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1. INTRODUCTION 
 
Hyperspectral (HS) images are rich in spectral information but 
relatively poor in spatial resolution which usually varies from few 
to tens of meters. Many different algorithms for spatial resolution 
enhancement of HS images have been proposed in last decade [1-
11]. Joint processing is the main idea in a considerable number of 
proposed methods in which the spatial information of a high 
resolution (HR) image is imposed onto the low resolution (LR) HS 
image [4, 5]. Some other approaches are indirect and are based on 
spectral mixture analysis (SMA) or subpixel classification [6, 7] 
and some articles suggest it through super-resolution mapping 
(SRM) and learning based methods like Hopfield neural network 
(HNN) [8-11].  
Tackling the limitations of the mentioned techniques, i.e. the need 
for HR sources of information and high computational cost, has 
been the motivation of the proposed fast SRM algorithm in this 
paper. 
  

2. OUTLINE OF THE PROPOSED METHOD 
 
The proposed method consists of two main parts, namely, linear 
spectral unmixing and super-resolution mapping. In order to 
extract the fractional images (endmember abundances), the linear 
spectral unmixing is applied on the HS image after classifying it 
using the minimum noise fraction (MNF) and pixel purity index 
(PPI) techniques. This is carried out based on the developed linear 
mixture model (LMM) and fully constraint least squares (FCLS) 
algorithm which are discussed in section 3. 
The proposed super-resolution mapping (SRM) algorithm is a 
learning-based tool which should be initially trained according to 
the developed spatial correlation model (section 4 and 5). To this 
end, a similar data from the same source of the HS image is used 
for training of the SRM algorithm (section 6). The trained SRM 
algorithm is applied on the fractional images and exploits the 
relation between the abundances of endmembers in each pixel and 
the abundances of the same endmembers in the neighboring pixels 
(section 7).  
 

3. LINEAR SPECTRAL UNMIXING 
 
LMM is a frequent assumption in HS remote sensing [12, 13]. Let 
L equal the number of endmembers in the spectral library with l 
ranging from 1 to L. Each spectrum in the library consists of M 

discrete wavelengths ( mλ ) where m=1 to M. Let ( )l
mS λ  

represent the spectral response of material l at wavelength mλ . 
Each spectrum in the library is described by the following vector: 
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For an unknown spectra  each vector 

component is composed of a linear combination of j endmembers 
from J. u is related to J by the estimation vector 
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of nonnegativity and sum-to-one, based on physical considerations, 
i.e., 
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For a mixture described by u, the spectral response 

at mλ , (u
mS )λ , would be as following: 
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Among the proposed algorithm for handling the LMM according to 
(2), FCLS algorithm can efficiently meet both abundance 
constraints and is optimal in terms of least squares error [14]. 
 

4. BACKPROPAGATION NEURAL NETWORK (BPNN) 
 
Backpropagation neural network was created by generalizing the 
Widrow-Hoff learning rule to multiple-layer networks and 
nonlinear differentiable transfer functions [15]. The generalization 
property of BPNN makes it possible to train it on a representative 
set of input/target pairs and get good results without training the 
network on all possible input/output pairs. BPNNs often have one 
or more hidden layers of nonlinear neurons followed by an output 
layer of linear neurons.  
 

5. SUPER-RESOLUTION MAPPING (SRM) 
 
The basis for the proposed SRM technique is explained by Fig. 1.  
Fig. 1(a) shows a fractional image of a scene, obtained through 
linear spectral unmixing, with a possible contribution of one of the 
endmembers. Fig. 1(b), for example shows a possible random 
assignment in which the spatial correlation of the endmember is 

 



not taken into account and as a consequent it does not provide the 
optimum spatial dependence. In contrast, Fig. 1(c) depicts a much 
better mapping and the assigned subpixels are the best in term of 
spatial correlation of endmembers. 
 

 
Fig. 1. The basis for the proposed SRM technique. 

 
6. DATA 

 
To determine the efficacy of the proposed algorithm, some real test 
HS images are chosen for experiment. The test images in the 
experiment include two remotely sensed HS images which were 
collected by the Airborne Visible/Infrared Imaging spectrometer 
(AVIRIS-II).  One of the test images, namely Dataset-I is an 
AVIRIS-II HS data with 200 available bands. A hard classification 
map is available for this data too. The second test data, namely 
Sandiego is a 405 ×400 pixel area image with 126 available bands. 
A 100 ×  100 region on the top left corner is chosen for our 
experiments (Dataset-II). As the training data, another part of 
Sandeigo, namely Dataset-III is chosen. Dataset-III is chosen from 
Sandiego to impose the maximum likelihood between the test 
image and the training data.  
 

7. EXPERIMENTS AND RESULTS 
 
Experiment on Dataset-II is carried out after training of the 
algorithm with subsampled and original Dataset-III (after unmixing) 
as the input and target vectors, respectively. The adherence of the 
resulted enhanced images to the HR images is compared through 
the root-mean-square error (RMSE) and correlation coefficient 
(CC) measures (table 1). Fig.2 shows the LR, enhanced, and HR 
fractional images for one of the endmembers (asphalt) resulted by 
the proposed technique. The efficiency of the proposed method is 
good and the computational time of SRM algorithm is about tens 
and few seconds with and without considering the initial training 
time, respectively. 
  

   
  (a)                      (b)                     (c)  

Fig. 2. Experimental results on the Dataset-II. (a), (b), and (c) the 
LR, enhanced, and HR images for asphalt, respectively. 

 
Table 1. RMSE and CC measures for enhances images by 

proposed method on Dataset-II 
 Sand Asphalt 

RMSE 0.0729 0.0786 
CC 0.9733 0.9813 

 
 

8. CONCLUSION 
 
The main advantages of the proposed technique are three: it 
doesn’t need any secondary HR source of information, there is no 
need to a priori information about the test HS image, and it is fast 
so as makes it a proper choice for real-time applications such as 
target recognition. 
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