscillations, mem-
ory, joint controllers, sensor filters, event detections, context switches and behavior in-
terpolation. During evolution all aspects of the evolutionary algorithm can be modified
on-line to guide evolution through the search space.

Manually modularizing large networks is not trivial. Therefore a graphical neural
network editor was implemented that supports the visual manipulation of all mentioned
aspects of the neural networks. Without such an editor, modularization is difficult to
apply.

5 Examples

The modularization technique has been applied to develop neuro-controllers for sev-
eral complex robots. These robots include for instance the six legged walking machine
Octaviowith 24 sensor and 18 motor neurons, and theA-Serieshumanoid robot with
37 sensor and 42 motor neurons. The developed behaviors include – among others –
different kinds of walking, squatting and stabilized standing.

Some examples are shown in Fig. 2 and Fig. 3. Due to space limitations, details on
the evolved behaviors will be presented in upcoming publications. But it can be said,
that with pure structure evolution solutions for these kindof problems could not be
found at all.

18

Fig. 2. Network and time-series of an evolved neuro-controller forwalking with theA-Series
humanoid, based on a constrained initial network similar toFig. 1. The initial network was con-
strained to search for solutions based on the acceleration sensors of the shoulder (Mid of Upper
Right Module). Substantially different networks can be produced starting with internal pattern
generators as in Fig. 1. [Evolution:≈ 400 generations with 150 individuals].

Fig. 3. Network and time-series of an evolved neuro-controller forwalking with the 6-legged
walking machineOctavio. Here only one leg controller (Upper Left) is evolved, all other legs
clone this prototype controller. In addition the network has a right / left symmetry. The focus
of this experiment is to find a universal leg controller for a multi-legged walking machine and
appropriate interconnection patterns. With minor adjustments of the constraints the focus of the
experiment can be changed, e.g. to find specialized leg controllers for front, mid and hind legs.
[Evolution:≈ 300 generations with 100 individuals].

19

6 Discussion

Modularizing a network by applying domain knowledge and user experience obviously
restricts the search space for neuro-evolution algorithms. Attempts to restrict the search
space have been conducted by many authors, because without restrictions the evolution
of large network topologies of non-trivial robots becomes infeasible.

A common approach is the use of specific genome representations, that imply for
instance a fully symmetric network [7], [13]. This approachcan be compared to mod-
ularization with symmetry constraints. But because the symmetry is embedded directly
in the genome representation or in the genotype-phenotype mapping, a new genome
type has to be created for each new experimental scenario. Also complex, stacked sym-
metries are difficult to set up. During evolution such genomes are rigid and can not
be extended if needed. Using, as proposed here, constraint functions to influence the
relations of network parts, symmetry can be implemented as asimple extension of the
network genome and can easily be removed or changed without changing the genome
type. Furthermore constraints are not restricted to symmetry, but can enforce any kind
of structural dependency, like complex spatial connections as used in neural fields [3].

Another approach to reduce the search space is to focus only on specific parts of the
target robot. For instance, walking may be evolved with onlythe legs of a humanoid
robot, replacing the entire upper body by a simple block of comparable mass [13]. This,
indeed, reduces the search space, because all motors and sensors of the simplified body
parts have been removed. Though, extending such a controller to the full robot becomes
difficult, because the evolved controllers will ignore the influence of the other moving
body parts. Also, for each new approach, a new simulated robot has to be designed, that
focuses on the desired motor and sensor aspects, and therefore also iterative evolution
in small steps becomes more difficult. With the proposed modularization technique,
the complex target robot can be used right from the beginning. Unwanted sensors and
motors can be excluded in the beginning by synaptic pathway restrictions and can be re-
enabled at any time during the evolution. Therefore the evolution can start with a min-
imal subset of the robot’s actuators and sensors, but can still include the non-essential
robot parts to further optimize the controllers.

A third popular search space restriction approach is structure reuse. In most cases
structure reuse is implemented within developmental evolution systems, like Cellular
Encoding [5], where the genotype is mapped to a phenotype by applying a sequence
of construction rules. These algorithms have been shown to reuse structures in multiple
places while evolving thestructure blue-printsonly once. A disadvantage of such de-
velopmental approaches is, that the resulting modular structures are difficult to isolate
for later usage. Furthermore, it is difficult to translate a complex starting network with
this kind of modularity into its genotype representation, and to monitor and manipu-
late these modular structures during evolution. Neuro-modules as building blocks on
the other hand do not require a complex mapping from genotypeto phenotype and thus
can be reused as entire structure with little effort. Other techniques [2], such as Mod-
ular NEAT [14], try to automatically define neuro-modules asbuilding-blocks without
a complex genotype-phenotype mapping. But also here, functional modules have to be
reinvented in every evolution, because predefined modules can not be used. Further-
more, the reused sub-networks are arbitrarily aligned to the input and output neurons

20

without domain knowledge, so that – especially in large networks – proper use of the
modules becomes unlikely again.

Constrained modularization allows the utilization of all mentioned search space
restriction methods in a uniform, extensible framework. With appropriate libraries of
functional neuro-modules new types of larger control networks can be developed, that
might give deeper and even new insights into neural organization of behavior. Con-
strained modularization as a general principle does not really restrict experimenters in
their approaches, because new approaches can be simply implemented by introducing
new constraint functions.

7 Conclusions

In this contribution it was discussed howconstrained modularizationof large neural
networks for robot control can significantly reduce the search space for neuro-evolution
processes. Large neural networks can be spatially and logically partitioned byneu-
ron groupsandneuro-modules. Both types of grouping can be the target ofconstraint
functions, that force the compliance of – partly very specific – constraints, such as net-
work symmetries, dependencies, module cloning and connectivity structures between
or within modules. The modularization is done manually to apply domain knowledge
and to bias the search towards desired solution approaches.In this way the search space
is restricted by the user to a well defined potential solutionspace, which increases the
chance to find appropriate solutions. For modular neural networks new types of evo-
lution operators are defined:modular crossoverandneuro-module insertions. Modular
crossover allows the exchange of sub-networks in a minimally destructive way. Inser-
tions of functional neuro-modules as mutation allow the extension of a network with
already working functional sub-networks, which eases the transfer of findings from pre-
vious evolutions and relieves evolution from reinventing already known structures. The
described approach has been used to develop different behaviors for several robots with
many sensors and actuators, including a multi-legged walking machine and humanoid
robots. Detailed results are described in upcoming publications.

Acknowledgements

The authors thank Arndt von Twickel and Manfred Hild for manyinspiring discussions.
Thanks also to Verena Thomas and Ferry Bachmann for their contributions to the sim-
ulation environment. This work was partly funded by EU-Project Number ICT 214856
(ALEAR Artificial Language Evolution on Autonomous Robots.http://www.alear.eu).

21

References

1. Beer, R.D. (2010). Fitness Space Structure of a Neuromechanical System. To appear in
Adaptive Behaviour.

2. Calabretta, R., Nolfi, S., Parisi, D., and Wagner, G. P. (2000). Duplication of Modules Facil-
itates the Evolution of Functional Specialization. Artificial Life, 6(1), pp. 69–84.

3. Coombes, S. (2005). Waves, Bumps, and Patterns in Neural Field Theories. Biological
Cybernetics, 93(2), pp. 91–1008.

4. Floreano, D., Husbands, P., and Nolfi, S. (2008). Evolutionary Robotics. In Siciliano, B. and
Khatib, O., editors, Springer Handbook of Robotics, pp. 1423–1451. Springer.

5. Gruau, F. (1995). Automatic Definition of Modular Neural Networks. Adaptive Behaviour,
3(2), pp. 151–183.

6. Harvey, I., Paolo, E., Wood, R., Quinn, M., and Tuci, E. (2005). Evolutionary Robotics: A
New Scientific Tool for Studying Cognition. Artificial Life,11(1-2), pp. 79–98.

7. Hein, D., Hild, M., and Berger, R. (2007). Evolution of Biped Walking Using Neural Os-
cillators and Physical Simulation. Proceedings of the RoboCup 2007: Robot Soccer World
Cup XI.

8. Hülse, M., Wischmann, S., Manoonpong, P., von Twickel, A., and Pasemann, F. (2007).
Dynamical Systems in the Sensorimotor Loop: On the Interrelation Between Internal and
External Mechanisms of Evolved Robot Behavior. In Lungarella, M., Iida, F., Bongard,
J. C., and Pfeifer, R., editors, 50 Years of Artificial Intelligence, volume 4850 of Lecture
Notes in Computer Science, pp. 186–195. Springer.

9. Hülse, M., Wischmann, S., and Pasemann, F. (2004). Structure and function of evolved
neuro-controllers for autonomous robots. Connection Science, 16(4), pp. 249–266.

10. Nolfi, S. and Floreano, D. (2004).Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-Organizing Machines, ISBN 978-0262640565, Bradford Book.

11. Pasemann, F. (1995). Neuromodules: A Dynamical SystemsApproach to Brain Modelling.
In Herrmann, H. J., Wolf, D. E., and Poppel, E., editors,Workshop on Supercomputing in
Brain Research: from tomography to neural networks, KFA Julich, Germany, World Scien-
tific Publishing Co.

12. Pasemann, F., Hild, M., and Zahedi, K. (2003). SO(2)-Networks as Neural Oscillators. Com-
putational Methods in Neural Modeling, 2686/2003, pp. 144–151.

13. Reil, T. and Husbands, P. (2002). Evolution of Central Pattern Generators for Bipedal Walk-
ing in a Real-Time Physics Environment.IEEE Transactions on Evolutionary Computation,
Vol.6(2), pp. 159–168.

14. Reisinger, J., Stanley, K. O., and Miikkulainen, R. (2004). Evolving Reusable Neural Mod-
ules. In Deb, K., et al., editors, Genetic and Evolutionary Computation – GECCO-2004, Part
II, volume 3103 ofLecture Notes in Computer Science, pp 69–81, Springer.

15. Rempis, C. W. (2007). Short-Term Memory Structures in Additive Recurrent Neural Net-
works. Master’s thesis, University of Applied Sciences Bonn-Rhein-Sieg, Germany.

22

Automatic Modularization of Artificial Neural Networks

Eva Volna

University of Ostrava, 30ht dubna st. 22, 701 03 Ostrava, Czech Republic
eva.volna@osu.cz

Abstract. The majority of this paper relies on some forms of automatic decom-
position tasks into modules. Both described methods execute automatic neural
network modularization. Modules in neural networks emerge; we do not build
them straightforward by penalizing interference between modules. The concept
of emergence takes an important role in the study of the design of neural net-
works. In the paper, we study an emergence of modular connectionist architec-
ture of neural networks, in which networks composing the architecture compete
to learn the training patterns directly from the interaction of reproduction with
the task environment. Network architectures emerge from an initial set of ran-
domly connected networks. In this way can be eliminated connections so as to
dedicate different portions of the system to learn different tasks. Mentioned me-
thods were demonstrated for experimental task solving.

1 Reasons for a Modular Approach

The primary reason for adopting an ensemble approach to combining nets into a
modular architecture is that of improving performance. There are a number of possi-
ble justifications for taking a modular approach to combining artificial neural nets.
First, a modular approach might be used to solve a problem which could not have
been solved through the use of a unitary net. A modular system of nets can exploit the
specialist capabilities of the modules, and consequently achieve results, which would
not be possible in a single net. Another reason for adopting a modular approach is
that of reducing model complexity, and making the overall system easier to under-
stand. This justification is often common to engineering design in general. Other
possible reasons include the incorporation of prior knowledge, which usually takes
the form of suggesting an appropriate decomposition of the global task. A modular
approach can also reduce training times and make subsequent modification and ex-
tension easier. Finally, a modular approach is likely to be adopted when there is con-
cern to achieve some degree of neurobiological or psychological plausibility, since it
is reasonable to suppose that most aspects of information processing involve mod-
ularity.

A modular neural network can be characterized by a series of independent neural
networks moderated by some intermediary. Each independent neural network serves
as a module and operates on separate inputs to accomplish some subtask of the task
the network hopes to perform [1]. The intermediary takes the outputs of each module
and processes them to produce the output of the network as a whole. The interme-

diary only accepts the modules’ outputs. As well, the modules do not interact with
each other.

When a modular approach is adopted, for what ever reason, there are different
ways in which a problem might be decomposed. In particular, task decomposition can
be either explicit or automatic. Explicit decomposition is likely to depend on an un-
derstanding of the task and the capabilities of the modular components. It provides a
way of incorporating prior knowledge and understanding of the task in question. For
instance, a particular decomposition might be implied by the structure of the task, if
for example, the data came from different sources or took different forms [3]. Simi-
larly, modular decomposition might be guided by theories or evidence about the like-
ly modular structures in the human brain, or the human information processing sys-
tem. By contrast, automatic decomposition, where decomposition is accomplished
through the blind application of a data partitioning algorithm, is particularly useful
when expert knowledge of the task is not available.

There has been a considerable amount of research on automatic decomposition
methods, for example, the mixture-of-experts [4] and hierarchical mixtures-of-experts
approaches [6]. Under such methods, the input data is partitioned into several sub-
spaces, and simple systems are trained to fit the local data. Such data partitioning is
often more effective than training on the whole input data space. In general, the con-
cern in this work is to improve performance, and as such it is closely related to the
ensemble approach. Thus performance on a task could be improved by either taking a
modular decompositional approach, or by creating an ensemble of parallel solutions
to the problem, and combining them in some way. As yet, it is not clear where one
approach is likely to be better than the other [7]. It is increasingly recognized that the
effectiveness of ensemble approaches depends on the extent to which their failures
are correlated and a decompositional approach promotes the reduction of such corre-
lation. However, there are few direct comparisons of the relative effectiveness of a
modular approach relying on automatic decomposition, and an ensemble-based ap-
proach. Neither are the two alternatives necessarily mutually exclusive, since it is
possible to envisage an ensemble system, where each member was composed of a set
of modules created through automatic decomposition. The majority of this paper
relies on some forms of automatic decomposition tasks into modules. In this way can
be eliminated connections so as to dedicate different portions of the system to learn
different tasks.

2 Automatic Task Decomposition

An artificial neural network may show slow learning because it is being trained to
simultaneously perform two or more tasks. For example, suppose that the mapping
from the input units to each output unit constitute separate tasks and that the network
is trained via backpropagation algorithm. During training, each output unit provides
error information to the hidden units from which it receives a projection. It is possible
that the error information from one output unit may indicate that a hidden unit’s acti-
vation should be lager and, at the same time, the error information from another out-
put unit may indicate that the same unit’s activation should be smaller. This conflict
in the error information is called spatial crosstalk. Although spatial crosstalk is clearly

24

seen in terms of the backpropagation algorithm, it is limited to networks trained using
this algorithm. Therefore, spatial crosstalk may be considered as resulting from the
connectivity of the network and not from the learning algorithm used to training the
network. By maintaining short connections and eliminating long connections, spatial
crosstalk can be reduced and tasks can be decomposed into subtasks. Although the
three systems show in Fig. 1 [5] can be trained to perform the same mapping. System
in Panel A has its hidden units fully interconnected with its output units and is most
susceptible to spatial crosstalk. System in the Panel B has its hidden units on the top
fully interconnected with its top output units and its hidden units on the bottom fully
interconnected with its bottom output units. Thus, it consists of two separate networks
(two 4-4-2 networks). If the mapping that this system is trained to perform can be
decomposed so that the mapping from the input units to the top set of output units
may be thought of as one task and the mapping from the input units to the bottom set
of output units may be thought of as a second task, then this system has dedicated
different networks to learn the different tasks. Because there is no spatial crosstalk
between the two tasks, such a system may show rapid learning. The Panel C has hid-
den unit project to only a single output unit. It therefore consists of a separate net-
work for each output unit (four 4-2-1 networks) and is immune to spatial crosstalk.

A B C

Fig. 1. A: One 4-8-4 network. B: Two 4-4-2 networks. C: Four 4-2-1 networks [5].

Artificial neural network with many adjustable weights may learn to training data
quickly and accurately, but generalize poorly to novel data. One method of improving
the generalization abilities of network with too many “degrees of freedom” is to de-
cay or eliminate weights during training. A second method is to match the structure of
the network with the structure task. For example, networks, whose units have local
receptive fields, can learn to reliably, detect the local structure that is often present in
pattern recognition tasks. A system that maintains short connections and eliminates
long connections should generalize well because its degrees of freedom are reduced
and because its units develop local receptive fields.

Artificial neural network often develop relatively not interpretable representations
for at least two reasons. Networks whose units are densely connected tend to develop
representations that are distributed over many units and, thus, are difficult to interpret.
In addition, not interpretable representations often develop in networks that are
trained to simultaneously perform multiple tasks. In contrast, networks, whose units
tend to have local receptive fields, towards short connections may develop relatively
local representations. Furthermore, such a system may be capable of eliminating
connections so that different networks learn different tasks.

25

3 Evolutionary Module Acquisition

There is a simple model of evolutionary emergence of modular neural network topol-
ogy introduced in the chapter [10]. We describe a method of optimization of the
modular neural network architecture via evolutionary algorithms that uses a fix part
of network architecture in the genome. Every individual is a multilayer neural net-
work with one hidden layer of units. We have to fix its maximal architecture (e.g.
number of input, hidden and output units) before the main calculation. Population P
consists of P = {α1, α2,...,αp}, where p is equal to a number of chromosomes in P.
Every chromosome consists of binary digits that are generated randomly with a prob-
ability 0.5. Chromosome, with m hidden units a n output units is shown in Fig. 2,
where eij = 0, if the connection between i - th hidden unit and j - th output unit of the
individual doesn’t exist, and eij = 1, if the connection exists (i = 1,…,m; j = 1,…n).
Connections between input and hidden units are not included in chromosomes, be-
cause they are not necessary for modular network architecture creation. Each individ-
ual (e.g. the network architecture) is partially adapted by backpropagation, its fitness
function is then calculated as follows (1):

k
k E

Fitness 1
= (1)

where k = 1, …, p (p = number of individuals in the population);

kE is the error after backpropagation adaptation of the k-individual.

 Population P:
individual: α1 ... individual: αk ... individual: αp

INDIVIUAL αk:

e11, …e1n, ... em1, …emn

Fig. 2. A population of individuals.

Only two mutation operators are used, no crossover operators. The first mutation
operator is defined in following way. In the every generation, one individual is ran-
domly chosen and each bit is changed with probability 0.01 (e.g. if the connection
exists – after mutation it does not exist and vice versa) in its chromosome. The
second mutation operator is defined in following way, see Fig. 3. First, we define a
pattern of t-consecutive zeroes that will be fixed during whole calculation. The pat-
tern is determined by number of neurons in the output layer, which represent individ-
ual modules. Output neurons are organized into d modules, t = min (ti, i = 1 ,..., d),
where t is number of neurons in the pattern, and ti is number of neurons in the i-th
module. Defined pattern is represented as a continuous chain of t-zeros, which is not
changed during applications of the second mutation operator. Fixation of t-zeros
chain can be defended by biological motivation, where the protection against muta-
tion is usually related to continuous section. Defined pattern in the chromosome al-
lows temporary fixing the existing module against the application of the second muta-
tion operator. Then we find the define pattern in each chromosome. If we find only

26

one continuous pattern, we fix it. If we find more than n-consecutive zeroes, we ran-
domly choose n-consecutive zeroes from them and fix them. The fixed pattern
represents a single atomic unit and the second mutation operator is not applied to it.
Only to the rest of bits from chromosomes are changed with probability 0.01. Thus,
each individual has a unique collection of fixed patterns. The second mutation opera-
tor is applied to every individual r - times, where r is a parameter and its value is
define before calculation. Only the best individual or its best mutation is included into
the next generation. Next, all individuals in the new generation release a portion of
the pattern that was fixed that way they can once again be manipulated by reproduc-
tion operators. The process of evolutionary algorithms is ended when the population
achieves the maximal generation or if there is no improvement in the objective func-
tion for a define sequence of consecutive generations.

 00...0000010... A:

B:

00100010101 0...01100100...0
 k < t k = t k > t

 00100010101 0...01100100...000...0000010...
00100010101 0...01100100...000...0000010...

Fig. 3. The second mutation operator. The fixed pattern is t- consecutive zeroes, k is number of
consecutive zeroes in the chromosome. A: An individual before mutation. B: Possible chromo-
somal representation of the individual after mutation.

4 Modularization Via Evolutionary Hill – climbing Algorithm

The second presented method is based on hill-climbing algorithm with learning [8].
Evolution of the probability vector is modeled by a genetic algorithm on the basis of
the best evaluated individuals in this algorithm, which are selected on the basis of the
speed and quality of learning of the given tasks [11]. Population P is presented in Fig.
2 and is defined in the same way as in the previous chapter. Individuals in the next
generation are generated from the updating probability vector. Every individual (e.g.
its neural network architecture) is partially adapted by backpropagation [2] and eva-
luated by the quality of its adaptation. The number of epochs is a very important
criterion in the described method, because modular architectures start to learn faster
than fully connected multilayer connectionist networks [9]. Our goal is to produce
such a neural network architecture that is able to learn a given problem with the smal-
lest error. A backpropagation error is a fitness function parameter. A fitness function
value Fi of the i - th individual is calculated as follows (2):

con

f
F

con

k
ik

i

∑
== 1 (2)

where i = 1, …, p (p is number of individuals in a population);

27

ik
ik E

f 1
= is a fitness function value of the i-th individual in the k-th

adaptation;
k = 1, …, con (con is a define constant, con>1);

ikE is the backpropagation error of the i-th individual in the

k-th adaptation.

Crossover and mutation operators are not used in the described method. This algo-
rithm is based on the probability vector emergency. The probability vector is updated
on the basis of well - evaluated individuals in the population. Entries 0 ≤ wij ≤ 1 of
the probability vector w = (w11,…, w1n,..., wm1,..., wmn) ∈ [0,1]mn , (m is number of
hidden units; n is number of output units) determine probabilities of appearance of
‘1‘ entries in given positions.

Entries of the Probability Vector are Calculated in the Next Generation as
follows:

− We calculate Favg , e.g the average fitness value of the population in the given
generation (3):

,1

p

F
F

p

i
i

avg

∑
== (3)

where p is a number of individual in the population;
Fi is a fitness function value of the i-th individual, see a formula (2).

− We choose a set of q individuals with Fi ≥ Favg , e.g. α1, α2, …, αq (1 ≤ q≤ p ,
where p is a number of individuals in the population.

− Entries of the probability vector of the population w’k ∈ [0,1] are calculated as
follows (4):

() kkk www ′′+−=′ λλ1 (4)

where k = 1, …, mn (mn is a number of the probability vector w entries);

kw is a value of the k-th entry of the probability vector in the last gen-

eration;
λ is a constant (0 < λ< 1);

kw ′′ is a value of the k-th bit of the probability vector w that is calcu-

lated as follows (5):

()

q

e
w

q

i
ik

k

∑
==′′ 1 (5)

where (ek)i is a value of the k-th bit of the chromosome of the indi-
vidual αi (i = 1, ...,q) and it is true Fi ≥ Favg for these individuals.

28

The best individual in the population is included to the next population automati-
cally. Values of the chromosomes of the rest of individuals αi (i = 2, …,p) are calcu-
lated for the next generation as follows: if wk = 0(1), then (ek)i = 0(1); if 0 < wk < 1
the corresponding (ek)i is determined randomly by (6):

()
⎩
⎨
⎧ <

=
otherwise0
i1 k

ik

wrandomf
e (6)

where k = 1, …, p (p = number of individuals in the population).
The process of the evolutionary algorithm is ended if the saturation parameter

τ(w)* is greater than a predefined value.

