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Abstract

Techniques to precisely and accurately compare series of images are at the core of many remote sensing applications. For
instance, stereoscopic image pairs may be analyzed to produce digital elevation models (DEM), time series of images may be
compared to quantify some aspects of landscape changes such as vegetation cover evolution, glacier retreat or advance, damage
or crisis assessment to monitor floods, fire, landslides, earthquakes, etc... In all these applications, images need to be projected
in a common geometry to be jointly analyzed [1]. This particular geometry can be the epipolar geometry if a DEM is to be
extracted from stereoscopic images pairs, it can be a ground projection if ortho-images are analyzed, or it can also be the viewing
geometry of a particular image used as reference. The projection mapping from the raw image acquisition to the new common
geometry can be highly irregular [1]. Although images can be assumed regularly sampled in sensor geometry (regular CCD matrix
for digital frame camera, stable pusbhroom system, etc...), the mapped pixel grid often forms a highly irregular mapping due to
the combination of high local topography variations, high incidence angles of the imaging systems, and large baselines between
imaging systems. Mapping irregularities are further exacerbated in high resolution images when sharp 3D objects such as building
corners or sharp topographic features can be resolved in the image.

In this study, we formalize the general resampling problem when the input image is critically sampled on a regular grid,
and should be reconstructed without the introduction of aliasing, while preserving the local image frequency content. We will
introduce a rigorous, locally varying resampling kernel, which is adapted to the local warping.

The theory of image resampling was introduced in [2], and it is commonly used in computer graphics applications to reconstruct
sharp 3D objects onto 2D images [3]. We start by presenting a complete characterization of the resampling problem by looking
at both direct and inverse image warping problems.

To simplify the notation and the discussion, we will assume that a regularly sampled image in sensor geometry, 𝑖𝑠, is to be
resampled to an image on the ground, 𝑖𝑔 , via the direct mapping x𝑔 = 𝑚(x𝑠), where x𝑠 denote coordinates in the sensor geometry
and x𝑔 denote coordinates in the mapped geometry (e.g., on the ground). The general resampling theory can be described with
four successive steps. The input image 𝑖𝑠 is first continuously reconstructed into the image 𝑖𝑐𝑠, it is then mapped to 𝑖𝑐𝑔 , then filtered

to be adequately sampled onto the grid defined by the set of {x𝑔} to produce 𝑖𝑐𝑓𝑔 , and finally sampled at every x𝑔 . Formally, it
is written as follows:

𝑖𝑐𝑠(x𝑠) =
∑

k𝑠∈ℤ2

𝑖𝑠(x𝑠)𝑟𝑠(x𝑠 − k𝑠),

𝑖𝑐𝑔(x𝑔) = 𝑖𝑐𝑠(𝑚
−1(x𝑔)),

𝑖𝑐𝑓𝑔 (x𝑔) =

∫

ℝ2

𝑖𝑐𝑔(t𝑔)ℎ𝑔(x𝑔 − t𝑔) dt𝑔,

𝑖𝑐𝑓𝑔 (x𝑔) =

∫

ℝ2

𝑖𝑐𝑠(𝑚
−1(t𝑔))ℎ𝑔(x𝑔 − t𝑔) dt𝑔,

𝑖𝑐𝑓𝑔 (x𝑔) =

∫

ℝ2

∑

k𝑠∈ℤ2

𝑖𝑠(k𝑠)𝑟𝑠(𝑚
−1(t𝑔)− k𝑠)ℎ𝑔(x𝑔 − t𝑔) dt𝑔,

𝑖𝑐𝑓𝑔 (x𝑔) =
∑

k𝑠∈ℤ2

𝑖𝑠(k𝑠)

∫

ℝ2

𝑟𝑠(𝑚
−1(t𝑔)− k𝑠)ℎ𝑔(x𝑔 − t𝑔) dt𝑔,

(1)

with 𝑟𝑠 the reconstruction kernel defined in sensor geometry, and ℎ𝑔 the anti-aliasing filter defined in the mapped geometry.
Practically, Eq. 1 is then discretized by only computing it at the points of coordinates x𝑔 that belong to the mapped grid. Assuming
that 𝑚 is invertible and locally linear, we can apply the change of variable t𝑔 = 𝑚(u𝑠), with associated Jacobian J = ∂m

∂u𝑆
, and

with dt = ∣ ∂m
∂u𝑆

∣ du𝑠. We then simplify the above equation as:

𝑖𝑐𝑓𝑔 (x𝑔) =
∑

k𝑠∈ℤ2

𝑖𝑠(k𝑠)

∫

ℝ2

𝑟𝑠(u𝑠 − k𝑠)ℎ𝑔(x𝑔 − Ju𝑠)∣J∣ du𝑠,

𝑖𝑐𝑓𝑔 (x𝑔) = 𝑖𝑐𝑓𝑔 (Jx𝑠) =
∑

k𝑠∈ℤ2

𝑖𝑠(k𝑠)

∫

ℝ2

𝑟𝑠(u𝑠)ℎ𝑔(J(x𝑠 − u𝑠 − k𝑠))∣J∣ du𝑠,

𝑖𝑐𝑓𝑔 (x𝑔) = 𝑖𝑐𝑓𝑔 (Jx𝑠) =
∑

k𝑠∈ℤ2

𝑖𝑠(k𝑠)𝜌𝑠(x𝑠 − k𝑠),

(2)



with

𝜌𝑠(x) =

∫

ℝ2

𝑟𝑠(u𝑠)ℎ𝑔(J(x𝑠 − u𝑠))∣J∣ du𝑠,

𝜌𝑠(x) = 𝑟𝑠(x)⊛ ℎ𝑔(Jx)∣J∣.
(3)

