RELATIONSHIP BETWEEN RED TIDE EVENT AND BROAD CURRENT PATTERN
DERIVED FROM OCEAN SURFACE RADAR IN A CLOSED SEA

Shin’ichi Sakai*1, Takumi Yoshii*1, Takaki Tsubono*1, Masafumi Matsuyama*1,
Akihide Tada*2, and Takehiro Nakamura*2

*1 Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko-shi, Chiba, 270-1194, Japan
*2 Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Nagasaki, 852-8521, Japan

Ocean radar can detect surface currents swiftly and safely over an extensive area by analyzing the
backscattering of radio waves transmitted from land based upon Doppler theory. Central Research Institute
of Electrical Power Industry (CRIEPI) has developed the Doppler radar grid operation (DRAGON) system
for the real-time monitoring of coastal currents using a high-resolution ocean radar with a VHF band, which
updates the vector map of the currents every 15 minutes via the Internet and is capable of assessing a broad
range of coastal currents. Ariake Sea located in the west of Japan is a closed sea with a surface area of
1,700km² and its northern part has distinguishing physical features with great tidal range ~6m and the huge
tidal flats famous for seaweed cultivation. Recently the increasing occurrence of red tide causes serious
damage to the fisheries in the north area. However the mechanism of red tide in Ariake Sea is
yet-to-be-defined because its mechanism is complicately related to some elements such as supply of
nutrients, seawater stratification, advection and diffusion of coastal current, and insolation condition.

The authors conducted the field observation using DRAGON system in the northern part of Ariake Sea
from autumn 2005 to spring 2008, and investigated the relationship between the red tide event in summer
2007 and coastal current feature derived from DRAGON system. Subsidiarily, in-situ water quality data of
sea temperature, salinity and chlorophyll-a were also measured at four stationary points near Isahaya Bay
mouth in the area. Due to the chlorophyll-a data, the red tide occurred centered in the north-west part of
Ariake Sea on August 19 and lasted till August 26. As a result of flow pattern analysis during the red tide
event, the red tide grew up when the phase of tidal current changed from middle to neap within a few days
after certain measure of rainfall. Figure 1 and Figure 2 show the current pattern at the ebb tide and daily
mean current before appearance and after occurrence of red tide respectively. Figure 1 shows that the
nutrients supplied from the river mouth mainly fro the northern area after rainfall flush out through the
analytical domain by strong tidal current at the middle tide. On the contrary, the weak currents about half to
that of the middle tide are distributed in the whole domain at the neap tide. The latter flow pattern sustains
the density stratification near the sea surface suits for the phytoplankton growth because the vertical mixing
rate at the neap tide is less than that at the middle or spring tide. Solar radiation data during red tide event
showed that the daily values were relatively low against the monthly mean value with the exception of August 24th. So the insolation seems not to be the dominant factor relating to the red tide process in summer. Eventually the main reason of red tide reproduction in summer is owing to the flow pattern of neap tide which easily maintains the density stratification at the upper layer and to the supply of the nutrients from the river after rainfall. Spatial distribution of divergence and rotation derived from current vector map also help to understand the characteristic of physical circulation at the sea surface related red tide event.

Figure 1 Current pattern at middle tide on August 17, 2007. The outer upper (northern) area of the figure is the bay head of Ariake Sea where principal nutrients supplied by Chikugo River and some other rivers. The outer lower right (southern) area is connecting to the bay mouth of Ariake Sea.

Figure 2 Current pattern at nap tide on August 21, 2007.