5 Experiments

In the experimental task, a system (neural network) recognizes a binary pattern and
its rotation. Neural network with one hidden layer of units with topology 9-13-8
adapted by backpropagation represents a system here. The creation of such modular
system that would solve partial tasks correctly was our target. Basic set of training
patterns are organized into a matrix (grid) 3x3, which is represented by binary vector.
The direction of rotation is defined towards the basic pattern by four possibilities: (a)
0°-state without rotation, (b) turn 90°, (c) turn 180°, and (d) turn 270°. The training
set includes four patterns that are defined in four different states, see Fig 4. Thus, we
get 16 different combinations of shapes and their rotations. Eight output units are
divided into two subsets of four units. Units in the “shape” subset are responsible for
indicating the identity of the input. Each input is associated with one of the four
“shape” units, and one of the four rotations. The system is considered to correctly
recognize and locate an input.

Parameters of the Experimental part.

− Population (both methods):
Number of individuals: 100.
Neural network architecture: 9 – 13 – 8.
Training algorithm: Backpropagation
(learning rate: 1; momentum: 0; training times: 150 epochs in the partial training).

− Parameters of method from chapter 3:
Probability of mutations: 0.01.
Fix pattern in the second mutation: “0000”.
r: 5.
Ending conditions: Maximal number of generations: 500.

* τ(w) = a number of entries (wi) of the probability vector w that are less then weff or (1- weff),

where weff is a small positive number.

29

− Parameters of method from chapter 4:
con: 100; see formula (2).
λ: 0.2; see formula (4).
Ending conditions: The saturation parameter, τ(w): 0.99*m*n
(m=13, number of hidden units; n=8, number of output units); weff = 0.01.

Fig. 4. A defined pattern in a training set.

Table 1 shows a table of results. The table shows an evolution of the best individ-
ual in the population. It is evidently seen, the connections among modules are elimi-
nated faster than connection inside modules. These results support also the fact that
systems were created dynamically during a learning process. Method from chapter 3
gives the following results: six hidden units of the best individual realise the “shape”
task and its four units realise the “rotation” task in the last generation. Method from
chapter 4 gives the following results: seven hidden units of the best individual realise
the “shape” task and its four units realise the “rotation” task in the last generation.
Calculation was terminated, when ending conditions were fulfilled, e.g. for method
from chapter 3 was calculation terminated in the 498-th generation and for method
from chapter 4 was calculation terminated in the 353-rd generation. Other numerical
simulations give very similar results.

Table 1. Table of results.

OUTPUT

WHICH SHAPE SHAPE ROTATION

INPUT

HIDDEN LAYER

0° 90° 180° 270°

INPUT: shape 1, rotation 90°

30

 Method from chapter 3: Method from chapter 4:

generation

number of
hidden
units:

„shape“
task:

number of
hidden units:

„rotate“
task:

number of
interferen-

ces:

number of
hidden units:

„shape“
task:

number of
hidden units:

„rotate“
task:

number of
interferen-

ces:

1 1 1 11 0 0 13
100 2 3 8 1 3 9
200 3 3 7 4 3 6
300 4 3 6 6 3 4
400 5 4 4 GENERATION: 353

 GENERATION: 498 7 4 2
 6 4 3

We made the following experiment. Neural network with modular architecture (the
best individual) and network with the same arrangement of neurons, but by all con-
nections between layers have been adapted via backpropagation to solve the above
defined task. For each model was done 10 adaptations, the weight vector was at the
beginning of each simulation generated randomly. In Fig. 5 the average error function
values is shown: (a) modular neural network and (b) fully connected neural network
during the whole calculation. Adaptation of each neural network was terminated after
1500 iterations. The figure shows that the network with a modular architecture, which
includes only a limited number of connections, allows to learn the considered prob-
lem as efficiently as a monolithic networks designed within an appropriate architec-
ture.

0

5

10

15

0 500 1000

fully connected individual

modular architecture

iterations

E

0

5

10

15

0 500 1000

modular architecture

fully connected individual

iterations

E

A B

Fig. 5. The history of average error function value during whole calculation A: method from
chapter 3; B: method from chapter 4.

6 Conclusions

Both described method are methods of automatic neural net modularization. The
problem specific modularisations of the representation emerge through the iteration
of the evolutionary algorithm directly with the problem.

When interpreting solutions, we have to be careful, because algorithms’ parame-
ters are not the object of the optimization process, but we obtain solutions just in
dependence on these parameters. Both numerical simulations reflect the modular

31

structure significance as a tool of a negative influence interference rejection on neural
network adaptation. As the hidden units in the not split network are perceived as
some input information processing for output units, where a multiple pattern classifi-
cation is realized on the basis of diametrically distinct criteria (e.g. neural network
has to classify patterns according to their form, location, colors, ...), so in the begin-
ning of an adaptation process the interference can be the reason that output units also
get further information about general object classifications than the one which is
desired from them. This negative interference influence on running the adaptive
process is removed just at the modular neural network architecture, which is proved
also by results of the performed experiment. The winning modular network architec-
ture was the product of emergence using evolutional algorithms. The neural network
serves here as a special way of solving the evolutional algorithm, because of its struc-
ture and properties it can be slightly transformed into an individual in evolutionary
algorithm.

References

1. Di Fernando, A., Calebretta, R., and Parisi, D. (2001) Evolving modular architectures for
neural networks. In French R., and Sougne, J. (eds.).Proceedings of the Sixth Neural Com-
putation and Psychology Workshop: Evolution, Learning and Development. Springer Ver-
lag, London.

2. Fausett, L. V. (1994) Fundamentals of neural networks. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey.

3. Hampshire, J. and Waibel, A. The Meta-Pi network: Building distributed knowledge repre-
sentation for robust pattern recognition. Technical Report CMU-CS-89-166. Pittsburgh,
PA: Carnegie Mellon University.

4. Jacobs, R. A., Jordan, M. I., Nowlan, S.J., and Hinton, G. E. (1991) Adaptive mixtures of
local experts. Neural Computation, 3, pp.79-97.

5. Jacobs, R. A., Jordan, M. I. (1992). Computational consequences of a bias toward short
connections. Journal of Cognitive Neuroscience, 4, 323–336.

6. Jacobs, R. A. (1994) Hierarchical mixtures of experts and the EM algorithm. Neural Com-
putation, 6, 181-214.

7. Jordan, M. I. and Jacobs, R. A. (1995) Modular and Hierarchical Learning Systems. In M.
A. Arbib (Ed) The Handbook of Brain Theory and Neural Networks. pp 579-581.

8. Kvasnička, V; Pelikán, M.; Pospíchal, J. (1996) Hill climbing with learning (an abstraction
of genetic algorithm). Neural network world 5, 773-796.

9. Rueckl, J. G. (1989) Why are “What” and “Where” processed by separate cortical visual
systems? A computational investigation. Journal of Cognitive Neuroscience 2, 171-186.

10. Volna, E. (2002) Neural structure as a modular developmental system. In P. Sinčák, J.
Vaščák, V. Kvasnička, J. Pospíchal (eds.): Intelligent technologies – theory and applica-
tions. IOS Press, Amsterdam, pp.55-60.

11. Volna, E. (2007) Designing Modular Artificial Neural Network through Evolution. In J.
Marques de Sá, L. A. Alexandre, W. Duch, and D. P.Mandic (eds.) Artificial Neural Net-
works – ICANN’07, Lecture Notes in Computer Science, vol. 4668, Springer-Verlag series,
pp 299-308.

32

GMPath - A Path Language for Navigation, Information
Query and Modification of Data Graphs

Karsten Wendt, Matthias Ehrlich and René Schüffny

Technische Universität Dresden, Institute of Circuits and Systems
01062 Dresden, Germany

{wendt, ehrlich, schueffn }@iee.et.tu-dresden.de

Abstract. This paper presents a newly developed path language namedGMPath
intended to ease the navigation, information query and modification of general,
directed model graphs for the FACETS Stage 2 Large Scale Reconfigurable Neu-
ral Hardware Simulator. Furthermore it introduces the reader to the relevant as-
pects of the FACETS system and its software framework accordingly.

1 Introduction

The projectFast Analog Computing with Emergent Transient States – FACETS[1] aims
at the exploring of various computational aspects of biological neural networks. This
encompasses the development of a novel neural hardware system as a joined effort
of research groups of theRuprecht-Karls-Universiẗat Heidelbergand theTechnische
Universiẗat Dresden. [2], [3]

The complexity of such a hardware system also requires an adequate software sys-
tem, to configure, control and validate results. A graph based model description was
developed, representing all aspects of the system. To interact with and query the mod-
els, the description is extended by a query interface.

This paper is split into three sections. The first section describes the current state
of the FACETS systems, focusing modelling and mapping issues. Embedded in the
FACETS software framework, the graph model itself will be introduced. The next sec-
tion characterizes the motivation and requirements for thedevelopment of the path lan-
guageGMPath and distinguishes it from existing query languages. Afterwards, basing
on a meta description the grammar of the language is defined and the semantics of its
elements are explained. Illustrating the use ofGMPath the last section provides several
examples, based on a given concrete graph model by explaining some queries in more
detail.

2 Current State of the FACETS Systems from the Mapping
Viewpoint

The systems involved in the FACETS mapping and configurationprocess can be sep-
arated into the hardware model on the one hand and the biological model on the other
hand, which should be simulated on the hardware system afterthe configuration. To

encompass the modelling and mapping problem a so calledgraph modelis used and in-
tegrated in the FACETS software framework. The models and the software framework
are characterized in the following sections.

2.1 Biological Model

The biological systems, intended to be mapped to the FACETS hardware, can be con-
sidered as networks of neurons and synapses. A neuron is connected to a number of
synapses and characterized by a set of parameters. A synapseconnects a source and
a target neuron and is as well assigned to parameters. The illustration of an example
model is shown in figure 1.

2.2 Hardware Model

Fig. 1.Example of a biological system with
7 neurons and11 synapses.

Fig. 2. Hierarchical view of the FACETS hardware
system.

The current FACETS Stage 2 system [2] consists of analog modeled IF (integrate-
and-fire) neurons and synapses, which implement a STDP (spike-time-dependency-
plasticity) mechanism. The neuron’s and synapses’ behavior is defined by a set of con-
figurable parameters.

A hierarchical view of the system is illustrated in figure 2. The neural signals gen-
erated by the hardware neurons (block level), are propagated via a complex transfer
network to be fed as stimuli into the hardware synapses or to be recorded externally. It
is also possible to generate external stimuli and apply those to the neural network.

The transfer network is designed to provide as much topological flexibility as pos-
sible, while complying with the technological constraints. Generated neural signals are

34

encoded blockwise to a digital bus- (wafer level) and an overlaying package based net-
work (system level). These contains configurable cross points and switches, duplicating
and routing the signals to their destined synapses. After decoding the signals stimulate
their assigned hardware dendrites, whose combinations form the receiving neurons. [3]
Due to the system complexity and network properties severalmapping and configura-
tion constraints result, forming a multi-criteria optimization problem, which will not be
discussed here further. [8]

2.3 FACETS Software Framework

The FACETS software framework consists of

– a collection of programs to carry out experiments (e.g. comparative experiments on
neural software simulators and the FACETS hardware [4]),

– a database of benchmarks provided by FACETS partners (e.g. [5], [6]),
– a system simulation of the FACETS hardware [7],
– software for mapping and configuration[9],
– andvisualization and analyzation tools. [8]

As presented in previous work [10] we developed a model, integrating the FACETS
model descriptions for the mapping, configuration, visualization and analyzation soft-
ware. Based on a graph, it stands for an universal data representation for the software
framework. The mapping, routing and configuration algorithms retrieve their informa-
tion from thisGraph Model (GM), process, transform them and write back the results.
Furthermore the decentralized structure makes the model suitable for parallelization. A
summarized model characterization is given in the next section to clarify the structure
whereon the newly developed query languageGMPath(see 3) bases.

2.4 The Graph Model to Navigate

The graph modelG = (V, E), basing on a hyper graph [11] [12], consists of single
nodesvi ∈ V , that may hold a name or a value as a data item respectively. The nodes
can be assigned to each other by three types of directed single edgesei ∈ E as shown
figure 3:

– hierarchical edges- modelling a hierarchy of two nodes, i.e. to represent a container-
component relationship

– named edges- modelling a labeled relationship between two nodes
– hyper edges- assigning a named edge to a node, i.e. to model a detailed description

of a node-node relationship.

Because of its structure the model is fully navigable, whichmeans every node or
edge is reachable from every position in the graph. So it is possible to create flexi-
ble models with respect to the biological networks and hardware system complexity,
although it consumes more memory and setup time than more compact descriptions.

Given this model the biological and the hardware system can be described as two
combined graphsGB = (VB , EB) andGH = (VH , EH) respectively, also containing
meta information, e.g. algorithm configurations and results. The model transformation
is not discussed here further [9] [10].

35

Fig. 3. Graph Model (example).

3 GMPath - A Language for Graph Model Navigation

The flexible and universal use of the GM by placing and routingalgorithms, configura-
tion, visualization and analyzation tools as well as the user defined modifications during
run-time calls for an adequate and multi-purpose interface. The main requirements are:

– access from every node or edge as entry point
– step by step navigation along all elements (nodes and edges)follwing a path
– list based results, assignable to variables
– GM modification support

Inspired by theXMLpath languageXPath [13] we developed a textual interface,
namedGMPath, to navigate in and retrieve information from the GM by entering at
any node or edge, and address parts of it locally. Thus it can also classified asLokator-
sprache.

Fig. 4. Logical environment of GM nodes and edges.

36

Fig. 4 shows the logical environment of a GM node or edge respectively. Each adja-
cent element requires to be accessible within one ”separation step”, i.e. one basic navi-
gational operation. Following the hierarchical structurethe navigational focus should be
able to shift from the current node (node value) up- or downward to thesuperior node
or thesubjacent nodes. Regarding thenamedandhyper edgesit should be possible to
move along these connections forward and backward to theirstart andend nodes.

Since allGMPath queries return result lists, containing the matching GM elements,
they should be storable to variable names. By selecting these names, all nodes and edges
can be used as an entry point for a newGMPath query. FurthermoreGMPath requires
to be able to address GM elements unambiguously to create newnodes and edges by
this way. Thus, paths can built up during run-time by the software tools and processed
with implemented API functions, parsing the paths and returning the result elements.
This provides a dynamic interface to retrieve data from and manipulate the GM.

In the following sections the characteristics ofGMPath and the query language
XPath will be compared before the grammar and semantics are definedand explained
consecutively.

3.1 Comparison toXPATH

As shown in the previous section the used data model is much leaner than a XML
document, it does not include attributes and types of the contained data. However it is
possible to interconnect nodes semantically via named edges to model distinct relation-
ships between GM elements.

In opposition toXPATH GMPathdoes not distinguish between localization steps,
axes tests or predicates, it only performs navigation stepsalong the GM structure with
a matching result. Tests on subjacent nodes have to be executed as tests of reachability,
comparisons of their assigned values are realized by localizedGMPath queries.

In addition to the navigation along the hierarchy, known as axes inXPATH, local-
ization or separation steps for named and hyper edges are necessary, to navigate strictly
along the semantic relationships beside the hierarchical structure.

Furthermore inCreation ModeGMPath can be used to generate nodes and edges
by addressing them unambiguously.

3.2 Grammar and Semantics

The grammar ofGMPath is defined with theGOLD Meta-Languageand written, tested
and validated in theGold Parsing System[14]. The meta-description uses the following
elements to specify theGMPathgrammar:

– terminal symbols, represented through Regular Expressions
– rules, using the Backus-Naur Form
– character sets, based on set notation

Terminal Symbols As shown in Tab. 1GMPath contains five terminal symbols that
cover the comment line (%) and two different general entry points (SystemNode and

37

HERE) for the next query to start. Furthermore a wildcard symbol (∗) encapsulates
groups of GM elements without naming them and identifiers to store and represent node
and edge lists.

Table 1.GMPath terminal symbols.

terminal symbol description

% comment line
∗ wildcard, placeholder for groups of nodes and edges
SystemNode root node of the current GM, entry point of a query
HERE current start element, entry point of a query
(Edge−)Identifier (#) + alphanumerics + special characters for node and edge list names

Rules Rules define the syntax of the grammar. AGMPath program is a sequence of
operations of arbitrary length, interpreted sequentially in order of their appearance.

<Program> ::= <operation> <Program>

GMPath differs between four different types of operations as shownin Tab. 2, which
are explained below. Any operation inGMPath is delimited by a\nl symbol.

Table 2.GMPath operations.

operation description

commands switch between search only and manipulation mode
assignment node or edge list assignment to variable names
nodepathoperation path operation with a node list as result
edgepathoperation path operation with a edge list as result

<commands> ::= ’EnableCreateMode’ | ’EnableFindMode’

By default theFindMode is enabled. This means a query ending at non existing GM
elements (e.g. a node name was not found) returns an empty list or a list with the invalid
element respectively.

EnablingCreateMode causes the insertion of missing elements if addressed by a
query unambiguously (e.g. a node name at a distinct positionin the GM hierarchy).

<assignment> ::= Identifier ’=’ <node path operation> |
ConIdentifier ’=’ <edge path operation>

This operation assigns the result list of node- or edge path operations to identifiers to
serve as substitutes. It is possible to embed identifiers in more complex operations to
concatenate queries.

38

<node path operation> ::=
<node path operation> {’/’,’//’,’\’,’\\’} <name> |
<node path operation> ’?(’ <path operation> ’)’ |
<edge path operation> {’>’,’<’,’ˆ’} <name> |
<name>

<edge path operation> ::=
<node path operation> {’>’,’<’,’ˆ’} <name> |
<edge path operation> ’?(’ <path operation> ’)’ |
<connection list name>

<path operation> ::= <node path operation> |
<edge path operation>

<name> ::= Identifier | ’ * ’ | ’SystemNode’ | ’HERE’
<connection list name> ::= ConIdentifier | ’HERE’

Node- andedge path operation s are used to ’navigate’ through the GM, using
separators defining the logical direction (see also Fig. 4). On the one hand this can
be done by moving along the hierarchy structure upward or downward node by node.
On the other hand the GM elements are also accessible by navigating along the named-
and hyper edges, passing alternately from node to edge forward and backward.

In general anode- or edge path operation is a concatenation ofnode - and
edge names divided byseparators , forming a path.

Table 3.GMPath separators.

separator description

/ one step downward in hierarchy
// all nodes below in hierarchy
\ one step upward in hierarchy
\\ all nodes above in hierarchy
> outgoing edge(s), forward connected node(s)
< incoming edge(s), backward connected node(s)
∧ to and from hyper connected node
?(local query) intersection with local query

Separators The Separators are listed in Tab. 3. They are used to replace the current
list of nodes or edges by a list of adjacent GM elements filtered by the given name,
if not the wildcard symbol* is used alternatively. In other words the separators stand
for basic ’moves’ inside the GM as illustrated exemplary in Fig. 5. The intersection
’?(local query)’ processes an independent local query for every GM element as
start position in the current list. Forming a filter functionat the current path position,
each GM element whose local query returns no result will be discarded.

Thus concatenating names of nodes and edges or wildcards with separators shapes
complex GM queries by readdressing iteratively adjacent GMelements (see also Fig.
4). To clarify the usage ofGMPath paths, some more advanced examples are appended
in section 4.

39

Fig. 5.Examples of basics operations (separators) to navigate through a simplified GM.

4 Examples ofGMPath Usage

Based on the GM in Fig. 6 a few example queries may ease the understanding of
GMPath and its application.

First a simple search query along the hierarchy and named edges is demonstrated,
followed by a filter query based using local requests. The third example shows how to
add new elements to the model.

Fig. 6. Example GM for demonstratingGMPath queries.

4.1 Query 1 - Searching and Assignment

LikedPeople = SystemNode/ * >LIKES> *

This query starts from the master node (SystemNode) and advances down hierarchically
one ’separator step’ (/), collecting all subjacent nodes fromPersonAto PersonCdue
to the wildcard symbol (*). Defined by the next separator (>), the outgoing edges of
all these three nodes are chosen. The following edge nameLIKESselects only the edge
from thePersonAnode. The last separator (>) finalized by the wildcard symbol returns
the target node of this edge regardless of the nodes name.

The resulting node list (PersonB) is stored to a variable named ”LikedPeople” for
later use.

40

4.2 Query 2 - Filtering

SystemNode/ * ?(HERE/Gender>EQUAL_TO>M)
?(HERE<KNOWS)/Age>EQUAL_TO>32

After collecting all person nodes two local queries (?(..)) are started. The first one se-
lects only these with the gender of ’M’ (PersonA, PersonC), the second one checks for
incomingKNOWSedges (PersonC). Afterwards the path steps down to the age of the
resulting persons.

The query returns with the age of all male persons, who are known by someone
(32).

4.3 Query 3 - Creating

EnableCreateMode
NameNode = SystemNode/PersonB/Name
NameValueNode = NameNode/Anna
NameNode > EQUAL_TO > NameValueNode

This example consists of more then oneGMPath queries to create new GM elements,
where the new line symbol is not shown.

First the creation mode is set by theEnableCreateModecommand. In the next two
lines new subjacent nodes (NameandAnna) are created below thePersonBnode, ad-
dressed by their hierarchical locations. Assigned to two variable names (NameNodeand
NameValueNode) both new nodes are stored. The forthGMPath query, using the previ-
ous stored nodes, i.e. navigating from one list to the other by advancing forward along
a not existingEQUAL TOedge, creates the new connection and results in a structure as
shown in Fig. 6.

5 Conclusions

This paper introduced the newly developed query languageGMPath. GMPathbases on
iterated basic localization steps through the logical environment of the current position,
providing searching, filtering, storing and manipulation functions to the user. Queries
start from every entry point of the model and can be build up dynamically by a program
through available API functions.

In the FACETS software frameworkGMPath is used to provide the user with an
universal interface to the internal graph models. Files containingGMPath commands
are parsed before and after the programmatic GM creation, mapping and configuration
process to allow modifications of parameters, of the model structure itself and the addi-
tion of user data. FurthermoreGMPath forms an interface to graph models, which are
displayed, debugged and analyzed by external visualizing and analyzation applications,
allowing them to extract well-defined parts of the examined data model.

For the future we aim to expand the functionality ofGMPath. We plan to imple-
ment set operations for the result lists, which are currently stored in variables (e.g.
set unions, intersections and difference sets). Further the inclusion ofGMPath queries

41

stored as strings in the data model itself should make the handling of complex queries
more comfortable. Finally more options should be availableto manipulate the GM (e.g.
renaming or deleting elements).

Acknowledgements

The research project FACETS is financed by the European Unionas Integrated Project
(Nr. 15879) in the framework of the Information Society Technologies program.

