
RESOLUTION ENHANCEMENT OF HYPERSPECTRAL IMAGES USING A 
LEARNING-BASED SUPER-RESOLUTION MAPPING TECHNIQUE 

 
Fereidoun A. Mianji, Member, IEEE, Ye Zhang, Yanfeng Gu 

 
School of Electronics and Information Technique, Harbin Institute of Technology 

E-mail: fmianji@ieee.org 
Presenting Author: Yanfeng Gu 
 

1. INTRODUCTION 
 
Many different algorithms for spatial resolution enhancement of 
hyperspectral (HS) images have been proposed in last decade [1-9]. 
In a considerable number of proposed methods the spatial 
information of a high resolution (HR) image is imposed onto the 
low resolution (LR) HS image [1-4]. Some other approaches are 
based on spectral mixture analysis (SMA) or subpixel classification 
[1-7]. Super-resolution mapping (SRM) is a different approach by 
which the spatial-spectral information of HS images is exploited 
using an HR image or a model to describe the most likely 
distribution of the content of mixed pixels [6-10].  
     The limitations of the mentioned approaches, i.e. high 
computational cost or the need for supplementary source of 
information, have been the motivation of the proposed fast and 
autonomous SRM algorithm for spatial resolution enhancement of 
HS images. 
 

2. LINEAR SPECTRAL UNMIXING 
 

A frequent assumption in HS remote sensing is that spectral 
signatures result from linear combinations of endmember spectra 
[11]. These approaches largely ignore the inherent nonlinear 
characteristics of hyperspectral data [12]. 
Endmember spectra are endmember components in n-dimensional 
space. Let L equal the number of endmembers in the spectral 
library with l ranging from 1 to L. Each spectrum in the library 
consists of M discrete wavelengths ( mλ ) where m=1 to M. Let 

( )l
mS λ  represent the spectral response of material l at 

wavelength mλ . Each spectrum in the library is described by the 
following vector: 
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     For an unknown spectra  each vector 
component is composed of a linear combination of j endmembers 
from J. u is related to J by the estimation vector 
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Some algorithms have been developed to handle the linear mixture 
model (LMM) according both nonnegativity and sum-to-one 
constraints described by (2). Among them, fully constrained least 
squares (FCLS) algorithm can efficiently meet both abundance 
constraints and is optimal in terms of least squares error [13]. 
 

3. SUPER-RESOLUTION MAPPING (SRM) 
 
The basis for the proposed super-resolution mapping (SRM) 
technique is spatial correlation of endmembers. It means that any 
endmember within a pixel tend to be assigned to the subpixels 
which possess a higher contribution of same endmember in 
neighboring pixels. The SRM model can be depicted as fig. 1 in 
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Fig.1. The SRM model. 
 

4. BACKPROPAGATION NEURAL NETWORK (BPNN) 
 
Backpropagation neural network (BPNN) with biases, a sigmoid 
layer, and a linear output layer are capable of approximating any 
function with a finite number of discontinuities [14]. Typically, a 
new input leads to an output similar to the correct output for input 
vectors used in training that are similar to the new input being 
presented. This generalization property makes it possible to train a 
network on a representative set of input/target pairs and get good 
results without training the network on all possible input/output 
pairs. Fig. 2 shows a 3 layer BPNN. 
 

 
Fig. 2. A three layer BPNN 
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     To improve the performance of the BPNN, a backpropagation 
learning algorithm with a Fletcher-Reeves version of conjugate 
gradient is adopted. 
 

5. EXPERIMENTAL DESIGN 
 
The test data (Dataset-II) is an AVIRIS-II HS data with 126 
available bands in the 0.4–1.8 μm wavelength range without any 
available a priori knowledge of the landcovers. 
     The original HS image is used as the high resolution (HR) 
standard data. First the endmember extraction (using pixel purity 
index (PPI)) and linear spectral unmixing is applied on the HS 
image to extract the spatial-spectral information of the landcovers. 
This is carried out based on the developed LMM and FCLS 
algorithm. The result of this step is the HR fractional images of the 
scene. These HR fractional images are the reference images for the 
algorithm. Then, the original HS image is subsampled by a 2 ×2 
mean filter in every band. The down-sampled HS image which has 
the role of LR data in the algorithm, are inputted to the linear 
spectral unmixing program to result the low resolution (LR) 
fractional images. Subsampled LR fractional images (by a 2 ×2 
mean filter) and LR fractional images are used to make the input 
and target vectors for training of the BPNN, respectively. 
 

6. EXPERIMENTS AND RESULTS 
 
The whole algorithm is applied on Dataset-II. After training of the 
BPNN, LR fractional images are inputted to the SRM algorithm 
and the spatially enhanced results are compared to the standard 
images through the RMSE and CC. Fig.3 shows some of the 
enhanced fractional images and the standard images. Enhancement 
in the resolution of the images especially on the edges is clear.  
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Fig. 3. Experimental results on Dataset-II. (a), (b), and (c) the LR, 
enhanced, and standard images for concrete, respectively. (d), (e), 

and (f) the LR, enhanced, and standard images for sand, 
respectively. 

 
Table 1. RMSE and CC values for the enhanced and LR images for 

some extracted classes of Dataset-II 
 Concrete Sand 
RMSE of the LR image 0.0928 0.0807 
RMSE of the enhanced image 0.0714 0.0641 
CC of the LR image 0.9542 0.9816 
CC of the enhanced image 0.9710 0.9877 

RMSE and CC of the LR fractional images in addition to the ones 
of the enhanced images are depicted in Table 1 to present an 
evaluation of the method performance. 
 

7. CONCLUSION 
 
In this paper a novel resolution enhancement method for HS 
imagery through SMA and a learning-based SRM technique is 
proposed. The analysis of the results validates the effectiveness of 
the method and approves its performance. The technique is fast and 
independent of the secondary high resolution sources of data. 
Furthermore, it needs no a priori information about the landcovers 
of the HS image. 
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