We call 𝜌𝑠 the equivalent resampling kernel defined in sensor geometry. Note that it is sampled by {k𝑠} (Eq. 2), which
defines a regularly sampled grid as it scans all the pixels in the input image. This formulation implies that the image mapping is
defined from the inverse image warping 𝑚−1, and we call it the inverse resampling model. Indeed, although the direct mapping
𝑚, or it’s linearized version J, is used in this formulation, it has to be derived by the inversion of J−1 to locate without any
coordinate search its location and extent in the sensor image. Practically, ∣J∣ is a normalization factor such that

∑
x𝑠

𝜌𝑠 = 1.
The direct resampling model formulates the image resampling in the destination image geometry instead of the sensor geometry.

Starting from Eq. 1 we can use the alternative change of variable l𝑔 = 𝑚(k𝑠), linearize 𝑚, and write:

𝑖𝑐𝑓𝑔 (x𝑔) =
∑

l𝑔=Jk𝑠,k𝑠∈ℤ2

𝑖𝑠(J
−1l𝑔)

∫

ℝ2

𝑟𝑠(J
−1(t𝑔 − l𝑔))ℎ𝑔(x𝑔 − t𝑔)∣J−1∣ dt𝑔,

𝑖𝑐𝑓𝑔 (x𝑔) =
∑

l𝑔=Jk𝑠,k𝑠∈ℤ2

𝑖𝑠(J
−1l𝑔)𝜌𝑔(x𝑔 − l𝑔),

(4)

with

𝜌𝑔(x) =

∫

ℝ2

𝑟𝑠((𝐽)
−1t𝑔)ℎ𝑔(x𝑔 − t𝑔)∣J−1∣ dt𝑔,

𝜌𝑔(x) = 𝑟𝑠(J
−1x)⊛ ℎ𝑔(x)∣J−1∣.

(5)

We call 𝜌𝑔 the equivalent resampling kernel defined in mapped geometry. Note that in Eq. 4 𝜌𝑔 is sampled by l𝑔 , which
is irregularly sampled as it is the irregular projection of the regular grid sampled by k𝑠. The practical implementation of this
resampling model is extremely tedious as it requires, for each x𝑔 , the determination of all l𝑔 falling within the extent of 𝜌𝑔 , and
the irregular sampling of 𝜌𝑔 . For this reason, we only consider in this study the practical implementation of the inverse resampling
model defined by Eq. 2.

We propose an implementation of 𝜌𝑠 where both 𝑟𝑠 and ℎ𝑔 are approximated sinc kernels. In particular, we show how to
predict the shape of the Fourier reciprocal cells of each kernel based on the local mapping distortion given by the mapping
Jacobian J. This leads to an algorithm where three cases are possible to construct 𝜌𝑠. If the reciprocal cell of 𝑟𝑠 is contained
within the reciprocal cell of ℎ𝑔 , then 𝜌𝑠 = 𝑟𝑠. If the reciprocal cell of ℎ𝑔 is contained within the reciprocal cell of 𝑟𝑠, then
𝜌𝑠 = ℎ𝑔 . If none of the previous cases happen, 𝜌𝑠 is the convolution of a separable kernel 𝑟𝑠 with a non-separable kernel ℎ𝑔 .
When this case happens, ℎ𝑔 needs to be up-sampled to avoid aliasing, then down-sampling and convolution with 𝑟𝑠 are both
achieved directly in the Fourier domain for efficiency. A new, locally adapted, kernel 𝜌𝑠 is determined for each point x𝑔 of the
resampling grid defined in the mapped geometry. Note that in general, 𝜌𝑠 is not a separable kernel nor a linear transformation of
a separable kernel because of the up-sampling and down-sampling operations.

Examples and illustrations are shown where this formulation allows us to resample high resolution satellite and aerial images
taken in mountainous steep topographic areas. High image frequencies are preserved in all areas of the images, although local
image resolution has been found to vary by a factor of more than 10. Without a locally adaptive kernel, extreme image filtering
or extreme aliasing artifacts would have occurred. The use of an approximated sinc kernel is also key in preserving the images
sub-pixel information. This property is critical when subpixel correlation algorithms are used on the resampled set of images to
derive ground deformation maps from mutli-temporal images [1], or when accurate disparity fields must be estimated to reconstruct
accurate topography models from epipolar images.

The methodology described in this study was implemented in the Co-registration of Optically Sensed Images and Correlation
(COSI-Corr)1 software package, which is freely distributed for non-commercial and research purposes.

REFERENCES

[1] S. Leprince, S. Barbot, F. Ayoub, and J. P. Avouac, “Automatic and precise ortho-rectification, co-registration and sub-pixel correlation of satellite images,
application to ground deformation measurements,” IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 6, pp. 1529–1558, 2007.

[2] P. Heckbert, “Fundamentals of texture mapping and image warping,” Master’s thesis, Technical Report No. UCB/CSD-89-516, University of California,
Berkeley, 1989. [Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/1989/CSD-89-516.pdf

[3] M. Zwicker, H. Pfister, J. van Baar, and M. Gross, “Ewa splatting,” IEEE Transactions on Visualization and Computer Graphics, vol. 8, no. 3, pp.
223–238, 2002.

1URL: http://www.tectonics.caltech.edu/slip_history/spot_coseis/