References

1. Meier, K.: Fast Analog Computing with Emergent TransientStates in Neural Architec-
tures. Integrated project proposal, FP6-2004-IST-FET. Proactive, Part B. Kirchhoff Institut
fr Physik, Ruprecht-Karls-Universität, Heidelberg (2004)

2. Schemmel, J., Grübl, A., Meier, K., Mueller, E.: Implementing Synaptic Plasticity in a VLSI
Spiking Neural Network Model. Proceedings of the 2006 International Joint Conference on
Neural Networks IJCNN 2006, pp. 1–6, IEEE Press (2006)

3. Ehrlich, M., Mayr, C., Eisenreich, H., Henker, S., Srowig, A., Grübl, A., Schemmel, J.,
Schüffny R.: Wafer-scale VLSI implementations of pulse coupled neural network. Interna-
tional Conference on Sensors, Circuits and Instrumentation Systems SSD’07, Hammamet-
Tunisia (2007)

4. Brüderle, D., Grübl, A., Meier, K., Mueller, E., Schemmel, J.: A Software Framework for
Tuning the Dynamics of Neuromorphic Silicon Towards Biology. Proceedings of the 2007
International Work-Conference on Artificial Neural Networks IWANN’07 Springer LNCS
4507, pp. 479–486, (2007)

5. Haeusler, S., Maass, W.: A Statistical Analysis of Information-Processing Properties of
Lamina-Specific Cortical Microcircuit Models. Cerebral Cortex 17(1), pp. 149-162, (2007)

6. Vieville, T., Kornprobst, P.: Modeling Cortical Maps with Feed-Backs - International Joint
Conference on Neural Networks (IJCNN), pp. 110-117 (2006)

7. Scholze, S., Ehrlich, M., Schüffny, R.: Modellierung eines wafer-scale Systems fr pulsgekop-
pelte neuronale Netze - Proceedings of Dresdener Arbeitstagung Schaltungs- und Systemen-
twurf (DASS07), pp. 61–66 (2007)

8. Ehrlich, M., Wendt, K., Zühl, L., Brüderle, D., Vogginger, B., Müller, E.: A software frame-
work for a wafer-scale neuromorphic hardware system, ANNIIP (2010), (submitted)

9. Wendt, K., Ehrlich, M., Mayr, C., Schüffny, R.: Abbildung komplexer, pulsierender, neu-
ronaler Netzwerke auf spezielle Neuronale VLSI Hardware - Proceedings of Dresdener Ar-
beitstagung Schaltungs- und Systementwurf(DASS07) , pp. 127–132 (2007)

10. Wendt, K., Ehrlich, M., Schüffny, R.: A graph theoretical approach for a multistep mapping
software for the FACETS project - Proceedings of the WSEAS CEA’08, pp. 189–194 (2008)

11. Diestel, R.: Graph Theory, Springer (2005)
12. Jordan, M.: Graphical Models. Computer Science Division and Department of Statistics.

University of California, Berkeley, California 94720-3860, USA (2004)
13. Berglund, A., Boag, S., Chamberlin, D., Fernandez, M., Kay, M., Robie, J., Simeon J., edi-

tors. XML Path Language (XPath) 2.0. W3C Working Draft 02, W3C (2003)
14. http://www.devincook.com/goldparser/.GOLD Parser System(2007)

42

A Software Framework for Mapping Neural Networks
to a Wafer-scale Neuromorphic Hardware System

Matthias Ehrlich1, Karsten Wendt1, Lukas Zühl1, René Schüffny1

Daniel Brüderle2, Eric Müller2 and Bernhard Vogginger2

1 Technische Universität Dresden, Lehrstuhl für Hochparallele VLSI-Systeme und
Neuromikroelektronik, 01062 Dresden, Germany

{ehrlich, wendt, schueffny}@iee.et.tu-dresden.de
lukas.zuehl@mailbox.tu-dresden.de

2 Ruprecht-Karls-Universität Heidelberg, Kirchhoff-Institut für Physik
69120 Heidelberg, Germany

{bruederle, mueller, bernhard.vogginger}@kip.uni-heidelberg.de

Abstract. In this contribution we will provide the reader with outcomes of the
development of a novel software framework for an unique wafer-scale neuromor-
phic hardware system. The hardware system is described in anabstract manner,
followed by its software framework which is in the focus of this paper. We then
introduce the benchmarks applied for process evaluation and provide examples
of the achieved results.

1 Introduction

Several current neuromorphic research projects, such asFast Analog Computing with
Emergent Transient States – FACETS[1] or theSpiking Neural Network Simulator –
SpiNNaker[2], aim at the exploration of novel computational aspects of large scale,
biologically inspired neural networks with over a million neurons, simulated in real-
time or even with a speed-up in respect of the biological archetypes on full custom or
modified general purpose hardware.

The undertaken hardware research of FACETS encompasses thedevelopment of
a novel neuromorphic wafer-scale hardware system in an collaborative effort of the
Ruprecht-Karls-Universiẗat Heidelberg – UHEIand theTechnische Universität Dres-
den – TUD. The current level of development,Stage 2incorporates the design of a wafer
element and its dedicated software framework for the mapping of neural architectures
onto the hardware substrate as well as the configuration and control of said system.

The wafer-scale hardware system is first described in section 1.1 followed by the
details of the software framework in section 2. The benchmarks applied are presented
in section 3 along with examples. An outlook concludes this contribution.

1.1 FACETS Stage 2 Architectural Overview

For the description of the FACETS Stage 2 hardware system as introduced by [1], [3]
and in the following referred to asFS2 hardware we will focus on details of the architec-
ture that influence the mapping of given neural networks ontothe hardware. Figure 1 (a)

shows an abstract view of one wafer element of theFS2 hardware system. The foun-
dation layer of theFS2 hardware is an array of reticles shown as light gray squares,
housingHigh Input Count Analog Neural Network – HICANNor HC circuitry that was
developed at UHEI [1] and implements neural functionality such as neurons, synapses
and weight adaptation. On top resides a layer of communication circuits calledDigital
Network Chip – DNCdeveloped at TUD [3]. The third and topmost layer represents
a regular grid of FPGAs3, colored dark gray. Disabled or inoperable components are
colored white.

(a) (b)

Fig. 1. Abstract view of a) one wafer from top and b) the communication hierarchy from side.

Figure 1 (b) depicts the communication networks, their hierarchy and connectivity.
Two distinct communication networks can be distinguished.An asynchronous, address
coded, namedLayer 1 – L1utilized byHCs at wafer level forintra-wafer communi-
cation and a second one, namedLayer 2 – L2utilized by DNCs and FPGAs for syn-
chronous, packet basedinter-wafercommunication. Host computers are connected via
Ethernetto the FPGAs to handle the mapping, configuration and controlprocess de-
scribed in the following.

1.2 The HICANN

A simplified view of theHC chip following [1], [4] is drawn in figure 2 as a symmetric
array of neural and communication elements. Thedendritic membranes, or denmems
are the neural core components. Each denmem provides two synaptic input circuits
emulating ion channels. Up to26 denmems can be grouped, i.e. connected together to
form a neuron with a higher synaptic input count or a more detailed model by increasing
the number of conductive time constants.Synapses, situated in an adjacentsynapse
array are connected to the denmems. Whether a synapse is connectedto the excitatory
or inhibitory input of a denmem is decided row-wise in thesynapse driver,or syndriver.
A syndriver is fed from one of2× 27 vertical L1 bus lanes viaselect-switchesor from
a neighboring syndriver. It drives the synapses viastrobe lines, as depicted as thin lines
in figure 2 lens(1), and selects the receiving synapse via an address, the thicklines.
A fixed part of the synapses address determines the strobe line to use and follows the
address pattern shown in lens(2). Each synapse belongs to the denmem located below
the synapse array in the same column. A group of denmems is connected to one of26

3 Field Programmable Gate Array

44

horizontal L1 bus lanes and L2 by apriority-encoderthat multiplexes and prioritizes
the bus access.

Fig. 2. A schematic view of one HICANN [1], [4].

Repeatersandcross-barsare then configured to interconnect the vertical and hori-
zontal buses withunidirectionalconnections. The neural pulses generated by the den-
mems are transmitted asynchronously on L1 as bit sequence encoding the senders ad-
dress or arbitrarily on L2 encoding the address and the pulsetiming.

1.3 Parameter Space

Every denmem implements the dynamics of theAdaptive Exponential Integrate-and-
Fire – AdExmodel [5] including model’s mechanisms such as spike frequency adaption
and active spike generation. A total of 24 parameters determine the behavior of a den-
mem, some of which correspond directly to the AdEx model, others are of technical
nature4.

The synaptic weight of a synapse is determined by an individual digital weight
value of4-bit resolution and a fixed maximum conductancegmax, which can be set for
every synapse row by a programmable analog parameter. The synapse circuit generates
a square current pulse, which is injected into one of the synaptic input circuits of the
denmem, where it modulates a transient synaptic conductance. The amplitude of this
square current pulse isweight× gmax and its length isτSTDF, whereτSTDF is modulated
by theshort term depression or facilitation – STDF[6] plasticity mechanism in the
synapse driver.

We assume a hardware model setup for configuration of theFS2 hardware follow-
ing [1], [4]. With an8×8 HC reticle array of8 HCs per reticle and48 functioning reticles
per wafer, thus a total of512 HCs. Furthermore,8 HCs per DNC result in48 DNCs and
4 DNCs per FPGA give a total of12 FPGAs. WithNMaxHC ∈

{

23, 24, ..., 28
}

5 a

4 As configurable parameters allow to vary time constants of neural and synaptic dynamics it is
possible to operate theFS2 hardware system with a speed-up from103 to 10

5 compared to
biological scale, depending on the system’s load, as excessive speed-up may lead to pulse loss
due to limited bandwidth.

5 NMaxHC is held constant for a network and determined by the detail level of the neuron
model [1] or the synaptic input count of a neuron [4].

45

maximum neurons perHC the total number of available neurons is given byNHW =
H ×NMaxHC , whereH denotes the number ofHCs available for mapping6. The num-
ber of synapses available on the hardwareSHW = H ×SHC , with SHC being number
of synapses perHC, which for the used configuration is constant with:2× 2562 and the
number of dendritic elements perHC D which equals2 × 256. With 26 denmems per
priority encoder this results in8 priority encoders and thus a6-bit L1 address.

2 The FACETS Stage 2 Software Framework

TheFS2 software framework provides the functionality to map a given network onto
the hardware, configure it, control the simulation and examine the results of the map-
ping and simulation process.

2.1 PyNN & Hardware Abstraction Layer

For the FACETS hardware systems, a user interface is now available that provides a
novel way to bridge the gap between the domains of pure software simulators and neu-
romorphic hardware devices [7], [8]. The Python-based neural network modeling lan-
guage PyNN [9], see Figure 3 has been developed by FACETS members. It represents
a simulator-independent set of functions, classes and standards for units and random
number generation that can be used to describe complex models of networks of spiking
neurons using a biological terminology - either in an interactive or in a scripting fashion.
Models written with the PyNN API can be executed with variousestablished software
simulation tools such as NEURON [10], NEST [11], Brian [12] or PCSIM [13]. For all
supported back-ends a specific Python module automaticallytranslates the PyNN code
into the native scripting language of the individual simulator and re-translates the re-
sulting output into the domain of PyNN. Thus, PyNN allows to easily port experiments
between all supported simulators and to directly and quantitatively compare the results.
Among many other benefits, this unification approach can increase the reproducibility
of experiments and decreases code redundancy.

Fig. 3. PyNN framework following [9] and theFS2 HAL.

The integration of the FACETS hardware systems into the PyNNconcept adopts
these benefits. Additionally, the PyNN hardware module offers a transparent method via
which the communities of computational neuroscience and neuromorphic engineering

6 H is not necessarily equal to the total number ofHCs available in the system.

46

can exchange experiments and results. With the novel approach, non-hardware-experts
can be provided with a well documented interface that is verysimilar to interfaces of
most established software simulators [14].

While PyNN itself represents a precise definition of the userinterface, theHardware
Abstraction Layer – HALmodule actuallyimplementsthe automated translation of any
given network setup into the data model described in the following, which performs the
mapping of the experiment onto the available hardware resources and into the hardware
parameter domain. The said translation process also conducts the transition between the
Python domain of PyNN and the C++ objects of the mapping framework and all lower
software layers.

2.2 Data Model

To cope with the hierarchical structure of the hardware system a data model resembling
a hierarchical hyper graph was developed [15]. The graph model consists ofvertices
representing data objects andedgesas relationships among them. Where a vertex holds
atomic data, an edge can be ahierarchical, a namedor a hyper edge. Hierarchical
edges model a parent-child relationship, thus structuringthe model. Named edges form
a directed and named relation between two vertices from/to any location in the model
and hyper edges assign a vertex to a named edge, characterizing it in more detail. Its
flexibility allows to store every information during the configuration process, i.e. the
models itself as well as the placement, routing and parameter transformation data.

2.3 Data Interface

To overcome the access of nodes and edges or subsets of the graphs elements by navi-
gating the native data structure we provide a novelpath-based query-language, named
GMPath. Via GMPath, along with its corresponding API as described in the accompa-
nying publication [16] data can be retrieved from or stored to the models by a program
via static or dynamically created queries.

2.4 The Mapping Process

With regard to topology constraints between hardware blocks such as connectivity, con-
nection counts, priorities and distances as well as source/target counts the mapping
determines a network configuration and parameter set for thehardware. This is accom-
plished in the three steps ofplacement, routingandparameter transformation.

During placement, the mapping process assigns neural elements like neurons or
synapses to distinct hardware elements. As placement comprises different optimiza-
tion objectives, it can be characterized as a multi-criteria problem the solution quality
of which influences the overall mapping results significantly. Possible objectives are,
e.g. to minimize the neural input/output variability clusterwise, to minimize the neural
connection count, also clusterwise, or to minimize routingdistances while maintaining
compliance with constraints such as parameter limitationsor hardware element capac-
ities. As the optimization problem is NP-complete a force-based optimization heuristic

47

with user-defined weightings, namedNFC, was developed to achieve these objectives in
acceptable computation time. This algorithm balances ”forces”, the implementation of
said optimization objectives in an n-dimensional space until an equilibrium is reached.
In a subsequent separation step it assigns its data objects to clusters with affine proper-
ties. We distinguish between the simple algorithms described in [17] and theNFC.

The routing subsequently determines a configuration for thesynaptic connections
on L1 and L2 and can be split into the two subsequent steps of intra- and inter-wafer
routing. The intra-wafer routing algorithms [4] route connectivity exclusively on L1
and reserve L2 for inter-wafer routing which is inactive fora wafer-scale system.

Parameter transformation finally maps the model parametersof given neurons and
synapses, such as weights, types or thresholds into hardware parameter space. As not
every biological parameter, or its corresponding model parameter in the PyNN descrip-
tion, has its individual counterpart in hardware but is often emulated by a set of correlat-
ing parameters, an adequate biology-to-hardware parameter translation has to be found,
e.g for the membrane circuits a transformation from 18 biological parameters of the
PyNN AdEx neuron model description into a configuration of 24adjustable electrical
hardware parameters.

The desired speedup factor between103 to 105 which is determined by the temporal
dynamics of the membrane and synaptic circuitry is finally set by adjusting parameters
as the size of the membrane capacitances, conductances responsible for charging it or
the current controlling the synaptic conductance.

2.5 Analysis

A new standalone application namedGraph Visualization Tool – GraViToaids the user
with the analysis and debugging of mapping data. GraViTo incorporatesenvisioNN
andH3 graph viewer [18] modules that display graph models in textual and graphical
form and gathers statistical data. One can selectively access single nodes inside the data
structure and visualize its context, dependency and relations with other nodes in the
system.

Views of GraViTo are shown in figure 4, such as thetree viewto browse the hierar-
chical structure of the graph model, the GMPathquery viewand the3D view. The 3D
view is specialized on renderingBM andHM and the mapping between them in three
dimensional form to provide a contextual view over the models, their components and
connectivity. It also provides a global overview over the hardware components and the
networks. To support the analysis of the mapping results various statistics are gathered
and displayed, e.g. as histograms for utilization of the crossbars, theHC blocks or the
synaptic connection lengths.

3 Benchmarks

Benchmarks aid in evaluating the mapping process. First benchmarks concerning map-
ping efficiency with focus on intra-wafer routing and hardware utilization were car-
ried out at UHEI [4] with random networks, macrocolumns and locally dense/globally

48

Fig. 4. Screenshot of GraViTo’s viewers.

sparse connected networks in order to explore the system’s design space. New bench-
marks are listed in table 1. The new benchmarks are implemented in PyNN and were
provided from FACETS project partners but also from the neuromorphic research com-
munity outside of FACETS.

Table 1. Selected Benchmarks.

Benchmark Description

INCM ALUF Synfire Chain based on [19], provided by
L’Institut de Neurosciences Cognitives de la Méediterranée
– INCM, Marseille, Francein cooperation with
Albert-Ludwigs-Universität Freiburg – ALUF, Freiburg, Germany

KTH Layer 2/3 Attractor Memory following [20], provided by
Kungliga Tekniska Högskolan - KTH, Stockholm, Sweden

UNIC Model of Self-Sustained AI States following [21], provided by the
Integrative and Computational Neuroscience Unit – UNICof the
Centre national de la recherche scientifique – CNRS, Gif-sur-Yvette, France

As an example we apply the mapping process to the scaled benchmarks in a4×4 ret-
icle configuration with anNMaxHC = 26 to evaluate the mappingquality. As a measure
of the overall mapping quality the parameters as defined in [4] apply. Therouting quality
qRoute = SMap/SBIO, with SMap being the number of mapped synapses overSBIO,
which is the number of synapses in theBM. Thus,(1 − qRoute) is therelative synapse
loss. Thehardware efficiencyis described byeHW = SMap/SHW , whereSHW de-
notes the synapses available on theFS2 hardware for mapping. As a further parameter
for network classification we define the connection densityρSyn = SBIO/N

2

BIO.

49

(a) (b) (c)

Fig. 5. Connection matrices of the (a) INCM, (b) KTH and (c) UNIC networks.

Connection matrices for networks of103 neurons as shown in figure 5 illustrate the
benchmarks synaptic connectivity types. Darker areas represent groups of neurons with
anρSyn above average.

As stated in [2] the worst scenario are randomly connected networks with a constant
ρSyn due to their absent locality. In case of avg.SBIO above the configuredHW limit
one may reduce the neurons perHC, provide more synapses and thus improveqRoute

at the expense of lesseHW , but an expanded distribution of neurons and thus longer
connections may consume even more routing resources in turnat a certain point again
reducingqRoute.

TheρSyn of the benchmarks however decrease with approx.1/x, see 6 (a) leading
to an almost constant or only slightly increasing average synaptic input count. Never-
theless the mapping results for networks withNBIO above105 show a clear decrease in
qRoute by exceeding15% compared to fully routed which may be caused by intra-wafer
routing resources utilized to capacity, invigorated by an observation of the steepest de-
cline in qRoute for UNIC, the network with the lowest avg.ρSyn.

Tests also showed that theNFC algorithm can minimize the routing losses compared
to the simple algorithms up to20% for networks with a higher locality, such as the
INCM, the more efficient the larger the network.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

103 104

c
o

n
n

e
c
ti
o

n
 d

e
n

s
it
y
 [

%
]

#Neurons

INCM
KTH

UNIC

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

103 104

M
o

d
e

l
S

iz
e

 [
M

B
y
te

]

#Neurons

INCM
KTH

UNIC

(b)

 0

 100

 200

 300

 400

 500

 600

0 104

N
F

C
 r

u
n

ti
m

e
s
 [

m
in

]

#Neurons

INCM
KTH

UNIC

(c)

Fig. 6. Networks avg.ρSyn (a),BM size (b) andNFC algorithm runtime (c).

As a second major requirement for the usability of theFS2 hardware simulator
platform a fast configuration and reprogramming is inevitable so we use the scaling test
also to determine the software process’scalabilityin terms of time and space.

Figure 6 (b) shows that theBM graph grows almost linearly depending on the number
of neurons and the synaptic density. So for the given benchmarks the model sizes for

50

networks with a neuron count ofNBIO ≤ 105 and an approximate averageρSyn ≤

10% stay within a acceptable limt of10GB. The simpler algorithms runtime scales with
O(n) and remains within an upper bound of approximately 3 hours whereas the NFC
algorithms, in spite of the cubical problem, grows belowO(n2), as can bee seen in 6 (c)
fulfilling the requirement of a resonable runtime for complex mapping problems.

Test where carried out underRed Hat4.1.2 running on anAMD Opteron
TM

875
Dual Core CPU@2.2GHz quad processor system with32GByte of RAM.

4 Conclusions

Although theFS2 hardware system is on a higher level of abstraction similar to other
reconfigurable hardware architectures it is unique in both its functionality and the sys-
tems dimension. So new algorithms and heuristics are necessary that take into account
the peculiarities of such a system. We presented outcomes and benchmark examples of
the completeFS2 software framework which seamlessly integrates theFS2 hardware
system into PyNN.

As shown by the benchmarks, a mapping is found in a reasonabletime, however, the
networks structure of larger networks is modified by the software process and through
hardware resource limitations. To examine the impact of these losses on the networks
behavior comparative simulations with pre- and post- mapping netlists are carried out
on simulators introduced in section 3. As a further consequence we consider the incor-
poration of L2 into intra-wafer communication as essentialas it will alleviate the L1
losses. Iterative optimization of the mapping results willthen trade-off between simula-
tion speedup, hardware efficiency and routing quality by adjusting the software process
parameters.

An in depth evaluation of the benchmark results will follow with the upcoming
publication of the NFC algorithm.

Acknowledgements

The research is financed by the European Union in the framework of the Information
Society Technologies program, project FACETS (Nr. 15879).Furthermore, we would
like to thankJens Kremkowof ALUF, Pradeep Krishnamurthyof KTH and Andrew
Davisonof CNRS for making the PyNN scripts available to us.

References

1. Schemmel, J., Fieres, J., Meier, K.: Wafer-scale integration of analog neural networks. In:
Proceedings IJCNN2008, IEEE Press. (2008) 431–438.

2. Khan, M., Lester, D., Plana, L., Rast, A., X.Jin, Painkras, E., Furber, S.: SpiNNaker: Map-
ping Neural Networks onto a Massively-Parallel Chip Multiprocessor. In: Proceedings 2008
International Joint Conference on Neural Networks, IJCNN 2008. (2008) 2849 – 2856.

3. Ehrlich, M., Mayr, C., Eisenreich, H., Henker, S., Srowig, A., Gruebl, A., Schemmel, J.,
Schueffny, R.: Wafer-scale VLSI implementations of pulse coupled neural networks. In:
International Conference on Sensors, Circuits and Instrumentation Systems SSD’07. (2007)

51

4. Fieres, J., Schemmel, J., Meier, K.: Realizing Biological Spiking Network Models in a
Configurable Wafer-Scale Hardware System. In: IEEE International Joint Conference on
Neural Networks IJCNN. (2008) 969 – 976.

