How Will Dew on Vegetation Affect SMAP?
A Case Study in the Agricultural Midwest of the United States

Brian Hornbuckle, Tracy Rowlandson, Tom Sauer, Amy Kaleita, and Sally Logsdon
Iowa State University of Science and Technology
USDA ARS National Soil Tilth Laboratory
Ames, IA USA

Corresponding author contact: bkh@iastate.edu.

Anton Kruger, Bill Eichinger, and Witek Krajewski
The University of Iowa
Iowa City, IA USA

Simon Yueh and Steve Dinardo
NASA Jet Propulsion Laboratory
Pasadena, CA USA

Soil moisture is an important yet unobserved reservoir of the hydrologic cycle linked to the spatial and temporal variability of precipitation [1]. Microwave remote sensing technologies have the potential to produce real–time maps of soil moisture since the microwave radiation emitted and scattered by Earth’s surface varies with the water content of the soil [2]. Two microwave remote sensing satellite missions will soon attempt to make the first global measurements of soil moisture at the optimal microwave frequency of L–band [3]. In 2009, the European Space Agency will launch the Soil Moisture and Ocean Salinity (SMOS) mission [4]. SMOS will make measurements of the L–band brightness temperature of Earth’s surface. In 2013, NASA plans to launch the Soil Moisture Active-Passive (SMAP) mission [5]. SMAP will measure both L–band brightness temperature and L–band backscatter.

Microwaves have relatively long wavelengths, and the wavelength at L–band is larger than the wavelengths monitored by any other current Earth–observing remote sensor. The consequence of this is that vegetation is semi–transparent at microwave wavelengths, and even more so at L–band. As a result, the L–band brightness temperature and backscatter is sensitive to soil moisture in both bare and many vegetated areas. Furthermore, because the vegetation canopy is semi–transparent, the microwave radiation emitted and scattered by vegetated surfaces changes with both soil moisture as well as the moisture content of the vegetation canopy. Hence liquid water within the vegetation canopy, such as dew, has an affect on the L–band brightness temperature and backscatter of Earth’s surface. Although dew will often be present during the planned SMOS and SMAP overpass at 6 AM [6], the effect of dew at L–band has not yet been quantified.

Is dew a concern for SMOS? Perhaps. The effect of dew on the L–band brightness temperature is probably less than 5 K [7]–[9]. Given the sensitivity of L–band brightness temperature to soil moisture, the potential error in the measurement of soil moisture when dew is present is likely less than 5%, which is an acceptable amount. In addition, SMOS will make measurements of the L–band brightness temperature at multiple incidence angles which will result in more information about the electrical properties of the vegetation canopy that can be used to improve the accuracy of soil moisture measurements.

Is dew a concern for SMAP? Likely. Only a single incidence angle is observed by SMAP. Furthermore, current plans call for the L–band backscatter measurement to be used to improve the spatial resolution of soil moisture measurements made using the L–band brightness temperature through the use of a change detection technique [10]. In this process, any change in the backscatter measurement is assumed to be caused by a change in soil moisture.

Funded by the NASA Terrestrial Hydrology Program.
The higher-resolution backscatter measurements are then used to disaggregate the lower-resolution brightness temperature measurements. No measurements of the effect of dew on the L-band backscatter have been reported, but considering the effect of dew on the backscatter at slightly shorter microwave wavelengths (X- and C-band) [11] and the sensitivity of L-band backscatter to soil moisture [12],

we hypothesize that a change in backscatter caused by dew could be wrongly interpreted as a change in soil moisture in this change detection scheme and there is the potential for an error of more than 5%, which is unacceptable.

We will present the first case study of the effect of dew on the L-band backscatter from agricultural fields in the United States Midwest, a region where soil moisture is particularly important [1]. We will use data collected by NASA's Passive and Active L-band System (PALS) over corn and soybean fields at the Iowa Validation Site 23-25 September, 2008. The conditions during this three-day experiment were ideal for deducing the effect of dew on the L-band backscatter. On the first day, cloud cover during the previous night prevented the formation of any significant dew. On the final day, a heavy dew was observed. This dew evaporated as PALS repeatedly collected data over the same flight lines until the vegetation was essentially dry. We will compare the remote sensing data from the first day (no dew) with the data on the third day (heavy dew) and analyze the time-series of data on the third day as the dew dried off in order to deduce the effect of dew on the L-band backscatter. We will use ancillary data such as soil moisture, vegetation biomass, surface temperatures, and surface moisture fluxes to interpret our comparisons and analysis. In particular, we will use four different methods to characterize dew: manual measurements of dew amount; leaf wetness sensor measurements of dew duration; the condensation of water vapor and the evaporation of dew as measured by eddy-correlation sensors (via measurements of latent heat flux); and estimates of dew amount and duration made with a land surface process model called the Atmosphere Land Exchange (ALEX) model [13].

REFERENCES