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Abstract- This paper presents a novel algorithm for space-time adaptive processing (STAP), by exploiting the 

characteristic of sparsity in the radar echo in Spatial-Doppler domain. Unlike traditional algorithm for STAP, our 

new method needs much less (even only one) training cells to eliminate the clutter energy in the test cell and reveal 

the target buried in strong clutter clearly. Owing to its excellent properties such as super-resolution and ultra-low 

sidelobe, our algorithm can effectively suppress the clutter and improve the performance for detecting moving 

target of radar on maneuvering platform. 

 

1. INTRODUCTION 

For space borne/airborne radar, STAP is an effective tool to reveal moving targets from strong ground clutter. It is 

common for traditional STAP methods to build the clutter suppression filter based on estimation of clutter 

covariance matrix using data from training cells [1]. To guarantee the performance of filter, 2MN independent and 

identically distributed (IID) training range cells are required, where N and M denote the numbers of the spatial 

channel and the azimuth pulse respectively [5]. However, clutter is statistically non-stationary and there exist only 

few IID range cells in actual heterogeneous environment. This implies that the traditional STAP is not suitable for 

being used for heterogeneous clutter suppression. To solve this problem, the clutter suppressing algorithm based on 
sparse space-time signal recovery is proposed in this paper. We will show that, by using 1 norm minimization 

algorithm [2], clutter energy distributed sparsely in the Spatial-Doppler plane could be estimated accurately with 

only ONE training cell. Then the clutter on test cell could be suppressed and moving target could be revealed 

clearly. Finally, numerical result with real data is given to demonstrate the performance of proposed algorithm.  

2. FILTER DESIGN BASED ON SPARSE RECOVERY 

Assume there is only one target, the data snapshots CNM∈x  in test cell and in training cell can be written as 
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respectively. where cQ  is the total number of the clutter bins on Spatial-Doppler plane; iγ  and α are the 

complex amplitudes of the clutter bins and possible moving target, respectively; ,s if and ,d if are the spatial and 

Doppler frequencies of the i th clutter bins, respectively; ,s tf and ,d tf are the spatial and Doppler frequencies of 

the moving target, respectively; ( , )s df fv denotes the spatial-temporal steering vector and can be expressed as  
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where ⊗ denotes the Kronecker product. For the nature of the ground clutter, most of clutter energy concentrates 

on a small region of Spatial-Temporal plane (such as diagonal area). It implies the intrinsic sparsity of clutter echo.  

   Suppose Ψ is the MN KL× matrix as follows 

 ( ) ( )( ) ( ) ( )( ) ( ) ( )( )0 0 1 1, , , , , , , ,k l K L
s d s d s df f f f f f− −⎡ ⎤Ψ = ⎣ ⎦v v v  0,1,..., -1k K= , 0,1,..., -1l L=  (3) 

where K is the number of the spatial frequency bin, L is the number of the Doppler frequency bin; ( )k
sf denotes 

the kth spatial frequency bin and ( )l
df denotes the lth Doppler frequency bin. The data snapshot of radar echo from 



training cell can be expressed as = Ψx θ , where θ  is the energy distribution of radar echo on Spatial-Doppler 

plane. Recent results in field of Compressive Sensing (CS) [2][3] provide an feasible approach for recovery of 

sparse signal. As to our problem, since the radar echo is sparse in Spatial-Doppler plane, its spatial-temporal 
energy distribution could be accurately recovered with overwhelming probability by 1  norm minimization as 
 εθθ ≤Ψ−
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Problem (4) can be solved efficiently with linear programming or greedy algorithm [3]. The result θ  was used to 

estimate the covariance matrix 
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With 
CSR̂  instead of ordinary estimation of covariance matrix directly using original data, various schemes of 

adaptive filter design, such as SMI and subspace projection, can be adopted to calculate the filter coefficient.  

3. NUMERICAL RESULT AND CONCLUSIONS 

Numerical results presented in this section were derived from processing publicly available real data collected by 

the DARPA sponsored Mountain Top program [6]. In Fig.1, the output of the filter based on CS technique (CS 

filter) and traditional SMI filter at the range cells for which data is available is shown. The covariance matrix for 

SMI filter was estimated using data snapshots from 80 range cells, not including the 5 samples around the target 

range. Meanwhile, CS filter only used data snapshot from single range cell.  Two points are evident from the 

figure. Firstly, clutter is removed much more completely when CS filter is utilized. This benefit from the 

characteristic of super-resolution and ultra-low sidelobe of CS filter. Secondly, the performance of detection of CS 

filter is comparable to that of traditional SMI filter. It must be emphasized that this is achieved by CS filter using 

only ONE training snapshot. So it is a more suitable choice when clutter is non-stationary because it could uncover 

the essential Spatial-Doppler feature of clutter with very few training data. The numerical result shows great 

potential of filter based on CS technique to be applied in STAP, especially in heterogeneous clutter environments. 
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Fig.1 Gains of different range cells 
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