5. Brette, R., Gerstner, W.: Adaptive Exponential Integrate-and-Fire Model as an Effective
Description of Neuronal Activity. Journal of Neurophysiology 94 (2005) 3637–3642

6. Schemmel, J., Brüderle, D., Meier, K., Ostendorf, B.: Modeling Synaptic Plasticity within
Networks of Highly Accelerated I&F neurons. In: Proceedings of the 2007 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS’07), IEEE Press (2007)

7. Brüderle, D., Müller, E., Davison, A., Muller, E., Schemmel, J., Meier, K.: Establishing
a Novel Modeling Tool: A Python-based Interface for a Neuromorphic Hardware System.
Front. Neuroinform. 3 (2009)

8. Davison, A., Muller, E., Brüderle, D., Kremkow, J.: A common language for neuronal net-
works in software and hardware. The Neuromorphic Engineer (2010)

9. Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L.,
Yger, P.: PyNN: a common interface for neuronal network simulators. Front. Neuroinform.
2 (11) (2009) 1 – 10

10. Hines, M. L., Carnevale, N. T.: The NEURON Book. Cambridge University Press, Cam-
bridge, U.K. (2006)

11. Gewaltig, M. O., Diesmann, M.: NEST (NEural Simulation Tool). Scholarpedia2 (2007)
1430

12. Goodman, D., Brette, R.: Brian: a simulator for spiking neural networks in Python. Front.
Neuroinform. 2 (2008)

13. Pecevski, D. A., Natschläger, T., Schuch, K. N.: PCSIM:A Parallel Simulation Environment
for Neural Circuits Fully Integrated with Python. Front. Neuroinform. 3 (2009)

14. Brüderle, D., Bill, J., Kaplan, B., Kremkow, J., Meier,K., Müller, E., Schemmel, J.:
Simulator-Like Exploration of Cortical Network Architectures with a Mixed-Signal VLSI
System. In: Proceedings of the 2010 IEEE International Symposium on Circuits and Sys-
tems (ISCAS’10). (2010)Accepted

15. Wendt, K., Ehrlich, M., Schüffny, R.: Graph theoretical approach for a multistep mapping
software for the FACETS project. In: 2nd WSEAS Int. Conference on Computer Engineering
and Applications (CEA’08). (2008)

16. Wendt, K., Ehrlich, M., Schüffny, R.: GMPath - A Path Language for Navigation, Infor-
mation query and modification of data graphs. In: 6th International Workshop on Artificial
Neural Networks and Intelligent Information Processing (ANNIIP). (2010)Accepted

17. Wendt, K., Ehrlich, M., Mayr, C., Schffny, R.: Abbildungkomplexer, pulsierender,
neuronaler Netzwerke auf spezielle neuronale VLSI Hardware. Dresdner Arbeitstagung
Schaltungs- und Systementwurf DASS 2007 (2007) pp. 127–132

18. Munzner, T.: H3: Laying out large directed graphs in 3d hyperbolic space. In: Proceedings
of the 1997 IEEE Symposium on Information Visualization. (1997) 2–10

19. Kremkow, J., Perrinet, L., Aertsen, A., Masson, G.: Functional consequences of correlated
excitatory and inhibitory conductances. (2009)Submitted

20. Lundqvist, M., Rehn, M., Djurfeldt, M., Lansner, A.: Attractor dynamics in a modular net-
work of neocortex. Network:Computation in Neural Systems 17:3 (2006) 253–276

21. Destexhe, A.: Self-sustained asynchronous irregular states and Up/Down states in thala-
mic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. Journal
of Computational Neuroscience 3 (2009)

52

Design of a Multi-Agent System for Hierarchical
Network Management in Wireless Sensor Network

Mubashsharul I. Shafique, Haiyi Zhang and Yifei Jiang

Jodrey School of Computer Science, Acadia University
Wolfville, NS, B4P 2R6, Canada

{093080s, haiyi.zhang, 095997j}@acadiau.ca

Abstract. In order to manage a sensor network efficiently, we can divide it logi-
cally into disjoint parts, called clusters. As sensor nodes are resource-constraint,
it is desirable to chose suitable cluster heads and do role-switching of the cluster
heads wherever appropriate. In this work, we design a system that selects new
cluster head through collaboration of multiple software agents in each cluster.
Our system allows to pick up cluster heads dynamically based on current net-
work status. Agents in our design use Fuzzy Logic-based controller to find new
cluster heads.

1 Introduction

Wireless Sensor Network is a deployment of sensor nodes that do data reporting to in-
terested user via sink node. It offers a great facility to remotely monitor an unattended
environment. Due to this feature, sensor networks are widely used in military surveil-
lance, habitat monitoring, industrial plants, and in many other places. Once a sensor
network is deployed, it is necessary to manage it efficiently in order to optimize net-
work life-time.

A sensor network can be managed by hierarchical or flat organization. However,
as hierarchical organization has several benefits over flat network structure, normally a
sensor network is divided into clusters. Here in this work, we design a multi-agent sys-
tem to rotate the role of cluster head nodes. Software agents in our design autonomously
collaborate with each other in the distributed sensor network environment. The remain-
ing part of this paper is organized as follows: section 2 presents some background
knowledge and section 3 defines the problem that his work addresses. Next, section
5 explains the design of our system and inter-agent communication is presented in sec-
tion 6. We conclude our paper in section 7.

2 Background Knowledge

2.1 Wireless Sensor Network

Wireless Sensor Network(WSN) consists of autonomous sensor devices (known as
nodes or motes) that can sense an environment. For example, MicaZ sensor nodes from

Crossbow1 can sense ambient light, barometric pressure, GPS, magnetic field, sound,
photo-sensitive light, photo resistor, humidity and temperature.

Often times, these sensor nodes are battery-powered, and equipped with limited
processing capacity and memory. However, WSNs are very effective and efficient at
monitoring remote environment and communicate real-time data. Sensor nodes can de-
tect events or phenomena, collect and process data, and transmit sensed information to
the interested users.

2.2 Virtual Organization in Sensor Network

WSN differs from an IP network in regards to network backbone because, often times a
WSN does not have any fixed infrastructure. Sensor nodes may run out of battery power
or network topology may change due to some mobile nodes. So, in order to support
data routing, WSN relies on virtual infrastructure which forms on-the-fly during system
operation. One way to manage a sensor network, is to logically divide it into some
disjoint clusters. A particular node in each cluster works as cluster head, and gathers
data from other nodes of the cluster. The cluster head then forwards data to the next hop
node towards the data sink, which is the final destination of any data. Figure 1 shows
an example sensor network with three clusters. We show data reporting from a normal
sensor node to the sink by arrow heads.

Fig. 1. Virtual organization in WSN.

3 Problem Definition

In a static network topology, cluster heads of a sensor network die quite early due to
excessive relaying of data stream towards sink. So, in order to prolong network life-
time, a network should rotate the role of cluster heads. For example, if a current cluster
head had drained a significant amount of energy, network should keep the provision to
pick a new cluster head for that cluster. This kind of dynamic load balancing can delay
the first node death and help decrease data packet loss in the network thereby.

Due to the large number of sensor nodes in a typical sensor network, it is not real-
istic to run any centralized algorithm to switch cluster heads. A network needs to have
distributed architecture which can select new cluster heads with local information, and
further, the role-switching should remain quasi-transparent to the remaining network.

1 http://www.xbow.com/.

54

4 Related Works

For Wireless sensor Networks (WSNs), the major design goal is to minimize energy
consumption and maximize the network lifetime. In the last few years, plenty of at-
tempts of exploring advanced power conservation approaches have been used by re-
searchers for wireless sensor networks. Cluster-based routing approach is one of the
famous energy efficient routing approaches in WSNs. LEACH (Low Energy Adaptive
Clustering Hierarchy) in [1], is the first hierarchical cluster-based routing protocol for
WSNs. This algorithm uses random and periodic rotation of the Cluster Heads (CHs)
for load balancing, which can evenly disperse the energy load among the sensor nodes
in the network. More specifically, the cluster heads belonged to the corresponding clus-
ters will only use for certain number of rounds. After a predefined round, new cluster
heads will be randomly generated, which is based on a role that if the random number
is less than a calculated threshold T (n), the corresponding sensor node will be selected
as the cluster-head for the current round. This randomized periodic role rotation en-
sures that all the nodes are equally likely to be cluster head nodes. However, simply
random cluster head rotation will select unfavorable cluster heads, which will turn out
high energy consumption in later rounds.

Due to the above reason, in [9], Energy-LEACH protocol improves the procedure
of CH rotation. Similar to LEACH protocol, the process of CH rotation of E-LEACH
is divided into rounds. In the first round, each sensor node has the same probability
to be turned into CH, which means sensor nodes are randomly selected as CHs. In
the next rounds, since the residual energy of each sensor node is different after every
communication round, residual energy of node is considered as the main metric that
decides whether the sensor nodes turn into CHs or not after the first round. The sensor
nodes who have more remaining energy will become CHs rather than the ones with less
remaining energy.

As for the aforementioned two LEACH algorithms, there is a shared drawback, that
is, both of them consumes more CPU cycles, since each sensor node in WSNs has to
calculate the threshold and generate the random numbers in each round. To overcome
this shortcoming, a improved LEACH, called LEACH-C protocol, is proposed in [10].
LEACH-C is a centralized clustering algorithm and uses the same steady-state phase as
in LEACH algorithm. This protocol also produces better performance on cluster heads
rotation. During the set-up phase of LEACH-C, each sensor node sends information
about its current location (this may determine by using GPS) and residual energy level
to the Base station (BS). In order to ensure that the energy load is evenly distributed
among all the sensor nodes in WSNs, The average node energy is computed by the BS,
and then, determines which sensor nodes have energy below this average. Once the CHs
and associated clusters are found, the BS broadcasts a message that obtains the cluster
head ID for each node. If a cluster head ID matches its own ID, the node will be selected
as a cluster head; otherwise the node determines its TDMA slot for data transmission
and goes sleep until it’s time to transmit data. The steady-state phase of LEACH-C is
identical to that of the LEACH protocol.

Based on the above approach, in [11], cluster heads election using fuzzy logic
is proposed, which can minimize energy consumption and provide a substantial in-
crease in network lifetime compared with the probabilistically cluster heads selecting

55

approaches. According to this proposed approach, for a cluster, the node elected by the
base station is the node having the maximum chance to become the cluster-head, which
is based on three fuzzy descriptors: energy level in each sensor node, sensor node con-
centration and node centrality with respect to the entire cluster. The operation of this
fuzzy logic cluster-head election scheme is divided into two rounds with each consisting
of a setup and steady state phase similar to LEACH algorithm. During the setup phase,
fuzzy knowledge processing is used for determining the CHs, and then the cluster is
organized. In the steady state phase, the aggregated data is collected by CHs. After that,
CHs perform signal processing functions to compress the data into a single signal. This
composite signal is then sent to the base station. Fuzzy logic control model is core part
of this proposed approach; it includes a fuzzifier, fuzzy rules, fuzzy inference engine,
and a defuzzifier. To be specific, fuzzifier is used to take the crisp inputs from each
of variables of energy, concentration and centrality and determine the degree to which
these inputs belong to each of the appropriate fuzzy sets. Then, these fuzzified inputs
are applied to the antecedents of the fuzzy rules. As for the defuzzification, the input
for this process is the aggregate output fuzzy set chance and the output is a single crisp
number. For fuzzy inference engine, Mamdani Method [13] is commonly used. In [12],
similar cluster heads selections based on fuzzy logic algorithm are also presented.

To our knowledge, several attempts have also been used by some researchers to re-
duce energy consumption based on mobile agents [2][3][4][5]. Due to the constraints
of bandwidth in wireless sensor network, the network’s capacity may not satisfy the
transmission of sensory data. In order to handle the problem of overwhelming data traf-
fic, Qi, et al. [6] proposed Mobile Agent-based Distributed Sensor Network (MADSN)
for multi-sensor data fusion. For this proposed approach, it not only achieves data fu-
sion, but also reduces energy expenditure. However, the application of this approach
can only be applied on cluster-based topologies. MADD approach in [7] is introduced
to deal with this problem. Currently, most energy-efficient proposed approaches are fo-
cused on data-centric model, such as the directed diffusion. By selecting good path to
drain quality data from source nodes, directed diffusion approach can achieve substan-
tial energy gain. However, it still allows redundant sensory traffic to flow back to the
Base station. The main advantage of MADD is to reduce the redundant sensory data.
Through using mobile agent, data is aggregated at each source node and is brought back
to sink. This allows substantial energy gain toward the network lifetime.

To explain the process of MADD approach, it starts when the mobile agent is dis-
patched from the BS with the interest and ends when it returns to the sink with the
aggregated data. The processes involved in MADD are divided into three phases. First,
the mobile agent is dispatched from BS to the first source node. Second, the mobile
agent shifts from the first source node to the last source node, visiting selected source
nodes in between. The drawback for this approach is that it doesn’t always guarantee
the best sequence of nodes to be visited.

To deal with the aforementioned limitations, Shakshuki et al. in [8] proposed a
mobile agent for efficient routing approach (MAER) by using both Dijkstra’s algorithm
and Genetic Algorithms (GAs). As we know, the order of source nodes to be visited by
the mobile agent greatly affects the energy consumption. Although MADD, the work
presented in [7], allows the agent to autonomously select visit sequence of source nodes

56

for achieving data aggregation, it does not always provide an optimal sequence. To
address this shortcoming, MAER in [8] introduces Genetic Algorithm (GA) to produce
an optimal route.

5 Agent Architecture

An agent in our design consists of four modules: Problem Solver, Knowledge-base
Updater, Scheduler, and Communicator. Further, each agent maintains own knowledge
base in its memory, which gets updated as a result of inter-agent message communi-
cation. Here in this section, we describe different components of individual agent in
detail.

Fig. 2. Agent Architecture.

In our design, the role of an agent software switches between two modes- Cluster
head Mode and Normal Mode. However, at any particular time, within each cluster,
agent software of only one sensor node works in Cluster head Mode, others execute in
Normal Mode.

5.1 Scheduler Module (SM)

This module is in charge of scheduling a new round of cluster head selection. It is active
in Cluster head Mode only. It interacts with Problem Solver Module and Communicator
Module. After periodic interval, it checks the remaining energy of the cluster head node
and initiates new cluster head selection if necessary.

5.2 Problem Solver Module (PSM)

This is the basic working module of an agent. Based on current working mode, PSM
does two distinct tasks:

57

Weight Calculation in Normal Mode. We define the weight of a sensor node as a
function of two parameters: Centrality(C) and Remaining Energy(RE). As sensor nodes
are resource-constraint, we use simple Fuzzy Logic based controller in agents to cal-
culate node weight. During Fuzzification phase, we followed the mapping presented in
[11] to convert crisp values to fuzzy values. Figure 3 portrays this Fuzzification process.
We define our own rule-base for fuzzy controller in table 1. PSM uses this rule base to
determine current weight value in fuzzy variable.

Fig. 3. Fuzzy Sets used in Fuzzy Controller.

Table 1. Fuzzy Rule Base.

Rule Centrality Energy Result

1 Close High High
2 Adequate High High
3 Far High High
4 Close Medium High
5 Adequate Medium Medium
6 Far Medium Medium
7 Close Low Medium
8 Adequate Low Low
9 Far Low Low

New Cluster Head Selection in Cluster head Mode. PSM of cluster head agent op-
erates on all Fuzzy weight values of normal sensor nodes. After comparing multiple
Fuzzy weight values, if some nodes are equally suitable to be the new cluster head,
PSM runs following scheme to break a tie:

In order to Defuzzify, we assign numeric values against different Fuzzy values
High/Close=3, Medium/Adequate=2, and Low/Far=1 and bias the decision by putting
60% importance to energy. For example, if two nodes ni and nj are in a tie with Fuzzy
values {Far, Medium} and {Close, Low} respectively, then PSM computes Defuzzified
values as di = 1*0.4 + 2*0.6 = 1.6 and dj = 3*0.4 + 1*0.6 = 1.8. Here di and dj are
crisp values for node ni and nj respectively. Even after this computation, if PSM can
not break the tie, it compares node IDs and selects node with minimum ID as next
cluster head.

58

5.3 Communicator Module (CM)

This module is in charge of sensor radio component and communication with other
agents in the system. If agent software is running in Cluster head Mode, it does two
things: (a) Upon receiving request from SM, it sends out Discovery Message to other
agents; (b) If it receives Weight Message(s), it forwards weight value(s) to PSM.

On the other hand, if the agent is working in Normal Mode, CM does only one thing:
it receives Weight Message(s) and forwards to the Knowledge-base Updater Module.

5.4 Knowledge-base Updater Module (KBUM)

This is the only module that interacts with agent Knowledge-base. KBUM uses a ded-
icated area of sensor node’s memory to maintain the Knowledge-base. Any change in
shared knowledge like- weight updates or rule updates are propagated to it by PSM
and/or CM; and as a result, KBUM synchronizes agent’s local memory with global
state.

5.5 Knowledge-base (KB)

Knowledge-base in an agent holds a local copy of the shared knowledge. An agent’s
KB houses a snapshot of a fragment of global information, that it is interested in. KB
includes rules for Fuzzy controller, latest weights of all neighbor nodes and current
cluster head’s node ID.

6 System Dynamics

6.1 Protocol Message Types

In a collaborative multi-agent system, message passing is an integral part which facili-
tates distributed processing. In this section, we present four different message types that
agents in our design exchange during system operation.

Discovery Message. Once remaining energy of the current cluster head goes below
a threshold value (which is 40% of initial energy in our implementation), cluster head
agent broadcasts Discovery Message. A Discovery Message initiates new cluster head
selection within a cluster.

Weight Message. Weight Message contains latest weight value of a node. This mes-
sage is broadcasted by agent in a normal node as a response to an incoming Discovery
Message from current cluster head.

Control Message. Control Message is used to broadcast any change in routing topol-
ogy. After determining new cluster head, current cluster head agent broadcasts Control
Message indicating new cluster head node ID.

59

Data Message. Data Message originates from normal node agents and is used to report
current data readings to the cluster head.

6.2 System Work-flow

Fig. 4. Sequence diagram for cluster head mode.

In this section we explain the sequences of operation in our agent-based system.
First, figure 4 shows action sequences for an agent operating in Cluster head Mode.
After periodic interval, SM measures remaining energy of the cluster head node, and if
it is bellow the threshold (i.e., less than 40% of initial energy), SM starts a new cluster
head selection round. It notifies PSM that a new cluster head selection process is in
effect and also requests CM to send out Discovery Message.

CM then sends out Discovery Message in the wireless medium, and in response, it
receives Weight Messages from other agents. CM forwards these node-weights to PSM
for calculation. In turn, PSM requests KBUM to update Knowledge base with newly
received weight values and once PSM receives weights from all nodes, it uses Rule
base to select new cluster head as explained in section 5.2. After finding the new cluster
head, PSM requests CM to convey other nodes about new cluster head, and as a result,
CM sends out new Control Message containing newly chosen cluster head ID.

Figure 5 portrays action sequence of an agent working in Normal Mode. If its CM
receives a Discovery Message from current cluster head, CM requests PSM to compute

60

own node weight. Upon computation, PSM returns own weight to CM. CM then en-
capsulates this weight value in a Weight Message and broadcasts that message in the
neighborhood. Besides, if CM receives Weight Message from a different node, it re-
quests KBUM to update agent’s Knowledge base. In a similar way, KB update is also
performed if an agent receives Control Message from current cluster head.

Fig. 5. Sequence diagram for normal mode.

7 Conclusions

In this work, we design a system to rotate the role of cluster heads in a Wireless Sensor
Network. Multiple agents, each residing in individual sensor node, interact with each
other and participate in new cluster head selection. In our design, agent-based archi-
tecture provides flexibility to network management. At the same time, as we use fuzzy
controller, this design can be easily extended by adding new rules in the rule-base. Our
future work focuses on implementing this design in TinyOS operating system for Wire-
less Sensor nodes.

References

1. W. Heinzelman, A. Chandrakasan and H. Balakrishnan: Energy-Efficient Communication
Protocol for Wireless Microsensor Networks. In: 33rd Hawaii International Conference on
System Science (2000)

2. Y.-C. Tseng, S.-P. Kuo, H.-W. Lee, and C.-F. Huang: Location tracking in a wireless sensor
network by mobile agents and its data fusion strategies. Computer Journal, vol. 47, no. 4, pp.
448-460, (2004)

61

3. H. Qi, S.S. Iyengar, and K. Chakrabarty: Multi-Resolution Data Integration Using Mobile
Agents in Distributed Sensor Networks. IEEE Trans. Systems, Man, and Cybernetics Part C:
Applications and Rev., vol. 31, no. 3, pp. 383-391, Aug. (2001)

4. Daniel Massaguer, Chien-Liang Fok, Nalini Venkatasubramanian, Gruia-Catalin Roman,
Chenyang Lu: Exploring sensor networks using mobile agents. pp. 323-325, AAMAS (2006)

5. C.-L. Fok, G.-C. Roman, and C. Lu: Mobile agent middleware for sensor networks: An
application case study. In: 4th Int. Conf. on Information Processing in Sensor Networks
(IPSN’05), pages 382–387. IEEE, April (2005)

6. Hairong Qi, Yingyue Xu, Xiaoling Wang: Mobile-agent-based Collaborative Signal and In-
formation Processing in Sensor Networks. In: Proceeding of the IEEE, Vol. 91, NO. 8,
pp.1172-1183, Aug (2003)

7. Min Chen, Taekyoung Kwon, Yong Yuan, Yanghee Choi and Victor C. M. Leung1: Mo-
bile Agent-Based Directed Diffusion in wireless Sensor Networks. EURASIP Journal on
Advances in Signal Processing, Article ID 36871, (2007)

8. Shakshuki, E., Xing, X.Y. and Malik, H: Mobile Agent for Efficient Routing among Source
Nodes in Wireless Sensor Networks. In: 3rd International Conference on Autonomic and
Autonomous Systems (ICAS’07), June(2007)

9. Xiangning Fan and Yulin Song: Improvement on LEACH Protocol of Wireless Sensor Net-
work. International Conference on Sensor Technologies and Applications (SENSORCOMM
2007), pp.260-264, (2007)

10. W. Heinzelman, A. Chandrakasan and H. Balakrishnan: An Application-Specific Protocol
Architecture for Wireless Microsensor Networks. IEEE Transactions on Wireless Commu-
nications, Vol. 1, No. 4, October(2002)

11. Indranil Gupta, Denis Riordan and Srinivas Sampalli: Cluster-head Election using Fuzzy
Logic for Wireless Sensor Networks. In: 3rd Annual Communication Networks and Services
Research Conference, pp.255 - 260, (2005)

12. Xiaorong Zhu and Lianfeng Shen: Near optimal cluster-head selection for wireless sensor
networks. Journal of Electronics (China), Science Press, co-published with Springer-Verlag
GmbH, Vol. 4, pp.721-725, November(2007)

13. M. Negnevitsky: Artificial intelligence: A guide to intelligent systems. Addison-Wesley,
Reading, MA (2001)

62

Evolutionary Optimization of Echo State Networks:
Multiple Motor Pattern Learning

André Frank Krause1,3, Volker Dürr2,3, Bettina Bläsing1,3 and Thomas Schack1,3

1 Faculty of Sport Science, Dept. Neurocognition & Action
University of Bielefeld, D-33615 Bielefeld, Germany

{andre frank.krause, bettina.blaesing,
thomas.schack}@uni-bielefeld.de

2 Faculty of Biology, Dept. for Biological Cybernetics
University of Bielefeld, D-33615 Bielefeld, Germany

volker.duerr@uni-bielefeld.de
3 Cognitive Interaction Technology, Center of Excellence

University of Bielefeld, D-33615 Bielefeld, Germany

Abstract. Echo State Networks are a special class of recurrent neural networks,
that are well suited for attractor-based learning of motor patterns. Using structural
multi-objective optimization, the trade-off between network size and accuracy
can be identified. This allows to choose a feasible model capacity for a follow-up
full-weight optimization. Both optimization steps can be combined into a nested,
hierarchical optimization procedure. It is shown to produce small and efficient
networks, that are capable of storing multiple motor patterns in a single net. Es-
pecially the smaller networks can interpolate between learned patterns using bi-
furcation inputs.

1 Introduction

Neural networks are biological plausible models for pattern generation and learning.
A straight-forward way to learn motor patterns is to store them in the dynamics of re-
current neuronal networks. For example, Tani [1] argued that this distributed storage
of multiple patterns in a single network gives good generalisation compared to local,
modular neural network schemes [2]. In [3] it was shown that it is not only possi-
ble to combine already stored motor patterns into new ones, but also to establish an
implicit functional hierarchy by using leaky integrator neurons with different time con-
stants in a single network. This can then generate and learn sequences by use of stored
motor patterns and combine them to form new, complex behaviours. Tani [3] uses back-
propagation through time (BPTT, [4]), that is computationally complex and rather bio-
logically implausible. Echo State Networks (ESNs, [5]) area special kind of reccurent
neuronal networks that are very easy and fast to train compared to classic, gradient
based training methods. Gradient based learning methods suffer from bifurcations that
are often encountered during dynamic behaviour of a network, rendering gradient in-
formation invalid [6]. Additionally, it was shown mathematically that it is very difficult
to learn long term correlations because of vanishing or exploding gradients [7]. The
general idea behind ESNs is to have a large, fixed, random reservoir of recurrently and

sparsely connected neurons. Only a linear readout layer that taps this reservoir needs to
be trained. The reservoir transforms usually low-dimensional, but temporally correlated
input signals into a rich feature vector of the reservoir’s internal activation dynamics.

Typically, the structural parameters of ESNs, for example the reservoir size and
connectivity, are choosen manually by experience and task demands. This may lead
to suboptimal and unnecessary large reservoir structures for a given problem. Smaller
ESNs may be more robust, show better generalisation, be faster to train and computa-
tionally more efficient. Here, multi-objective optimization is used to automatically find
good network structures and explore the trade-off between network size and network
error.

Section 2 describes the ESN equations and implementation. Section 3 introduces
the optimization of the network structure and explains how small and effective networks
can be identified. Good network structures are further optimized at the weight level in
section 4. Section 4.1 shows how to combine structural and weight level optimization
into a single, nested algorithm, facilitating a genetic archive of good solutions. In sec-
tion 5, the dynamic behaviour of the optimized ESNs is shown for different bifurcation
inputs.

0

0

1

u(t)
y(t)

a

b

sensor readings

W in

W out

W back

W res

Fig. 1. General structure of an echo state network. Solid arrows indicate fixed, random connec-
tions, while dotted arrows are trainable readout connections. The output [????] sets the joint
angles of a bi-articular manipulator, e.g., an bio-inspired active tactile sensor. Joint angles are fed
back via the backprojection weight matrixWback.

2 Echo State Network

A basic, discrete-time ESN with a sigmoid activation functions was implemented in
Matlabc©2009b. The purpose of this ESN was to control the joints of a bi-articular
manipulator that could serve as a bio-inspired, active tactile sensor. The overall goal
was to use the input to the ESN to set the tactile sampling pattern as desired. The state
update equations used are:

y(n) = Woutx(n)
x(n+ 1) = tanh(Wres

x(n) +Winu(n+ 1) +Wbacky(n) + ν(n))
(1)

whereu, x andy are the activations of the input, reservoir and output neurons, respec-
tively. ν(n) adds a small amount of uniformly distributed noise to the activation values
of the reservoir neurons. This tends to stabilize solutions, especially in models that use
output feedback for cyclic attractor learning [8].Win, Wres, Wout andWback are

64

the input, reservoir, output and backprojection weight matrices. All matrices are sparse,
randomly initialised, and stay fixed, except forWout. The weights of this linear output
layer are learned using offline batch training. During training, the teacher data is forced
into the network via the back-projection weights (teacher forcing), and internal reser-
voir activations are collected (state harvesting). After collecting internal states for all
training data, the output weights are directly calculated using ridge regression. Ridge
regression uses the Wiener-Hopf solutionWout = R−1P and adds a regularization
term (Tikhonov regularization):

Wout = (R + α
2I)−1P (2)

whereα is a small number,I is the identity matrix,R = S′S is the correlation
matrix of the reservoir states andP = S′D is the cross-correlation matrix of the states
and the desired outputs. Ridge regression leads to more stable solutions and smaller
output weights, compared to ESN training using the Moore-Penrose pseudoinverse. A
value ofα = 0.08 was used for all simulations in this paper.

3 Multi-objective Network Structure Optimization

Multi-objective optimization (MO) is a tool to explore trade-offs between conflicting
objectives. In the case of ESN optimization, the size of the reservoir versus the net-
work performance is the main trade-off. In MO, the concept ofdominance replaces the
concept of a single optimal solution in traditional optimization. A solution dominates
another, if strictly one objective value is superior and allother objectives are at least
equal to the corresponding objective values of another solution. Following this defini-
tion, multiple (possibly infinite) non-dominated solutions can exist, instead of a single
optimal solution. The set of non-dominated or pareto-optimal solutions is called the
pareto front of the multi-objective problem. The goal of MO is to find a good approx-
imation of the true pareto front, but usually MO algorithms converge to a local pareto
front due to complexity of the problem and computational constraints.

Usually, the structural parameters of an ESN are choosen manually by experience
and task demands. Here, the full set of free network parameters was optimized using
MO. The MO was performed with the function ’gamultiobj’ fromtheMatlab Genetic
Algorithm and Direct Search (GADS) Toolbox, that implements a variant of the ’Eli-
tist Non-dominated Sorting Genetic Algorithm version II’ (NSGA-II algorithm, [9]).
The network structure was encoded into the genotype as a seven-dimensional vector of
floating point numbers. The first six structural parameters were the sparsity and weight
range of the input-, reservoir- and backprojection weights. The seventh parameter was
the number of reservoir neurons. The search range of the algorithm was constrained
to [0, 1] for the sparsity values, to[−5, 5] for the weight values and to[1, 100] for the
reservoir size ([1, 500] for the 4-pattern problem). The optimization was started with a
population size of 1000 and converged after around 120 generations. In each iteration of
the MO, all genomes were decoded into network structures, the networks were trained
and then simulated with random initial activations for 1000frames per pattern. In order
to neglect the initial transient behaviour, the first 50 iterations of network output were
rejected. The network output and the training patterns are usually not in-phase. The

65

best match between training pattern and network output was searched by phase-shifting
both output time courses by± 50 frames relative to the training pattern and calculat-
ing the mean Manhattan distance across all pairs of data points. The training error was
then defined as the smallest distance found in that range. Theacceptable error threshold
(fig.2) is expressed as the percentage of the amplitude of thetraining patterns, that is
1.0 units for all patterns. The pareto front for a circular pattern (Fig.2a) reveals that
even very small networks are capable of learning and generating two sine waves with
identical frequency and 90 phase shift. The smallest network found had only 3 reservoir
neurons. Including the two output neurons, the overall network size was 5. In compar-
ison, 7 neurons are required for this task when using gradient-based learning methods
[10]. Network size increases with the complexity of the motor pattern, and especially
when having to store multiple patterns in a single network. Storing 4 patterns in a single
network required 166 reservoir neurons to reach an error below 5% (Fig.2d).

0 100 200 300 400 500

network size

0 20 40 60 80 100
0

network size

5%

circle

eight

0 20 40 60 80 100

5%

eight

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

e
rr

o
r

1%

circle

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

5%

circle

eight

rectangle star

e
rr

o
r

a bb

dc

Fig. 2. Minimum reservoir size depends on task complexity. All panels show a set of pareto-
optimal solutions (red circles) and the final population (blue crosses). (a) Learning a simple,
circular pattern. All networks with 3 or more neurons show anerror below 1%. (b) Pareto-front
for the figure eight pattern. Learning this pattern requiresa notably larger reservoir. Please note
the different scaling of the error compared to the easier circle task. Networks with 17 or more
neurons have an error below 5%. (c) Storing two motor patterns (circle and figure-eight) as cycli-
cal attractors in a single networkrequires 37 or more reservoir neurons for errors below 5%. (d)
Simultaneous learning of four patterns required 166 neurons.

66

4 Full Optimization of the Network Weights

From the pareto front of the two-pattern task, four candidate network structures were
selected and optimized further, using a single-objective genetic algorithm. This time,
all network weights except the output layer were fully optimized. The output layer was
still trained by ridge regression. An initial random population of 200 parents was cre-
ated from the network structure information of the selectedcandidate solutions with 4,
14, 26 and 37 reservoir neurons. Network weights were constrained to[−5, 5] and de-
coded from the genome with a threshold function that preserves sparsity. The threshold
function sets a weight to zero, if the genome value is between-1 and 1, see fig.3.

1 5-1-5

5

-5

w
e

ig
h

t
v
a

lu
e

genome value

Fig. 3. Threshold function that decodes genome values into weight values, preserving sparse
weight coding.

The Genetic Algorithm (GA) options were set to ranked roulette wheel selection,
20 elitist solutions, 80% crossover probability with scattered crossover and self adap-
tive mutation. Other options were left at their default values (see GADS toolbox, Mat-
lab2009b). The GA-optimization was repeated 20 times for each network size. Fig.
4a shows the improvement in performance compared to the MO structure optimiza-
tion run. A small network with only 14 reservoir neurons could reproduce the learned
patterns with an error of 2.3%. Weight range and connectivity after optimization was
analysed with an unpaired Wilcoxon rank sum test. Significant differences in connec-
tivity and weight range were found (Fig. 4b) with a clear trend for smaller reservoir
weights and less reservoir connectivity with increasing network sizes. Both input- and
backprojection weights tend to increase with reservoir size (Fig. 4a). Although standard
ESNs usually have full connectivity for input- and backprojection weights, evolutionary
optimization seems to favor sparse connectivity for smaller networks, when given the
choice (Fig. 4b).

4.1 Hierarchical Evolutionary Optimization

In the previous section, individual solutions of the MO structural evolution were se-
lected and optimized further on the weight level, using a GA.Both steps can be com-
bined by performing a full-weight GA optimization for each iteration of the MO. This

67

20 30 40 50
network size

10

5%

0
0

0.05

0.1

0.15

0.2

0.25

e
rr

o
r

a

Fig. 4. Subsequent full-weight matrix optimization improves performance. Additional optimiza-
tion of the four best networks of the two-pattern task with a reservoir size of 4, 14, 26 and 37
neurons. Starting from the best multi-objective solution,20 GA runs were performed. a) Green
crosses indicate the best fitness values of each run. Black squares indicate the overall best solu-
tions that were found.

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

4 14 26 37 4 14 26 37 4 14 26 37

0,0

0,2

0,4

0,6

0,8

1,0

c
o

n
n

e
c
ti
v
it
y

w
e

ig
h

t
ra

n
g

e

network size

* ** ** ** ** ** **** ** ** ** ** **

a

4 14 26 37 4 14 26 37 4 14 26 37

network size

b

Fig. 5. Optimal weight range and connectivity depends on reservoirsize. Network structure after
full-weight optimization of the selected networks from fig.4. a) Weight range of all non-zero
weights of the reservoir (red), the backprojection weights(green) and the input weights (blue).
b) Connectivity (percentage of non-zero weights). Boxplots show 5%, 25%, 50%, 75% and 95%
quantiles of N=20 datapoints. * p ¡ 0.05; ** p ¡ 0.01.

way, the pareto front improves by moving closer towards the origin of both optimiza-
tion objectives. This nested, hierarchical optimization is computationally demanding.
To speed up the convergence of the MO, good solutions of the full-weight GA are stored
in an archive, keeping each iteration of the MO accessible. In subsequent iterations, the
archived genome having the closest structure is injected into the new population of the
full-weight GA. Good networks can emerge faster by facilitating cross-over with the
archived solutions. This way, the full-weight optimization does not need to start from
scratch in each iteration. See Fig.6 for hierarchical optimization of the two-pattern task.
The MO had a population size of 200, running - at each iteration - a full-weight opti-

68

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

network size

er
ro

r

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

network size

er
ro

r

Fig. 6. Left graph: Average pareto front from N=30 repetitions of the strucural MO. Blue crosses
show the final populations, red crosses show the pareto fronts, and the red circles show the mean
and standard deviation of the pareto-optimal solutions foreach network size. Right graph: Hier-
archically nesting a full-weight GA optimization into the MO optimization gives a more accurate
approximation of the true pareto front, as compared to structural MO alone. The plot shows a sin-
gle run of the nested MO-GA optimization over 25 generations. Crosses show the population at
each generation in grey levels ranging from light grey (firstgeneration) to black (last generation).
A single run outperforms the best solutions found in 30 runs of the structural MO, see Fig.7.

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

network size

er
ro

r

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

network size

er
ro

r

Fig. 7. Comparison of the different optimization runs. The structural MO is shown in red (cir-
cles), full-weight optimization of selected solutions from the structural MO in green (diamonds),
and the hierarchical optimization in magenta (squares). A single run of the nested, hierarchical
optimization shows almost the same performance as the full-weight optimization from section 4.

mization with a population size of 20 individuals for 50 generations. Fig. 7 compares
the pareto fronts of the different optimization strategies. A single run of the nested op-
timization algorithm achieves almost the same result as thecombination of structural
and subsequent full-weight optimization.

69

5 Dynamic Network Behaviour

Most of the smaller networks show an unexpected behaviour. They are able to interpo-
late between the learned patterns, generating novel, not explicitly trained outputs. Fig.
8 shows the dynamical responses from the fittest networks of section 4.1. The first in-
put value was changed gradually in 15 steps from 1.0 to 0.0, while the second input
was changed from 0.0 to 1.0. A gradual morphing from the circular to the figure-eight
pattern can be observed. It is surprising, that already a small ESN with six reservoir neu-
rons can store two different patterns. Larger networks tendto converge to fixed points
for input values other than the trained ones. This interpolation effect might be applied
to complex and smooth behaviour generation for neural network controlled robots.

N=2

N=6

N=12

N=33

0 2 4 6 8 10 12 14
0

0.5

1

Fig. 8. Dynamic behaviour of selected networks with different reservoir sizes (blue trajectories).
Shifting the dynamics of the networks by gradually changingthe first input value (red) from 1.0
to 0.0 and the second input (green) from 0.0 to 1.0 in 15 steps.Changing the input to the network
causes a slow morphing between the two learned patterns, allowing to generate new patterns that
were not explicitly trained. Especially the small networkskeep stable with no chaotic regions.
Larger networks tend to converge to fixed points for input values other than zero or one.

6 Conclusions

Using MO, good candidate network structures can be selectedas starting points for a
followup whole-network optimization and fine-tuning usinggenetic algorithms. Both
steps can be combined into a nested, hierarchical multi-objective optimization. The re-
sulting pareto front helps to identify small and sufficiently efficient networks that are
able to store multiple motor patterns in a single network. This distributed storage of
motor behaviours as attractor states in a single net is in contrast to earlier, local module
based approaches.”If sequences contain similarities and overlap, however, aconflict
arises in such earlier models between generalization and segmentation, induced by
this separated modular structure.”[3]. By choosing a feasible model capacity, over-
fitting and the risk of unwanted - possibly chaotic - attractor states is reduced. Also,
with the right choice of the network size, an interesting pattern interpolation effect can

70

be evoked. Instead of using a classic genetic algorithm for fine-tuning of the network
weights, new, very fast and powerful black box optimisationalgorithms [11] [12] could
further increase network performance and allow to find even smaller networks for bet-
ter generalisation. ESNs can be used for direct control tasks (see [13]) and scale well
with a high number of training patterns and motor outputs [14]. A more complex simu-
lation, for example of a humanoid robot, will show if direct,attractor-based storage of
parameterized motor patterns is flexible enough for complexbehaviour generation.

References

1. Tani, J., Itob, M., Sugitaa, Y.: Self-organization of distributedly represented multiple behav-
ior schemata in a mirror system: reviews of robot experiments using rnnpb. Neural Networks
17 (2004) 1273 – 1289

2. Haruno, M., Wolpert, D. M., Kawato, M.: Mosaic model for sensorimotor learning and
control. Neural Computation 13(10) (2001) 2201–2220

3. Yamashita, Y., Tani, J.: Emergence of functional hierarchy in a multiple timescale neural
network model: A humanoid robot experiment. PLoS Computational Biology 4 (11) (2008)

4. Werbos, P.: Backpropagation through time: what it does and how to do it. In: Proceedings
of the IEEE. Volume 78(10). (1990) 1550–1560

5. Jäger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy
in wireless communication. Science 304 (2004) 78 – 80

6. Jaeger, H.: Tutorial on training recurrent neural networks, covering bppt, rtrl, ekf and the
”‘echo state network”‘ approach. Technical Report GMD Report 159, German National
Research Center for Information Technology (2002)

7. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent nets: the
difficulty of learning long-term dependencies. In S. C. Kremer, J. F. K., ed.: A Field Guide
to Dynamical Recurrent Neural Networks. IEEE Press (2001)

8. Jaeger, H., Lukosevicius, M., Popovici, D., Siewert, U.:Optimization and applications of
echo state networks with leaky integrator neurons. Neural Networks 20(3) (2007) 335–352

9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast andelitist multiobjective genetic
algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6, No. 2 (2002) 182–
197

10. Pearlmutter, B. A.: Learning state space trajectories in recurrent neural networks. Neural
Computation 1 (1989) 263–269

11. Kramer, O.: Fast blackbox optimization: Iterated localsearch and the strategy of powell. In:
The 2009 International Conference on Genetic and Evolutionary Methods (GEM’09). (2009)
in press.

12. Vrugt, J. A., Robinson, B. A., Hyman, J. M.: Self-adaptive multimethod search for global
optimization in real-parameter spaces. Evolutionary Computation, IEEE Transactions on
13(2) (2008) 243–259

13. Krause, A. F., Bläsing, B., Dürr, V., Schack, T.: Direct Control of an Active Tactile Sen-
sor Using Echo State Networks. In: Human Centered Robot Systems. Cognition, Interac-
tion, Technology. Volume 6 of Cognitive Systems Monographs. Berlin Heidelberg: Springer-
Verlag (2009) 11–21

14. Jäger, H.: Generating exponentially many periodic attractors with linearly growing echo
state networks. technical report 3, IUB (2006)

71

Application of Self-organizing Maps in Functional
Magnetic Resonance Imaging

Anderson Campelo1, Valcir Farias1, Marcus Rocha1, Heliton Tavares1

and Antonio Pereira2

1 Programa de Pós-Graduação em Matemática e Estatı́stica
Universidade Federal do Pará, Belém, Brazil

campelo.ufpa@gmail.com, {valcir, mrocha, helinton}@ufpa.br
2 Univesidade Federal do Rio Grande do Norte, Natal, Brazil

squareshorts@gmail.com

Abstract. In the present work, we used Kohonen’s self-organizing map algo-
rithm (SOM) to analyze functional magnetic resonance imaging (fMRI) data. As
a first step to increase computational efficiency in data handling by the SOM al-
gorithm, we performed an entropy analysis on the input dataset. The resulting
map allowed us to define the pattern of active voxels correlated with auditory
stimulation in the data matrix. The validity of the algorithm was tested using both
real and simulated data.

1 Introduction

Functional magnetic resonance imaging (fMRI) is a non-invasive tool widely used for
studying the human brain in action. The fMRI has been appliedto cognitive studies
and also in a clinical setting to monitor tumour growth, pre-surgical mapping, and
to diagnose epilepsy, Alzheimer’s disease, etc [1]. The fMRI measurements are based
on blood-oxygen-level-dependent correlations (BOLD) [2],[3], with hemoglobin being
used as endogenous contrast agent, due to the magnetic properties of oxy-hemoglobin
(diamagnetic) and deoxy-hemoglobin (paramagnetic) [4].

The BOLD signal was obtained using two experimental paradigms. The first used a
blocked design, with the subject being exposed to alternating periods of stimulation and
rest. The event-related paradigm, on the other hand, required that the subject performs
a simple task, intercalated by long resting intervals.

A fMRI dataset consists of images in 3D space(x× y× z), with each image point,
named a voxel, changing a long time(t). Most fMRI analysis try to identify how signal
related to voxels in a region of interest (ROI) vary in time and to find out whether
these variations are somehow correlated with the stimulus.This analysis, however, is a
computational challenge due to the low signal to noise ratioin the BOLD response and
the usually large amount of data that needs to be processed. Many analytical methods
have been developed to deal with this complexity, some of them were created earlier to
analyze positron emission topography-generated signals (PET).

Most methods available in the literature use statistical techniques to identify active
regions, includingStudent’s t test [5], crossed correlation [6], and the general linear

model (GLM) [7]. These methods are based on the standard hemodynamic function,
which models the BOLD response in the brain. Other popular methods are independent
component analysis (ICA) [8], [9] and principal component analysis (PCA) [10].

Clustering techniques have also been used successfully, including K-means, fuzzy
cluster and hierarchical clustering. Clustering techniques are based on the similarity
observed in voxel’s time series. The present study uses the Kohonen’s self-organizing
maps algorithm (SOM) to analyse fMRI data. The SOM [11] is a type of clustering tech-
nique which transforms a signal input pattern of an arbitrary dimension into a discrete
map and implements transformations in a topologically organized way.

2 Material and Methods

2.1 Simulated Data

We simulated the fMRI experiment(64 × 64) depicted in Figure 1 with 120 slices by
convoluting a block-like stimulus function with the canonical hemodynamic response
function generated as a sum of two distribution functions [12]:

h(t) =

(

t

d

)a

exp

(

−(t− d1)

b

)

− c

(

t

d′

)a′

exp

(

−(t− d′)

b′

)

, (1)

with a = 6, a′ = 12, b = b′ = 0.9 andc = 0.35, having been determined experimen-
tally by Glover in 1999 with auditory stimulation [13].

Fig. 1. Diagram showing the spatial distribution of active voxels and their intensity along time in
simulated data.

The active area corresponds to 49 voxels, while 1349 voxels corresponded to the
remaining grey matter. The other 2698 voxels corresponded to the background and are
not time modulated. We added uniform Gaussian noise to reacha SNR of 2dB, which
was calculated with the following expression:

SNR= 10 log

(

σ2

S

σ2

R

)

, (2)

whereσ2

S2 andσ2

R are signal and noise variances, respectively.

73

2.2 Real Data

The fMRI experiment used a 1.5 T Siemens scanner (Magnetom Vision, Erlangen, Ger-
many), with the following parameters for EPI (echo-planar imaging) sequences: TE =
60 ms, TR = 4.6 s, FA = 90, FOV = 220 mm, and slice thickness of 6.25 mm. 64 cerebral
volumes with 16 slices each were acquired with a matrix dimension of128 × 128.

During the experimental procedure the subject received auditory stimulation in a
blocked design, with 5 stimulation blocks (27.5s each) intercalated with 6 resting blocks
(27.5 s each). During the task, the subject listened passively to a complex story with a
standard narrative structure. After, the test the subject had to inform to the experimenter
its comprehension of the story content.

Acquired images were preprocessed with the software SPM8 (Statistical Parametric
Mapping) in order to increase the signal-to-noise ratio (SNR) and to eliminate incident
noise associated with the hardware, involuntary movementsof the head, cardiac and
respiratory rhythms, etc.

2.3 Self-organizing Maps

fMRI data was analyzed with Kohonen’s SOMs using an implementation available in
the literature (see [14], [15], [16], [17], [18], [19]). Kohonen’s SOM is an artificial
neural network where neurons are disposed as a uni- or bi-dimensional grid layout. In a
bi-dimensional layout, geometriy is free and can be rectangular, hexagonal, triangular
etc. In a SOM, each neuron in a grid is represented by a probability distribution function
of the input data.

The SOM algorithm responsible for map formation begins initializing the grid neu-
rons weights with random values, which can be obtained from the input data. In the
present work we used a bidimensional grid of dimension10 × 10 (i = 100) [19]. Each
neuron in the grid is connected to every element of the input dataset, i.e., the dimension
of weightsmi is the same as the input dataset:

mi = [mi1,mi2, . . . ,min]T ∈ ℜ, (3)

wheren indicates the total amount of points available in the time series generated by
the fMRI experiment.

After each iterationt of the ANN, we selected randomly a vector from the input
dataset, given by:

xi = [x1, x2, . . . , xn]T ∈ ℜ, (4)

which indicates the time series of a given voxel from the fMRIdataset.
Then,x is compared to weightsmi in the grid using the minimun euclidean distance

as criteriom for choosing a winner in the ANN [15],[19]. Since the correlation distance
metric, however, seems to be a better method to discern similarities than conventional
Euclidean distance [16], the winner neuron is selected by:

mc = arg max
i

{corr(x(t),mi(t))}, (5)

with i = 1 . . . ,M whereM is the total number of neurons in the grid,mc(t) repre-
sents the time series of the winnerc and corr(x(t),mi(t)) is the correlation coefficient
betweenx(t) andmi(t).

74

The updating of the weight vectorm(t + 1) in time t + 1, with t = 0, 1, 2, . . . is
defined by:

mi(t+ 1) = mi(t) + hci(t)[x(t) − mi(t)], (6)

which is applied to every neuron on the grid that is within thetopological neighborhood-
kernelhci from the winner. Thus, Equation (6) has the goal of approximating the weight
vectormi of neuroni towards the input vector, following the degree of interation hci.
This approach transforms the grid, after training, in a topologically organized charac-
teristic map, in the sense that adjacent neurons tend to havesimilar weights.

A function frequently used to represent the topological neighborhood-kernelhci is
the Gaussian function, which is defined by:

hci(t) = α(t) exp

{

−‖rc − ri‖

2σ2(t)

}

, (7)

whereα(t) is the learning rate, which has to gradually decrease along time to avoid
that new data gathered after a long training session could compromise the knowledge
already sedimented in the ANN;rc andri determine the discrete position of neurons
c andi in the grid; andσ(t) defines the full-width at half-maximum (FWHM) of the
Gaussian kernel. Parametersσ(t) andα(t) gradually decrease byt/τ (τ is a time cons-
tant) after each iterationt, following an exponential decay.

2.4 Evaluating the SOM Quality

There are several mechanisms that can evaluate the quality of the generated map ob-
tained after the learning process. In the present work we used the quantization error:

Eq =
1

N

∑

‖x − mc‖
2. (8)

The quantization error is defined as the mean error corresponding to the difference
between each characteristic vectorx and the winner neuronmc, whereN is the total
number of patterns.

2.5 Analysis of Entropy

Some authors recommend the ad-hoc reduction of voxel samples to optimize the algo-
rithm implementation [20]. Thus, in order to improve analitical efficiency, only signals
originating from the brain were actually processed. Besides, we performed an entropy
analysis to each voxel of the characteristics set and eliminated all voxels with an en-
tropy level below an empirically determined threshold. TheShannon’s entropy, as well
as other techniques based on Information Theory, has provedto be satisfactory in fMRI
experiments [21].

The Shannon entropy of a random variableX with probability vector(p1, . . . , pn)
is defined by:

H(X) = −

n
∑

i=1

pi· log
2
pi, (9)

75

with H(X) being the entropy of variableX. The Shannon entropy [22] measures the
uncertainty present in any dataset and allows the comparison of its properties with other
datasets of similar dimensions, by representing the amountof information contained in
each as a probabilistic event.

To calculate the entropy, the time series of each voxel is divided into two levels of
intensity, then is calculated the probabilities of levels of intensity from the amount of
time points at each level. Finally, the entropy of each time series is calculated according
to Equation (9). The entropy of signals corresponding to non-active voxels tends to
have low value because of an irregular configuration of the signal. On the other hand,
the signal of a probable active voxel tends to present a high value of entropy, which is
associated with a wide distribution of probability.

3 Results

In this work, the configuration parameters of the SOM were initialized according to
previous studies [16],[19], both in real and simulated data. In Equation (7), the learning
rate was initialized asα(0) = 0.1 and the parameter effective width asσ(t) = 7. The
number of SOM iterations was regulated dinamically according to error stabilization
(Eq. 8).

3.1 Simulated Data

First, we calculate Shannon’s entropy for each voxel of the simulated data. The values
of entropy for the 1398 voxels contained in the interior of the artificial brain had varied
of 0.4949 to 1, where the 49 voxels with activation signal hadpresented one high value
of entropy (Figure 2a). After that, about6% of 1398 voxels were eliminated from the
input data of SOM, these voxels had presented a value of entropy H < 0.85 (Figure
2b).

Fig. 2. (a) Entropic map of the artificial data; (b) Entropic analysis of synthetic data. The dark
dots in the image were eliminated, the equivalent of6% of the input data.

76

From the final conformation of the neuronal grid achieved after 100 algorithm itera-
tions (Figure 3), we can observe that voxels with similar temporal patterns are clustered
together in the SOM.

Fig. 3. 10×10 grid of neurons after implementation of the SOM algorithm, the cluster of neurons
in yellow match the patterns of activity.

For better visualization of these clusters, there are several clustering methods that
can be used, such as K-means [23], fuzzy logic [24] and correlation as a measure of
similarity in a hierarchical clustering [16]. We use this last reference utilizing a simple
correlation as a measure of similarity between neurons in the grid.

Figure 4 shows the active regions defined using the average signal from the neurons
demarcated in the Figure 3. A correlation coefficient (CC) was determined between this
average and each voxel in a fMRI dataset, showing only those with CC> 0.7056.

Fig. 4. The dark regions in the brain correspond to active regions asdefined by the SOM after
100 iterations.

77

3.2 Real Data

The same analytical procedure used for simulated data was used to deal with real data.
However, we adopted the quantization error (Eq. 8) to estimate the amount of steps of
the algorithm and also act as quality controller of learning. Figure 5 shows the evolution
of error to each 10 iterations, using normalized data. But even if the error has begun to
stabilize at around 100 repetitions, the training is continued until 250 iterations in order
to perform a fine tuning of the map features and thus produce a statistically accurate
quantization of the input space. Analyzing the same figure, it is possible verify that the
magnitude of error for the case where it was applied to analyze the entropic prior to
SOM (Fig. 5a) presents lower, also have begun to stabilize somewhat earlier than the
case where not used the Shannon’s entropy (Fig. 5b).

Fig. 5. Graph of the quantization error for a total of 250 iterations. (a) quantization error with the
application of entropy; (b) quantization error without entropy.

Figure 6 reveals the active voxels, according to our method,in the eighth slice of
fMRI data CC> 0.6. In it you can see two main regions as a result of the auditory task
located in the temporal lobe.

78

Fig. 6. Active regions correlated with the auditory stimulation defined after 250 iterations with
the SOM.

4 Conclusions

The Kohonen’s self-organizing map was applied in data of functional magnetic reso-
nance in synthetic and real models, this last one representing an auditory experiment
with the paradigm in block. With the purpose of increasing the efficiency of the analy-
sis method was proposed to Shannon’s entropy, which eliminated a range of5 − 10%
of the set of input data. The configuration of the data after the entropy analysis allowed
more likely to find groups of neurons active in the SOM grid with a smaller number of
iterations. Moreover, in the temporal evolution of the quantization error of the SOM, it
can be verified that entropy analysis decreased the amplitude of this error and admitted
his slightly faster stabilization. The results of SOM, bothfor simulated data, as for real
data, reaffirmed that it can be used as a tool for interpretation of fMRI data. And it has
the advantage that the shaped of the hemodynamic response isnot considered, that is, a
HRF modeled mathematically is not used.

References

1. Fontoura, D. R., Ans, M., Costa, J. C., Portuguez, M. W.: Identifying language cerebral func-
tions: a study of functional magnetic resonance imaging in patients with refractory temporal
lobe epilepsy. Journal of Epilepsy and Clinical Neurophysiology, 14(1) (2008) 7-10.

2. Ogawa, S., Lee, T. M., Kay, A. R., and Tank, D. W.: Brain magnetic resonance imaging with
contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences
of USA, 87 (1990) 9868-9872.

3. Thulborn, K, R., Waterton, J. C., Matthews, P. M., and Radda, G. K.: Oxygenation depen-
dence of the tranverse relaxation time of water protons in whole blood at high field. Biochim-
ica et Biophysica Acta, 714 (1982) 265-270.

4. Pauling, L. and Coryell, C.: The magnetic properties and structure of hemoglobin, oxyhe-
moglobin, and carbon monoxyhemoglobin. Proceedings of theNational Academy of Sci-
ences of USA, 22 (1936) 210-216.

5. Huettel S. A., Song A. W., and McCarthy G.: Functional Magnetic Resonance Imaging.
Sinauer Associates, 1st edition (2004).

79

6. Rabe-Hesketh, S., Bullmore, E., and Brammer, M.: The analysis of functional magnetic res-
onance images. Stat. Methods Med. Res. 6 (1997) 215-237.

7. Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D., and Frackowiak, R. S.
J.: Statistical parametric maps in functional imaging: A general linear approach. Hum. Brain
Mapping 2 (1995) 189-210.

8. McKeown, M.J., Makeig, S., Brown, G. G., Jung, T. P., Kindermann, S. S., Bell, A. J., and
Sejnowski, T. J.: Analysis of fMRI data by blind separation into independent spatial compo-
nents. Human Brain Mapping, 6 (1998) 160-168.

9. Biswal, B. B., and Ulmer J. L.: Blind source separation of multiple signal sources of fMRI
data sets using independent component analysis. Journal ofComputer Assisted Tomography,
23 (1999) 265-271.k

10. Friston, K. J., Frith, C. D., Liddle, P. F., and Frackowiak, R. S. J.: Functional connectivity:
the principal component analysis of large (PET) datasets. Journal of Cerebral Blood Flow
and Metabolism, 13 (1993) 5-14.

11. Kohonen T.: Self-organized formation of topologicallycorrect feature maps. Biol. Cybernet.
Vol. 43 (1982) 59-69.

12. Friston, K. J., Fletcher, P., Josephs, O. Holmes, A., Rugg, M. D., and Turner, R.: Event-
related fMRI: Characterizing differential responses. NeuroImage, 7 (1998) 30-40.

13. Glover, G. H.: Deconvolution of impulse response in event-related BOLD fMRI. NeuroIm-
age, 9 (1999) 416-429.

14. Chuang K. H., Chiu M. J., Lin C. C., and Chen J. H.: Model-Free functional MRI analysis
using Kohonen clustering neural network and fuzzy C-means.IEEE Transactions on Medical
Imaging, Vol. 18 (1999) 1117-1128.

15. Fischer, H. and Hennig J.: Neural network-nased analysis of MR time series. Magnetic Res-
onance in Medicine, Vol. 41 (1999) 124-131.

16. Liao, W., Chen, H., Yang, Q., Lei, X.: Analysis of fMRI Data Using Improved Self-
Organizing Mapping and Spatio-Temporal Metric Hierarchical Clustering. IEEE Transac-
tions on Medical Imaging, Vol. 27 (2008) 1472-1483.

17. Ngan, S. C. and Hu X.: Analysis of functional magnetic resonance imaging data using self-
organizing mapping with spatial connectivity. Magnetic Resonance in Medicine, vol. 41
(1999) 939-946.

18. Ngan, S. C., Yacoub E. S., Auffernann W. F, and Hu X.: Node merging in Kohonen’s self-
organizing mapping of fMRI data. Artificial Intelligence inMedicine, vol. 25 (2001) 19-33.

19. Peltier, S. J., Polk T. A., Noll D.C.: Detecting low-frequency functional connectivity in fMRI
using a self-organizing map (SOM) algorithm. Hum. Brain Mapp., vol. 20 (2003) 220-226

20. Gibbons, R. D., Lazar, N. A., Bhaumik, D. K., Sclove, S. L., Chen, H. Y., Thulborn, K. R.,
Sweeney, J. A., Hur, K., and Patterson, D.: Estimation and classification of fMRI hemody-
namic response patterns. NeuroImage, 22 (2004) 804-814.

21. de Araujo, D. B., Tedeschi, W., Santos, A. C., Elias, J. Jr., Neves, U. P., Baffa, O.: Shannon
entropy applied to the analysis of event-related fMRI time series. Neuroimage, 20(1) (2003)
311-317.

22. Shannon, C. E.: A mathematical theory of communication.Bell system technical journal 27
(1948) 379-423, 623-656.

23. Goutte, C., Toft, P., Rostrup, E., Nielsen F., A., and Hansen, L. K.: On clustering fMRI time
series. NeuroImage, Vol. 9 (1999) 298-310.

24. Wismuller A., Meyer-Base, A., Lange O., Auer D., Reiser,M. F., and Sumners, DeWitt.:
Model-free functional MRI analysis based on unsupervised clustering. Journal of Biomedical
Informatics 37, (2004) 10-18.

80

Neural Networks with AR Model Coefficients Applied to
the EMG Signal Classification

Marek Kurzynski and Andrzej Wolczowski

Wroclaw University of Technology, Dept. of Systems and Computer Networks
Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
{path, marek.kurzynski}@pwr.wroc.pl

Abstract. The paper presents a concept of hand movements recognition on the
basis of EMG signal analysis. Signal features are represented by coefficient of
autoregressive (AR) model, and as classifier the MLP and Adaline networks
are applied. The performance of the proposed method was experimentally com-
pared against four different classifiers using real datasets. The systems developed
achieved the highest overall classification accuracies demonstrating the potential
of neural network classifiers based on AR coefficients for recognition of EMG
signals.

1 Introduction

The activity of human organism is reflected in characteristic biosignals, which can be
measured and next can be applied to the control of the work of technical devices. Elec-
trical potentials accompanying skeleton muscles (called EMG signals) are an example
of such biosignals. They can be detected and registered through the skin and used to the
control of bio-prosthesis.

Although in the last decade many attempts have been made to determine the hand
movements on the base of EMG signal analysis ([5, 10, 11, 13]), the reliable recognition
of kind of grasp is still a hard problem. The difficulty increases along with the prosthesis
dexterity (prosthesis movement repertoire), therefore it is still a need for research in
developing EMG signal recognition.

The paper presents a concept of recognition of hand movements (type of grasp) on
the base of EMG signal analysis. Signal features are represented by autoregressive (AR)
model coefficients, and as classifier the MLP and Adaline network are applied.

The performances of proposed classification systems were compared against four
(statistical (Bayes, kernel), fuzzy and k-nearest neighbours) classifiers using real datasets.
For the purpose of experimental investigations a special measurement stand was elabo-
rated which allow us synchronous recording the image of the moving hand and multi-
channel registration of EMG signals.

The paper is divided into three sections and organized as follows. In section 2 we
provide an insight into the analysis of EMG signals which is the basis for the recognition
of grasps. In Section 3 computer experiments on real data are described and their results
are discussed.

2 EMG Signal Analysis

The recognition of hand movement on the basis of the myopotentials comprises three
stages [13]: (1) the acquisition of the EMG signal; (2) extraction of the features differ-
entiating the movements; (3) classification of the signal.

Each stage has an influence on the quality of the whole process, i.e. reliability of
the grasping movement recognition.

2.1 EMG Signal Acquisition – the Measurement Stand

The block diagram of the designed measurement stand for EMG signal acquisition
and identification of the relation between the hand movement and simultaneously cre-
ated myopotentials, is presented in Fig. 1. The stand includes: (1) a video camera for
recording the image of the moving hand; (2) specially designed 8-channel EMG sig-
nals measuring circuit (Bagnoli Desktop EMG System, DelSys); (3) the PC computer
recording the results of the acquisition, equipped with high fidelity measurement board,
containing 8 independent A/D converters (24 bits per channel) and USB port for USB
video camera; (4) an application for synchronous recording of the video and EMG data
streams and their analysis.

Fig. 1. The measurement system for identifying the relation between the hand movement and
EMG signals.

2.2 Features Extraction

The extraction of features consists in determining such parameters that best differentiate
the received signals for the sake of movement recognition. The extraction of features
can be accomplished using various techniques including signal amplitude, EMG fre-
quency characteristic and power spectrum analyzed by fast Fourier transform (FFT)
method [6], the integral of the absolute value (IAV) and zero crossing signal [6, 7], time
and frequency histograms [11], among others. In this paper it is proposed an efficient
method to determine the input features based on autoregressive (AR) model.

The AR model belong to a group of linear prediction methods that attempt to predict
an value yn of a time series of data {yn} based on the previous values (yn−1, yn−2, . . .).

82

Deriving the linear prediction model involves determining the coeffiecients (a1, a2, . . . , ap)
in the equation:

ŷn =
p∑

k=1

akyn−k, (1)

where ŷn is the estimated value of signal in a time n, ak are the AR coefficients and p
is the order of AR model.

Several estimators of AR coefficients are well known in the field of signal process-
ing. We chose the Burg algorithm because of its many remarkable advantages (it does
not apply window data, minimizes forward and backward prediction errors, gives high
resolution for short data records, always produces a stable model) [9]. The Burg algo-
rithm estimates the AR coefficients by fitting an autoregressive linear prediction filter
model of a given order to the signal. Consequently, the Burg algorithm determines for
each channel the set of p AR coefficients, which create the feature vector describing the
EMG signal (r is the number of channels):

x = [a11, a12, . . . , a1p, a21, a22, . . . , a2p, . . . , ar1, ar1, . . . , arp]. (2)

2.3 Classification

Two types of artificial feedforward neural networks were used in this study for classifi-
cation of EMG signal: multilayer perceptron (MLP) and Adaline network.

1. The MLP Classifier (MLP). The network consists of the input, hidden, and output
neuron layers. The input layer plays the role of a data buffer so that the data are
normalized to belong to the [0, 1] range. There have been various numbers of input
and hidden layer neurons, depending on the actual quantities of data. The number
of output layer neurons is equal to the number of classes (types of grasps). The final
classification is made according to the maximum rule. Both the hidden and output
layer neurons have the sigmoid transition function. Neurons of the successive layers
are connected on the each-to-each basis. In the experiments, the corresponding lay-
ers were trained by means of the error back propagation method with momentum
term.

2. The Adaline Classifier (ADA). The single layer neural network that contains neu-
rons with (positive) linear transfer functions. As previously, the number of neurons
is equal to the number of classes and the final classification is made according to
the maximum rule. In the experiments the Adaline network was trained by Widrow
and Hoff learning procedure, also known as the delta rule.

3 Experiments

The proposed methods of EMG signal classification based on ANN techniques were
experimentally tested and their performances were compared against the four following
pattern recognition techniques: (1) Naive Bayes method (NB) [4]; (2) Parzen classifier
with the Gaussian kernel and the optimal smoothing parameter (PAR) [4]; (3) 5-nearest
neighbours classifier (5-NN) [4] and (4) classifier based on fuzzy relations (FR) [13].

83

3.1 Experimental Setup

The experiments were carried out on healthy persons. The electrodes, connected to
the respective measuring channels, were put over the following forearm muscles: (1)
the extensor muscle of the fingers, (2) the radial extensor of the wrist, short, (3) the
superficial flexor muscle of the fingers, (4) the ulnar flexor muscle of the wrist, (5) the
extensor muscle of the thumb, short, and (6) the flexor muscle of the thumb, long (see
Fig. 2).

The experiments were conducted in MATLAB using PRTools and NN Toolbox.

Fig. 2. The layout of the electrodes on the forearm.

In experiments five different types of grasps (classes) presented in Fig. 3 were cho-
sen for recognition from the set defined by Schlesinger ([8]): 1) palmar, 2) tip, 3-4)
cylindrical and cylindrical tight, 5) spherical. Our choice is deliberate one and results
from the fact that the control functions of simple bioprosthesis are hand closing/opening
and wrist pronantion/supination, however for the dexterous hand these functions differ
depending on grasped object [2].

1 2 3-4 5

Fig. 3. Types of grasps recognized in experiment.

Each measurement lasted 2.5 s and was preceded with a 10 s break. In that way for
the single grasp movements the discrete signals were obtained each of a size of 2500
samples (1 kHz sampling frequency) × 6 channels, together with the video sequences
related to them, that picture the movement types (classes). The 300 measurements (60
measurements for each grasp type (class)) were created, and next gathered EMG signals
were subjected to the feature extraction procedure for different orders of AR model p
equal to 2, 3, 5, 7 and 10. Consequently, we got 5 datasets, each containing 300 pat-
terns described by 12, 18, 30, 42 and 60 features, respectively. The training and testing
datasets were extracted from each dataset using two-fold cross-validation method.

84

The ADA classifier comprised 5 neurons which inputs number was equal to the
number of features (different for each dataset). Similarly, the MLP classifier comprises
5 neurons in the output layer and the number of input neurons (hidden neurons) was
equal to 12 (8), 18 (10), 30 (15), 42 (20) and 60 (30) for the successive datasets, respec-
tively. The number of epochs in the learning procedure for the both ANN classifiers was
equal to 200.

3.2 Results and Discussion

Classification accuracies (i.e. the percentage of correctly classified objects) for meth-
ods tested are listed in Table 1. The accuracies are average values obtained over 10 runs
(5 replications of two-fold cross validation). Statistical differences between the perfor-
mances of the ADA, MLP classification methods and the four classifiers were evaluated
using Dietterich’s 5x2cv test [3]. The level of p < 0.05 was considered statistically sig-
nificant. In Table 1, statistically significant differences are given under the classification
accuracies as indices of the method evaluated, e.g. for the dataset with p = 5 the MLP
classifier produced statistically different classification accuracies from the NB, 5-NN
and FR methods. The row ”‘Mean”’ contains results averaged over all datasets.

Table 1. Classification accuracies of classifiers compared in the experiment (description in the
text). The best score for each dataset is highlighted.

Classifier / Mean (SD) accuracy [%]
AR order NB1 PAR2 5-NN3 FR4 ADA MLP
p = 2 73.2(5.2) 82.8(2.8) 86.5(4.2) 72.4(6.3) 84.2(3.1) 87.7(2.2)

1,4 1,2,4

p = 3 79.3(4.6) 90.2(1.9) 94.2(1.6) 80.6(2.4) 91.0(1.3) 93.6(1.2)
1,4 1,2,4

p = 5 81.5(2.2) 97.6(0.3) 85.3(1.4) 83.5(3.6) 94.8(1.1) 97.4(0.6)
1,4 1,3,4

p = 7 80.4(2.5) 98.2(0.7) 95.8(0.9) 87.2(1.3) 98.3(0.2) 100 (0.0)
1,3,4 1,3,4

p = 10 82.7(2.3) 98.1(0.5) 96.9(0.4) 91.5(1.2) 100(0.0) 100(0.0)
1,2,3,4 1,2,3,4

Mean 79.4(3.4) 93.4(1.2) 93.8(1.7) 83.0(2.9) 93.7(1.1) 95.7(0.8)
1,4 1,2,3,4

The MLP classifier achieved the highest overall classification accuracy averaged
over all datasets – it outperformed the NB, PAR, 3-NN and FR classifiers by 16.3%,
2.3 %, 1.9% and 12.7% on average, respectively. The ADA neural network that was
the third best-scoring classifier, outperformed the NB, PAR and FR systems by 14.3%,
0.3% and 10.7% on average, respectively. The both ANN-based classifiers produced
statistically significant higher scores in 29 out of 40 cases (5 datasets × 4 classifiers
× 2 systems developed). The ADA and MLP classifiers also achieved the highest clas-
sification accuracy (i.e. 100%) when the datasets with 42 and 60 features were used.

85

Furthermore, they produced the best stability (the SD values of 1.1% and 0.8% aver-
aged over all datasets), followed by the PAR classifier (1.2%). Results obtained indicate,
that proposed methods of grasping movement recognition based on the AR model as an
EMG signal feature extraction procedure, produced accurate and reliable decisions, es-
pecially in the cases with greater number of features.

References

1. Boostani R., Moradi M., Evaluation of the forearm EMG signal features for the control of a
prosthetic hand, Physiological Measurement 24 (2003), 309-319

2. De Luca C., J., Adam R., et al., Decomposition of surface EMG signals, Journal of Neu-
ropsychology 96, (2006) 1646-1657

3. Dietterich T.G., Approximate statistical tests for comparing supervised classification learn-
ing algorithms, Neural Computing 10 (1998) 1895-1923

4. Duda R., Hart P., Stork D., Pattern Classification, John Wiley (2000)
5. Ferguson S., Dunlop G., Grasp recognition from myoelectric signals, Proc. 2002 Aus-

tralasian Conference on Robotics and Automation (2002) 83-87
6. Kuribayachi K., Okimura K. and Taniquichi T., A discrimination system using neural net-

work for EMG-controlled prostheses, Proc. Int. Conf. IEEE Robot and Human Communica-
tion (1992) 63-68

7. Khoshaba T., Badie K., and Hashemi R., EMG pattern classification based on back propaga-
tion neural network for prosthesis control, Proc. Ann. Int. Conf. IEEE Eng. Med. Biol. Soc.
(1990) 1474-1475

8. Reaz M., Hussain M., Techniques of EMG signal analysis: detection, processing, classifica-
tion and applications, Biological Procedures Online 8 (2006) 11-35

9. Schloegl A., A comparison of multivariate autoregressive estimators, Signal Processing 9
(2006) 2426-2429

10. Wang, G., Zhiguo, Y., Xiao, H., et al., Classification of surface EMG signals using harmonic
wavelet packet transform, Physiol. Measurement 27 (2006) 1255-1267

11. Wojtczak P., Amaral T., Dias O., Hand movement recognition based on biosignal analysis,
Engineering Applications of Artificial Intelligence 22 (2009) 608-615

12. Wolczowski A., Krysztoforski K., Control-measurement circuit of myoelectric prosthesis
hand, Acta Bioengineering and Biomechanics 4 (Suppl.) (2002) 576-578

13. Wolczowski A., Kurzynski M., Human-machine interface in bioprosthesis control using
EMG signal classification, Expert Systems 27, (2010) 53-70

86

SPIDAR Calibration based on Neural Networks
versus Optical Tracking

Pierre Boudoin, Hichem Maaref, Samir Otmane and Malik Mallem

Laboratoire IBISC, Université d’Evry, Evry, France
{pierre.boudoin, hichem.maareef, samir.otmane

malik.mallem}@ibisc.fr

Abstract. This paper aims to present all the study done on the SPIDAR tracking
and haptic device, in order to improve accuracy on the given position. Firstly we
proposed a new semi-automatic initialization technique for this device using an
optical tracking system. We also propose an innovative way to perfom calibration
of 3D tracking device using virtual reality. Then, we used a two-layered feed-
forward neural network to reduce the location errors. We obtained very good
results with this calibration, since we reduced the mean error by more than 50%.

1 Introduction

Virtual reality is a domain which is highly dependent on tracking systems. Users in-
teract in 3 dimensions, with virtual entities in digital environments. In order to provide
the best user experience, it’s very important that 3D interaction has to be without any
interruption. This interaction relies on the transformation of a real movement into an
action in the virtual world. This work is done by a tracking solution. This tracking sys-
tem has to be reliable and the most available as possible. This point is crucial in order to
preserve data continuity and, so, data processing continuity and finally, 3D interaction
continuity. The main device used in our system is an optical tracking solution, it’s a
very accurate device. On the other hand, it suffers from a huge defect: tracking-loss.
That’s a particular true defect when only one marker is used. So, it’s essential to be
able to switch to another device in these situations in order to compensate this defect.
In our virtual reality system, we’ve got a SPIDAR [1] and we chose it to stand in for the
optical tracking system.

SPIDAR [1], for SPace Interaction Device for Augmented Reality, is an electrome-
chanical device, which has 8 couples of motor/encoder distributed on each vertex of a
cubic structure. A string is attached to each motor via a pulley. These 8 strings converges
to an effector. By winding their respective strings, each motor produces a tension. The
vectorial sum of these tensions produce the force feedback vector to be applied on the
effector, allowing the user to feel on what he is stumbling or to feel the weight of an ob-
ject. By observing the encoders values, the system can compute the 3D position of the
effector. The SPIDAR tracking is always available, but it suffers from a weak accuracy
and repeatability. So it’s impossible, when we want to 3D interact with accuracy, to use
raw position given by the SPIDAR without performing a calibration.

In our case, it’s a huge problem, since we used a 3D interaction technique, called
Fly Over [2], which needs a continuous position vector. This technique is based on

different interaction areas offering to the user a continuity in the interaction. Indeed,
the least jump of position during the swing of a system, would be likely to pass the
pointer of Fly-Over of a zone of interaction towards another. This phenomenon involves
a behavior of the technique thus, not wished by the user and creating consequently a
rupture of the continuity of the 3D interaction. Thus, it’s important to propose measures
in order to consider the position given by the SPIDAR so that it is closest to the position
given by the optical tracking system, and so, minimizing effects on the 3D interaction.

This research work is presented as follow. First, we talk about similar works on
virtual reality devices calibration and correction. Then, we introduce our contribution
on a new SPIDAR calibration method using multimodal informations. After that, we
speak about the correction of the SPIDAR position using neural networks. Finally, we
discuss about a hybrid tracking system based on a SPIDAR and an optical tracking
solution.

2 Related Work

Since virtual reality systems use more and more devices, especially tracking devices,
it’s important to perform a good calibration of them. But not all tracking devices need
a huge correction, thus infrared based optical tracking devices are accurate enough and
so don’t need to be corrected. On the other hand, it exists some mechanical, electrome-
chanical or electromagnetic tracking devices which need to be calibrated and/or cor-
rected.

Most of research works has been realized on the electromagnetic tracking devices
because they suffers from electromagnetic distortions when magnetical materials are
placed into the tracking range. Moreover, the tracking accuracy falls off rapidly de-
pending on the distance from the emitter and the power of the emitter [3]. These effects
induce non-linear errors on the location. In order to correct them, it exists different
ways.

The easiest method is the linear interpolation [4] but it doesn’t correct non-linear
systems, so it’s very limited. Polynomial fitting [5, 6] allows to correct non-linear er-
rors. But depending on the number of coefficients, it could be very difficult using this
method in near realtime conditions because it will produce a heavy load for the system.
Moreover if the number of coefficient is too important, oscillations can appear, increas-
ing errors rather than decreasing them. Moreover, these techniques often fail to capture
small details in the correction. They are better in determining the overall shape of a
non-linear function. Kindratenko [7] and Saleh [8] worked on a neural network based
calibration of electromagnetic tracking systems and they obtained good results, better
than with other methods.

But all these techniques are based on interpolation and they need a valid set of data
to be effective. This set of data highly is often given by a calibration grid. A calibration
grid is a representation of a set of points. All these point have a known position and can
be compared with the position given by the device that we want to calibrate. But when
we’re working in 3D space, it’s very difficult to make use of it because it’s difficult to
place accurately a device on a 3D points. In order to realize that we can use another

88

mechanical device, such a robot arm or a haptic arm [9]. Or we can place accurately
passive sensors respecting a geometrical shape [10].

Our research work reaches these studies because the SPIDAR suffers from same
non-linear distortions and 3D calibration problematic. So, we search solutions in the
same direction.

3 Identification of the SPIDAR

3.1 Context

In order to preserve the data continuity, it is essential to correct a well-known prob-
lem appearing with tracking systems: data loss. Data loss appears when the tracking is
unable to update the position calculation, conducting to a jump in the data when the sys-
tem is re-enable to update the position. This phenomena is often mislead by occultation,
especially in optical tracking system. A data loss can be managed by three methods:

1. Prediction: We can predict the following data state by knowing the previous data
state through mathematical method , such Kalman filter.

2. Compensation: A device tracking loss, don’t forbid us to use another device. It’s
very important in this case that the data incoming from the different devices to be
expressed in the same space representation (same referential). This is necessary in
order to obtain a data continuity when the system switch from one device to another.

3. Correction: The last possibility is to correct data incoming from the most available
device, in our case the SPIDAR. To perform the correction, we could use the a priori
knowledge on the SPIDAR position through another device.

3.2 Design Problems

Guide

Pulley

Encoder
Motor

Fig. 1. Detailled view of a SPIDAR’s motor and its winding guide.

89

SPIDAR is an electromechanical device and consequently it could suffer from de-
sign problems more or less awkward for computing the effector’s position. These are
problems we have identified:

1. Encoders are Directly Mounted on the Motor’s Axis.
This is an important problem because we must define the pulley’s diameter in the
configuration file of the SPIDAR’s interface. However, this diameter is not constant,
depending on the quantity of string winded. So, this information is skewed.

2. Diameter of Pulleys is too Small.
The previous problem become more marked due to the small diameter of the pulley
used. Thus, the diameter being too small, it variates noticeably as strings being
winded go along. This phenomena would be less marked if the diameter used was
more important.

3. Winding Guides Badly Designed.
The present design of the winding guides, don’t prevent a string from missing the
pulley. This phenomena appears when the effector is being moved fast and con-
sequently, that motors have to wind an important quantity of string. This is a real
problem, because the encoder count one revolution but the string doesn’t be winded.

4. Size of Encoders. Encoders’ size is too small for counting the string quantity which
must be winded. When an encoder overflows, the counter is reseted and the winded
string quantity information is biased.

5. Dimensions of the SPIDAR. More dimensions are important and more every prob-
lem cited previously is marked. Some problems that are inconsiderable when di-
mensions are small, become not inconsiderable when dimensions are huge.

3.3 Experimental Protocol

Fig. 2. On the left - A user using our virtual calibration grid in order to retrieve data for the neural
network learning. On the right - Detailed representation of the virtual calibration grid.

We use what we called: a virtual calibration grid (see fig.2), which consists in the rep-
resentation of a virtual scene, composed of many small cubes. Each cube corresponds

90

to a sub-space of the SPIDAR workspace. This set of small cubes covers the whole SP-
IDAR workspace. We recorded values, respecting this protocol in a workspace limited
to 1 m3 split into 4096 sub-spaces (16 x 16 x 16). The great advantage of this protocol
is the homogeneity distribution of the data set.

The use of virtual reality for calibration allows more flexibility and less complexity
because we don’t have to move the SPIDAR effector with constraints or to place the
effector with a great accuracy on a set of calibration point.

This calibration grid, is represented Fig.2. We can identify the SPIDAR’s problem
with it, following these steps:

1. The user move the real effector (which is in his hand) in order to place the virtual
effector (which is a red sphere in the virtual scene) in each cube represented.

2. Each time the virtual effector is in collision with a cube, we record the position
given by the SPIDAR and the position given by the optical tracking.

3. Once these positions is recorded the cube disappears insuring that there will be only
one point for this sub-space.

3.4 Results

−500

0

500

−500

0

500

1000
1000

1200

1400

1600

1800

2000

X (mm)

Absolute error space distribution

Y (mm)

Z
(m

m
)

 0 mm

 16 mm

 31 mm

 47 mm

 62 mm

 78 mm

 93 mm

 109 mm

 124 mm

 140 mm

Fig. 3. Absolute error 3D distribution in the SPIDAR’s workspace (Dark green is the best).

Figure 3 represents errors’ space distribution. As we can see this is a onion skin dis-
tribution, meaning different spherical layers, the absolute error growing as the effector
is going in outside layers. This identification of the SPIDAR leads us to these observa-
tions:

91

- Firstly, the mechanical study tells us that too many design problems
- Moreover, it’s hard to quantify the final effect of these mechanical problems.
- Another problem, is the loss of knowledge towards the mathematical model used

by the SPIDAR to compute the effector’s position.

Finally, the SPIDAR suffers from a set of problems, which have more or less known
causes and for which we don’t know very well the influence on the whole system. In
order to enhance the SPIDAR’s accuracy, it could be interesting to orient ourself to
a solution capable of estimating/correcting the effector’s position without any knowl-
edge on the mathematical model. We choose to test that way using neural networks for
their capacities to learn a situation and to model any continuous mathematical function
without any information on the model.

4 Multimodal Initialization of SPIDAR

4.1 Context

The SPIDAR is a device which needs an initialization at each startup. Initialization
consists to define the origin of the referential in which 3D position will be expressed.
We realize this task by placing the SPIDAR’s effector in the center of its cubic structure
with the greatest accuracy. A worse initialization brings about a decline in accuracy
for the 3D position. Moreover, if the initialization is not identical at each startup, the
new referential won’t be the same and consequently prevent us from applying a data-
processing for correcting the SPIDAR’s position. So, it’s very important to realize this
initialization with a great attention. But, it’s very difficult to hand-place the effector in
the center of the SPIDAR structure with accuracy, due to the lack of markers to estimate
this.

4.2 Proposition

Our contribution brings a semi-automatic SPIDAR initialization. This initialization use
multi-modality in order to guide the user. These modalities are vision, audio and haptic.
In order to carry out the more accurate initialization, we need to determine the initial-
ization point in space with great accuracy. To realize that, our idea is to use the optical
tracking system we have on our VR platform (and in most common VR platform). This
tracking system offers a lower than 1 mm precision.

The geometrical disposition of IR cameras are known and the origin of the optical
tracking system too. We also know the theoretical initialization point of the SPIDAR.
Thus, we could determine the theoretical initialization point within the optical tracking
referential. In order to know the position of the effector in the optical tracking space, we
put an optical marker on it. Thus, if we compute the vector defined by the initialization
point and the position of the effector, we could get the distance from the initialization
point and the direction needed in order to converge to it.

92

Optical tracking system

−→
V

Automatic
initialization area

Piloted
initialization area

RSPIDAR

x
y

z

RSPIDAR

RART

x
yz

SP
ID

AR

Fig. 4. Initialization areas and experimental framework.

4.3 Multimodal Parameters

In order to guide the user in the initialization step, we firstly need to convert these
information into multimodal parameters. So we define a h function, returning an index,
expressing the distance from the initialization point d. More h(d) tends to 1, more the
effector is near from the initialization point. In the opposite way, more h(d) tends to 0
and more the effector moves away from the initialization point.

h(d) =
{
h(d) = 0 if d > dmin (1)

With:

d, the distance in millimeter between the effector and the initialization point.
dmin, the minimal distance in millimeter from which h(d) begins fluctuating, else
h(x) is equal to 0.

In the following part, we define multimodal parameters that help the user to perform a
good initialization.

– Sound Modality. Beep frequency f depends on the distance d.{
f(d) = d · 1000 if d ≤ 1000
f(d) = 1 if d > 1000 (2)

– Haptic Feedback Modality. The direction vector is transformed into a force feed-
back vector to be applied on the effector by this equation.

−→
F = −→∆ · s(d/df) · FMax (3)

With:

93

s(x), the sigmoid function regulating the force applied to the effector.

s(x) = e−10(‖x‖−0.5)2 if x ∈ [−0.5; 0.5] (4)

∆, the unit vector defining the direction to the initialization point. It’s computed
from the normalization of vector −→V :

−→
∆ =

1
‖−→V ‖

· −→V (5)

FMax, the maximum force to be applied on the effector.

4.4 Initialization Algorithm

Start

SPIDAR initialization

Retrieving optical
tracking position

Optical tracking
position

= Calibration point

±�

Computing force to
converge to the
calibration point

No

Defining new referential
for SPIDAR

Yes

Fig. 5. SPIDAR initialization process algorithm.

Initialization process is done in two steps. A first initialization allows the user to
place the effector in a area near from the initialization point with a 1 or 2 cm accu-
racy. We can’t decrease below this distance using directly the SPIDAR’s force feedback
capabilities because it is not enough sensitive for moving the effector on small dis-
tances. In order to get a more accurate initialization, we need to add another step to the
initialization process. Using the different modalities previously cited, the user’s hand,
holding the effector, will be guided to converge to the initialization point with a 1.2mm
accuracy.

94

5 Calibrating the SPIDAR with Neural Network

5.1 Configuration & Learning

We used a two-layered neural network, the first layer having a sigmoid activation func-
tion and the second a linear one. It’s a feed-forward back-propagation network using
the Levenberg-Marquardt learning algorithm [11]. The mean quadratic error is used as
performance function.

For the learning step, we use the SPIDAR’s position vectors in input and the optical
tracking’s position vectors in output because this is what we want in theory. However,
the whole vectors aren’t used, only data where the two tracking systems are available
has been used for the learning. It’s important for the learning step to remove data which
would decrease the neural network performances. Data income from the experimental
protocol described previously. So we obtain 4096 measure points. This data set has been
split into 3 sub-sets.

- 60% of data are used for the learning algorithm.
- 20% of data are used for the validation step, in order to prevent over-fitting phe-

nomenon.
- 20% of data are used to perform a generalization, that is the observation of the

neural network’s response to the introduction of set of totally unknown data (data
which haven’t be used for learning) in input.

5.2 Optimal Number of Neurons

4 6 8 10 12 14 16 18 20 22 24
12.5

13

13.5

14

14.5

15

15.5

16

16.5
Nombre de neurones VS erreur absolue moyenne en position

Nombre de neurones

Er
re

ur
 a

bs
ol

ue
 m

oy
en

ne
 (m

m
)

4 6 8 10 12 14 16 18 20 22 24
12.5

13
13.5

14
14.5

15
15.5

16
16.5

Best

Number of neurons

M
ea

n
ab

so
lu

te
 le

ar
ni

ng
 e

rro
r

Fig. 7. Mean absolute error versus number of neurons in the hidden layer.

The optimal number of neurons in the hidden layers has been defined in an empirical
way, by testing the result of learning with different number of neurons and by observ-
ing the mean absolute learning error. The more this error is high, the less the neural
network is effective. The figure 7 shows the mean absolute error on the SPIDAR posi-
tion according to the number of neurons in the hidden layer. By observing this result, we
could determine that the best configuration among the 3 to 21 neurons configurations,
is 5.

95

−500

0

500

−500

0

500

1000
1000

1200

1400

1600

1800

2000

X (mm)

Absolute error space distribution

Y (mm)

Z
 (

m
m

)

 0 mm

 16 mm

 31 mm

 47 mm

 62 mm

 78 mm

 93 mm

 109 mm

 124 mm

 140 mm

Fig. 8. Absolute error 3D distribution in the SPIDAR’s workspace after calibration by the neural
network (Dark green is the best).

Table 1. Characteristic values of absolute errors on SPIDAR location for neural network learning.

Absolute error Raw NN PF1
mean (mm) 72.86 7.44 15.31
std (mm) 47.05 6.24 40.75
max (mm) 211.29 86.90 198.32

5.3 Neural Network Performances

In order to study the neural networks performances, we represent the same absolute
error 3D spatial distribution as previously but after using our neural network. As we
can see, figure 8, shows that the neural network is quite effective and greatly improve
the SPIDAR accuracy in comparison with the figure 3. The neural network performs a
good calibration in the whole workspace except in its corners.

We also traced errors bar graphs before and after using our neural network (see
Fig.9) and we put representative data in arrays comparing them with raw location
(Raw), neural network calibrated location (NN) and for information purpose only, linear
interpolation calibrated location (PF1). Each bar graph is coupled with an array resum-
ing characteristic values of the error distribution, where mean is the empirical mean
error, std is the standard deviation of the data set and max is the maximum error.

96

0 50 100 150 200
0

1000

2000

3000

Absolute error on location
SPIDAR (mm)

P
op

ul
at

io
n

0 50 100 150 200
0

1000

2000

3000

Absolute error on location
SPIDAR + NN (mm)

Fig. 9. Absolute errors distribution bar graph before and after calibration by the neural network.

0 10 20 30
0

50

100

150

Erreur absolue sur la position
SPIDAR (mm)

P
op

ul
at

io
n

0 10 20 30
0

50

100

150

Erreur absolue sur la position
SPIDAR + RdN (mm)

Fig. 10. Absolute errors distribution bar graph before and after calibration by the neural network
on the 1st data set.

5.4 Generalization

In order to evaluate neural network performances, we need to observe this response
output with unknown data sets. This step is called generalization. Figures 10 show
results obtained with two generalization data sets. These data sets have been recorded
during two time-split measure campaigns and using our semi-automatic initialization
procedure.

The neural network has been nicely set up and is robust at any data as soon as
the data belongs to the SPIDAR’s workspace. Such results aren’t surprising since the
learning protocol was extremely rigorous and covered all the SPIDAR’s workspace
guaranteeing the neural network to perform a good interpolation. Moreover tables 1
and 2 shows us that the standard deviation with neural networks is smaller than the raw
or the other method ones, which indicates a smoother and a more accurate interpolation.

Table 1 and figure 10 shows us that the used neural network has a good response to
the generalization. Thus, the absolute mean error on the position has been reduced by
2.5 times, going from 13.3 mm to 5.31 mm.

97

Table 2. Characteristic values of absolute errors on SPIDAR location in generalization with data
set 1.

Data set 1 Raw NN PF1
mean (mm) 13.23 5.31 7.91
std (mm) 8.41 5.14 7.68
max (mm) 37.60 29.42 32.51

6 Conclusions

In this paper we propose a method to calibrate SPIDAR using a feedforward neural
network coupled with a semi-automatic initialization. The semi-automatic initialization
allows us to place the SPIDAR referential at the same 3D position at each startup with an
accuracy of 1.2mm. This way, we can use a method for calibrating the SPIDAR which,
don’t need to be updated at each startup. We choose a feedforward neural network
in order to compensate non linear errors on location and their abilities to estimate a
targeted output from a source without any knowledge on the mathematical model. We
obtain good results and our whole calibration procedure is efficient. Testing our neural
network in generalization shows us that our calibration is quite robust, even if we reset
the SPIDAR. We plan to make the initialization procedure fully automatic.

References
1. Kim, S., Ishii, M., Koike, Y., Sato, M.: Development of tension based haptic interface and

possibility of its application to virtual reality. Proceedings of the ACM symposium on Virtual
reality software and technology (2000) 199–205

2. Boudoin, P., Otmane, S., Mallem, M.: Fly over, a 3d interaction technique for navigation in
virtual environments independent from tracking devices. VRIC ’08 (2008) 7–13

3. Nixon, M., McCallum, B., Fright, W., Price, N.: The effects of metals and interfering fields
on electromagnetic trackers. Presence, 7, (1998) 204–218

4. Ghazisaedy, M., Adamczyk, D.: Ultrasonic calibration of a magnetic tracker in a virtual
reality space. Virtual Reality Annual International Symposium (VRAIS’95) (1995)

5. Bryson, S.: Measurement and calibration of static distortion of position data from 3d trackers.
Siggraph’92 (1992)

6. Ikits, M., Brederson, J., Hansen, C.D., Hollerbach, J.M.: An improved calibration framework
for electromagnetic tracking devices. IEEE Virtual Reality Conference 2001 (VR 2001)
(2001)

7. Kindratenko, V.: A survey of electromagnetic position tracker calibration techniques. Virtual
Reality,5, (2000) 169–182

8. Saleh, T., Kindratenko, V., Sherman, W.: On using neural networks to calibrate electro-
magnetic tracking systems. Proceedings of the IEEE virtual reality annual international
symposium (VRAIS ’95) (2000)

9. Ikits, M., Hansen, C., Johnson, C.: A comprehensive calibration and registration procedure
for the visual haptic workbench. Proceedings of the workshop on Virtual environments 2003,
39 (2003) 247–254

10. Leotta, D.: An efficient calibration method for freehand 3-d ultrasound imaging systems.
Ultrasound in medicine & biology (2004)

11. Bishop, C.: Neural networks for pattern recognition. Oxford University Press (2005)

98

On Human Inspired Semantic SLAM’s Feasibility

Dominik Maximilián Ramík, Christophe Sabourin and Kurosh Madani

Images, Signals, and Intelligent System Laboratory
(LISSI / EA 3956), PARIS-EST Creteil (UPEC)

Senart Institute of Technology, Avenue Pierre Point, Lieusaint, 77127, France
{dominik.ramik, sabourin, madani}@univ-paris12.fr

Abstract. Robotic SLAM is attempting to learn robots what human beings do
nearly effortlessly: to navigate in an unknown environment and to map it in the
same time. In spite of huge advance in this area, nowadays SLAM solutions are
not yet ready to enter the real world. In this paper, we observe the state of the
art in existing SLAM techniques and identify semantic SLAM as one of pros-
pective directions in robotic mapping research. We position our initial research
into this field and propose a human inspired concept of SLAM based on under-
standing of the scene via its semantic analysis. First simulation results, using a
virtual humanoid robot are presented to illustrate our approach.

1 Introduction

In mobile robotics, the ability of self-localization with respect to the environment is
crucial. In fact, knowing precisely where the robot is, and what kind of objects sur-
round it in any given moment of the time enables it to navigate autonomously and to
interact with an unknown environment in a conscious manner. An informal definition
of the Simultaneous Localisation And Mapping (SLAM) describes it as a process, in
which a mobile robot explores an unknown environment, creates a map of it and uses
it simultaneously to infer its own position on the map. In the real world SLAM appli-
cations, data association has often to be done under large amount of uncertainty.
Moreover, the real environment is usually very complex and dynamic and it is not
easy for a robot to interpret it in a reliable way. It is this complexity, what makes
SLAM a challenging task. A comprehensive list and principle explications of nowa-
days most common SLAM techniques can be found in [1], [2] and [3]. Although from
its beginning until present days the research community achieved a significant ad-
vance on the field of SLAM [4], it is not yet a solved problem. Autonomous naviga-
tion in dynamic environment [5] or understanding the mapped environment by in-
cluding semantics into maps [6] are the actual challenges of this research field..

In this paper, the state of the art in robotic mapping is investigated. We identify a
relatively new field of research within the field of SLAM, which is attempting to
perform simultaneous localization and mapping with the aid of semantic information
extracted from sensor readings. One of the research interests of our laboratory
(LISSI) is autonomous robotics notably in relation to humanoid robots. We are con-
vinced that the research on semantic SLAM will bring a useful contribution on this

topic. We position our initial research into this field, drawing our inspiration from
human way of navigation and place description. In fact, contrary to most of current
SLAM techniques, which tend to infer precisely and globally the navigation envi-
ronment, the human way of doing is based on very fuzzy description of the environ-
ment and it gives preference to local surroundings of the navigation backdrop. A
simulation using a virtual humanoid robot (Nao robot) is presented to demonstrate
some of the proposed ideas. The real Nao will be used in our further work.

The paper is organized in the following way: section 2 focuses on the state of the
art in semantic SLAM. In the third section, we are discussing our approach to image
segmentation and scene interpretation. Section 4 gives an overview of the robotic
humanoid platform we use. The fifth section presents our initial results and the paper
concludes with section 6.

2 Semantic SLAM

In this section, one of the latest research directions on the field of SLAM, the so-
called semantic SLAM, is discussed. The concept itself may be perceived as a very
important and pertinent one for future mobile robots, especially the humanoid ones,
that will interact directly with humans and perform tasks in human-made environ-
ment. In fact, it is the human-robot interaction, which is probably one of important
motives for employing semantics in robotic SLAM as humanoids are particularly
expected to share the living space with humans and to communicate with them.

Semantics may be incorporated into the concept of robotic SLAM in many differ-
ent ways to achieve different goals. One aspect of this may be the introduction of
human spatial concepts into maps. In fact, humans usually do not use metrics to lo-
cate themselves but rather object-centric concepts and use them for purposes of navi-
gation (“I am in the kitchen near the sink” and not “I am on coordinates [12, 59]”)
and fluently switch between reference points rather than positioning themselves in a
global coordinate system. Moreover, presence of certain objects is often the most
important clue for humans to recognize a place. An interesting work addressing the
mentioned problems has been published in [7], in which the world is represented
topologically with a hierarchy of objects and place recognition is performed based on
probability of presence of typical objects in an indoor environment. A part of the
work shows a study based on results of questioning about fifty people. The study was
aimed to understand human concepts of self-localization and place recognition. It
proposes that humans tend to understand places in terms of significant objects present
in them and in terms of their function. A similar way (i.e. place classification by pres-
ence of objects) has been taken by [8] where low-level spatial information (grid
maps) is linked to high-level semantics via anchoring. During experiments, the robot
has interfaced with humans and performed tasks based on high-level commands (e.g.
“go to the bedroom”) involving robots “understanding” of the concept of bedroom
and usage of low-level metric map for path planning. However, in this work, object
recognition is black-boxed and the robot is not facing any real objects in the experi-
ments but only boxes and cylinders of different colours representing different real-
world objects.

100

An approach treating this “gap” between object recognition and semantic SLAM is
presented in [9]. Here, a system based on a mobile robotic platform with an omni-
directional camera is developed to map an outdoor area. The system generates a se-
mantic map of structures surrounding the robot. Buildings and non-buildings labelled
on the map. In [6], a more general system is presented, employing a wheeled robot
equipped with a laser 3D scanner. Authors show ability of their robot to evolve in an
indoor environment constructing a 3D semantic map with objects like walls, doors,
floor and ceiling labeled. The process is based on Prolog clauses enveloping pre-
designed common knowledge about such an environment (i.e. the doors are always a
part of a wall and never a part of the floor). This enables the robot to reason about the
environment. Further in the paper, an object detection method using the laser range
data is shown with a classifier able to distinguish and to tag different objects sur-
rounding the robot including humans and other robotic platforms. In [10] active ob-
ject recognition is performed by a mobile robot equipped by a laser range finder and a
camera with zoom. A semantic structure is extracted from the environment and inte-
grated to robots map. It allows the robot to reach previously detected objects in an
indoor environment. Another object recognition technique is shown in [11] including
an attention system. Based on recognized objects a spatial-semantic map is built.

3 Image Segmentation and Scene Interpretation

Section 2 showed the pertinence of semantic SLAM in the frame of state of the art
robotic mapping. It is exactly this field, on which we are focusing our research. Our
motivation comes from the natural ability of human beings to navigate seamlessly in
complex environments. Obviously, the way we are orienting ourselves in the space is
very different from what contemporary robots do. To describe a place, we use often
very fuzzy language expressions and approximation (as shown in [7]). This is in con-
trast with most of the current SLAM algorithms. In navigation or place description
people also rarely use “global coordinates” but rather divide the scene into some kind
of hierarchic clusters around distinctive objects, which then act as local origin of
coordinates. Another interesting point is that people are able to infer distance of an
object according to its apparent size and their experience of object’s true size. From
what has been mentioned so far it is clear that recognition of objects and understand-
ing of their nature (semantic treatment) is an integral part of human navigation or
“human SLAM” and not just an extra layer of it. We believe that application of se-
mantics and human inspired scene description could bring a considerable benefit in
development of robust SLAM applications for autonomous robotics.

To initiate a semantic scene interpretation, the image has to be segmented first. Al-
though there exist many approaches to image segmentation (see [12]) for a reference),
not all of them are suitable for purposes of mobile robotics, because it requires image
treatment being done in real time. Our segmentation algorithm breaks the input image
into parts containing similar colors present in different brightness levels. This should
reflect that different shades do not usually mark different objects but only different
light conditions on the same object.

101

We have chosen to use the YCbCr color model within our algorithm. This color
model consists of three channels. The Y channel is dedicated to the luminance com-
ponent of the image and stores the information about light and dark parts of the im-
age. The other two channels Cb and Cr contain respectively the blue and the red
chrominance component of the image. The YCbCr color model is more practical for
purposes of our color segmentation algorithm, than classical RGB. It is because
YCbCr separates the luminance of color and the color itself into different channels,
while in RGB both color and its lightness are mixed together. The algorithm works in
two stages, coarse to fine. In the first one, the Cr and Cb components of the image are
acquired, their contrast is stretched and median filter is applied on both of them to
remove noise. Then a single scan is made through rows and columns of the image and
the first position that is not already occupied by a detected component is chosen as a
seed point with coordinates xseed and yseed.

Eq. 1 captures how seed point is used to extract a segment of interest (S) from the
image. The P stands for all the pixels in the image, whereas p is the actually examined
pixel. Predicate C is true only if its two arguments (p, pseed) are in four-connectivity
and I stands for intensity of pixel. Seed pixel is denoted by pseed. A pixel of the image
belongs to the segment S under the following conditions: the difference of intensities
of the current and the seed pixel is smaller than a threshold and there exists a four-
connectivity between it and the seed pixel. Applying this on both chroma sub-images
(Cr and Cb) we obtain segments denoted as SCr and SCb. A new segment S is then
determined following Eq. 2 as the intersection of segments found on both chroma
sub-images without pixels already belonging to an existing segment.

∀p∈P; C(p, pseed) & |I(p) – I(pseed)| < ε → p ∈ S (1)

S = SCr ∩ SCb - Sall. (2)

At the end of the scan, a provisory map of detected segments is available leaving

out components whose size is below certain threshold. At this stage, the image is
often over segmented due to the method of selection of seed points. However, it
serves as the first guess about the positions of regions. In the second step, all the
provisory segments are sorted according to their area and beginning with the largest
one the algorithm of segmentation is run again. This time the seed points are derived
from centers of segments defined by Eq. 3 and Eq. 4.

The seed point kseed is determined as such a pixel from the skeleton whose dis-
tance from its closest contour pixel is maximal. Here, K is the set of pixels of skeleton
belonging to segment S and C is the set of contour pixels of S. Di denotes the minimal
distance between the given pixel ki and the contour. In this step, similar segments
from the previous step are effectively merged. At this point, found segments may
contain distinctive areas of different brightness having similar chroma. The ultimate
step of the algorithm is in constructing a histogram of luminance values of each seg-
ment. The histogram is then polished by application of sliding average. If multiple
significant clusters are found in the histogram, the segment is broken-up accordingly
to separate them. Having finished this step, found segments are stored for further use.

102

{ } { } { }njmi

ji
k

i

ccCcandkkKkandKi

whereckD
i

,...,,...,,...,0

minarg

00 =∈=∈∈

−=
 (3)

{ } iKiseed Dk
,...,0

max
∈

= (4)

Q = 4πn / o2. (5)

In the next processing step, the segments are labeled with linguistic terms describ-
ing their horizontal and vertical position and span with respect to the image frame.
Both average color and its variance are computed for each segment along with the
number of pixels forming the segment. The compactness (Q) of the segment is com-
puted following Eq. 5, where n denotes the number of pixels of the segment and o the
number of pixels forming the contour of the element. These features, which represent
each segment, are then used in a set of linguistic rules, acting as a prior knowledge
about the world. The aim is to determine the nature of each segment and its appurten-
ance to an object of the perceived environment. For example, a compact segment
found in mid-height level surrounded by the wall is considered as a “window”.

4 Humanoid Robot Platform

The robotic platform we use for simulation and experiments is described in this sec-
tion. It is based on Nao, a humanoid robot manufactured by Aldebaran Robotics1. The
robot is about 58cm high with height slightly exceeding 4kg. Its degrees of freedom
are as follows: 2 DOF for the head, 5 DOF for each arm, 1 DOF for the pelvis, 5 DOF
for each leg and 1 DOF for hands to control the grasp. Concerning the available sen-
sors, it is equipped with two CMOS cameras with resolution up to 640x480px. One
camera is on the front of the head and the other is covering the space around the feet
of the robot (this one was added specially because of the usage of Nao in RoboCup
robotic football matches). Two channel sonar and 2 IR sensors are in robot’s chest. It
also possesses a tactile sensor, bumpers and inertial sensors. To interact with humans,
robot is equipped with voice synthesizer and a speech recognition unit.

The robot can operate in fully autonomous mode using its AMD Geode 500MHz
processing unit to run programs and behaviors stored in its memory. Alternatively, it
can be operated remotely from another computer via a WiFi (or Ethernet) connection.
To perform simulations, a virtual version of Nao is available for the Webots simula-
tion program developed by Cyberbotics2. The program allows us to create a virtual
world and to simulate robots interaction with it including gathering of sensor data
from cameras and IR/sonar sensors. Nao can be programmed in different manners.

1 http://www.aldebaran-robotics.com
2 http://www.cyberbotics.com/

103

The choice of languages includes C, C++, Python and URBI and the code can be run
locally on robot’s CPU or distantly via a network connection. After having explored
different ways of programming

Fig. 1. A scheme describing our humanoid robotic platform, showing different possibilities of
programming it. On the left a photo of the real Nao used in our laboratory.

Nao, we have chosen URBI developed by Gostai3 for development purposes (see
Fig. 1). There are several reasons for this choice. First, URBI is a specific language
developed especially for robotics and by its nature allows simple and fast develop-
ment of robotic behaviors. Moreover, it provides a simple way of managing parallel
processes, which may be a complex task in other languages. Although programming
in URBI involves writing in URBI script, which is then interpreted by an interpreter,
URBI programs do not suffer from lose of performance. The code of its internal ob-
jects is written in C++ to keep high efficiency of the language. LibURBI connectors
allow user to develop own objects using so called UObject architecture and to plug
them into the language. These objects can be developed in C++ or Java code (a con-
nector is available for Matlab as well). User-created objects can be run directly on the
robot or transparently on a remote machine via CORBA technology. With these prop-
erties, URBI seems to us to be suitable for developing complex behaviors on robots
as well as computationally intensive tasks as image processing.

For the demo simulation presented in the next sections, we used the simulated ro-
bot described above and we are going to use its real equivalent in our further research
on the field of semantic SLAM. The task itself may be not perceived as being strictly
specific for humanoid robots. However, the motivation to use a humanoid robots
comes from the fact, that they are specially designed with the aim to interact with
humans and to act in human-made environment. If they are already imitating humans
in their physical form, why should not we enable them to do the same on the level of
their software? The concepts we are exploiting here come from human approach to
navigation and orientation in the space. Thus embedding such human inspired seman-
tic SLAM capabilities onto a humanoid robotic platform seems pertinent to us.

3 http://www.gostai.com/

104

5 Results

After having the image segmented, all segments are labeled and interpreted by a set of
rules representing prior knowledge about objects. Following the mentioned rules
segments can be even merged so that e.g. multiple fragments of floor partially oc-
cluded by objects laying on it are labeled as belonging to the same object of type
“floor”. Fig. 2 gives an example resulted from the left image (supposed as the original
image acquired by robot’s vision system). Fig. 3 depicts the intermediate steps of
segmentation. This “semantic” information is subsequently used to approximate the
actual distance of certain objects. Having an object of type “window”, it is looked-up
in a table containing usual sizes of different objects and once found the size informa-
tion is used along with the pixel size of the object on the image and the field of view
of the camera to compute the approximate distance of the window (see the right im-
age in the Fig. 2). This is described by Eq. 6 (simplified for horizontal size only). The
distance d to an object is the product of estimated real width wreal of the object and
tangent of its width in pixels wpx on the image multiplied by fraction of the horizontal
field of view ϕ and the width wimage of the image in pixels

d = wreal * tan (wpx * ϕ / wimage) (6)

Fig. 2. A view of the robot’s random walking sequence. The left image is the original one. The
right image shows the result after the interpretation phase. Some of the detected objects are
labeled. The opposing wall is labeled also with its approximate distance with respect to the
robot.

The aim of this computation is absolutely not to infer the exact distance of an ob-
ject, but rather to determine whether it is “far” or “near” in the context of the simu-
lated world or if it is nearer to the robot in comparison to another object. This can
help in the further process of creation of the map of the location.

This demo, however limited, gives a preliminary idea of principles of semantic
mapping and more importantly, it gives a starting point for the research in the area of
semantic SLAM. Resigning to precise metric position of every object in the mapped
world and replacing it only by rough metric and human expressions like “near to” or
“beside of” is believed to enable us to create faster and more robust algorithms for
robotic SLAM. Using of “object landmarks” to navigate in an environment is certain-
ly more meaningful that using e.g. simple points in case of classical SLAM. Knowing

105

the nature of an object gives an opportunity to distinguish between important and
random objects. One can imagine a robot with an ability of choosing landmarks for
purposes of its navigation by itself. With the knowledge about available objects, it
could prefer to pick up the most important and stable objects that are unlikely to
change their place or appearance in the lifetime of the map.

Fig. 3. The two segmentation steps relative to the result of Fig. 2.

Fig. 4. The same room with different textures (left) and resulted interpreted image (right).

The seed point kseed is determined as such a pixel from the skeleton whose distance
from its closest contour pixel is maximal. Here, K is the set of pixels of skeleton be-
longing to segment S and C is the set of contour pixels of S. Di denotes the minimal
distance between the given pixel ki and the contour. In this step, similar segments
from the previous step are effectively merged. At this point, found segments may
contain distinctive areas of different brightness having similar chroma. The ultimate
step of the algorithm is in constructing a histogram of luminance values of each seg-
ment. The histogram is then polished by application of sliding average. If multiple
significant clusters are found in the histogram, the segment is broken-up accordingly
to separate them. Having finished this step, found segments are stored for further use.

106

Fig. 5. Detection of the wall as a overall (macro) object in robot’s environment.

It is important to notice the robustness of the proposed approach and the fact that
the estimated distances, even if approximated, are relevant enough for extracting
pertinent features relating environmental information. Fig. 4 gives results obtained
from the right image showing the above-mentioned purpose. Fig. 5 gives an example
of extended possibilities of the technique in detecting environmental information. In
fact, it allows potentiality of a higher-level semantic labeling of objects constituting
the robot’s environment. Here, one can notice that in the given example (detection of
the room’s wall including the associated objects as window, etc…) allows the possi-
bility to link previously labeled objects (for example the window) to the “wall” in
term of “room’s wall with the window”.

6 Conclusions and Perspectives

Simultaneous localization and mapping is an important ability for an autonomous
mobile robot. State of the art techniques have been discussed here giving an idea
about the current state on the field of SLAM. In spite of a great advance in SLAM
techniques in past years, most of the existing SLAM solutions can accommodate only
a particular case or environment. A stable and generally usable SLAM solution is still
missing. Given the state of the art of SLAM, one of the basic directions, which are
expected to play a key role in future development of SLAM is so called “semantic
SLAM”: adding a semantic level into robotic mapping should help robots to go
beyond simple “structural” information about the world that surrounds them. It
should enable them to “understand” it.

In this paper, we identify the pertinence of semantic SLAM for the future devel-
opment in mobile robotics and we present our initial research on this field. Our re-
search is strongly inspired by the human way of navigation and place description. The
semantic information about objects in the scene may improve mapping capabilities of
robots. It should enable them to reason about their environment as well as to share
their knowledge with humans and receive commands using human concepts and cate-
gories in a seamless way.

For description of a scene by semantic means, a good algorithm for image segmen-
tation is an important starting point. Preferably, it should perform segmentation using
both color and texture information. For real time use, fast and efficient algorithms are

107

required. A part of our future work will be dedicated to further development of such
an algorithm. Another part of our future work will be focused on development of
algorithms of semantic SLAM we outlined in this paper. They will be consequently
implanted and verified in an indoor environment on the real Nao robot.

References

1. Durrant-Whyte, H., et al. Simultaneous Localisation and Mapping (SLAM): Part I The
Essential Algorithms. Robotics and Automation Magazine, Vols. 13, No 2, pp. 99-110,
(2006).

2. Durrant-Whyte, H., et al., Simultaneous Localisation and Mapping (SLAM): Part II State
of the Art. Robotics and Automation Magazine, Vols. 13, No 3, pp. 108-117 (2006)

3. Muhammad, N., Fofi, D. and Ainouz, S. Current state of the art of vision based SLAM.
Image Processing: Machine Vision Applications II, Proceedings of the SPIE, Vol. 7251,
pp. 72510F-72510F, (2009)

4. Thrun, S. and Leonard, J. J. Simultaneous Localization and Mapping. [ed.] B. Siciliano and
O. Khatib. Springer Handbook of Robotics. Berlin Heidelberg: Springer-Verlag, 37, (2008)

5. Hahnel, D., et al. Map Building with Mobile Robots in Dynamic Environments. Proceed-
ings of the IEEE International Conference on Robotics and Automation. Taipei: IEEE, Vol.
2, pp. 1557-1563, (2003)

6. Nüchter, A., Hertzberg, J. Towards semantic maps for mobile robots. Robotics and Auto-
nomous Systems. Amsterdam : North-Holland Publishing Co., Vol. 56, pp. 915-926, (2008)

7. Vasudevan, S., et al. Cognitive maps for mobile robots-an object based approach. Robotics
and Autonomous Systems. Amsterdam: North-Holland Publishing Co., Vol. 55, pp. 359-
371, (2007)

8. Galindo, C., et al. Multi-Hierarchical Semantic Maps for Mobile Robotics. Internati. Conf
on Intelligent Robots and Systems (IROS 2005). Edmonton : IEEE, pp. 2278- 2283, (2005)

9. Persson, M., et al. Probabilistic Semantic Mapping with a Virtual Sensor for Build-
ing/Nature detection. International Symposium on Computational Intelligence in Robotics
and Automation. Jacksonville : IEEE, pp. 236-242, (2007)

10. Ekvall, S., Jensfelt, P. and Kragic, D. Integrating Active Mobile Robot Object Recognition
and SLAM in Natural Environments. International Conference on Intelligent Robots and
Systems, 2006 IEEE/RSJ. Beijing: IEEE, pp. 5792-5797, (2006)

11. Meger, D., et al. Curious George: An attentive semantic robot. Robotics and Autonomous
Systems. Amsterdam : North-Holland Publishing Co., Vol. 56, pp. 503-511, (2008)

12. Lucchese, L. and Mitra, S. K. Color image segmentation: A state-of-the-art survey. Proc.
Indian Nat. Sci. Acad. (INSA-A). Vols. 67-A, pp. 207-221, (2001)

108

Author Index

Bläsing, B. 63

Boudoin, P.87

Brüderle, D. 43

Campelo, A.72

Dürr, V. 63

Ehrlich, M. 33, 43

Farias, V. 72

Jiang, Y. 53

Krause, A.63

Kurzynski, M. 81

Maaref, H.87

Madani, K. 99

Mallem, M. 87

Müller, E. 43

Otmane, S. 87

Pan, Q. .3

Pasemann, F.13

Pereira, A. 72

Ramík, D. 99

Rempis, C. 13

Rocha, M. 72

Sabourin, C.99

Schack, T. 63

Schüffny, R.33, 43

Shafique, M.53

Tavares, H. 72

Vogginger, B. 43

Volna, E. 23

Wendt, K. 33, 43

Wolczowski, A. 81

Zhang, H. 53

Zhang, S. 3

Zhao, K.3

Zühl, L. 43

109

	Workshop ANNIIP 2010 ANNIIP
	Front Cover
	Introduction
	Copyright
	Foreword
	Workshop Chairs
	Program Committee
	Table of Contents
	Papers
	Finding Fuzzy Communities in Directed Networks
	Search Space Restriction of Neuro-evolution through Constrained Modularization of Neural Networks
	Automatic Modularization of Artificial Neural Networks
	GMPath - A Path Language for Navigation, Information Query and Modification of Data Graphs
	A Software Framework for Mapping Neural Networks to a Wafer-scale Neuromorphic Hardware System
	Design of a Multi-Agent System for Hierarchical Network Management inWireless Sensor Network
	Evolutionary Optimization of Echo State Networks: Multiple Motor Pattern Learning
	Application of Self-organizing Maps in Functional Magnetic Resonance Imaging
	Neural Networks with AR Model Coefficients Applied to the EMG Signal Classification
	SPIDAR Calibration based on Neural Networks versus Optical Tracking
	On Human Inspired Semantic SLAM's Feasibility

	Author Index

	Back Cover

