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1. INTRODUCTION 

Analysis of hyperspectral data for defining the land-cover classes through classification techniques, in particular 

for small patches and scattered land-covers, is not a trivial task. Factors such as high spatial variability of land-

cover signatures, the “boundary effect” between neighboring land-covers, and the curse of dimensionality make 

this task more challenging [1]. As the integrity of a land-cover class decreases in an image, i.e. it becomes more 

scattered and distributed in smaller segments, its heterogeneity increases due to the presence of more mixed pixels 

(stronger “boarder effect”) and as a consequence the classification accuracy decreases [2].  

Variety of techniques has been applied to supervised classification of remotely sensed hyperspectral imagery to 

deal with the classification accuracy and curse of dimensionality issue in classification of hyperspectral imagery 

in last decade. Among them feature reduction techniques [3], adaptive statistics estimation by exploitation of 

classified (semilabeled) samples [4], regularization of the sample covariance matrix [5], analysis of the spectral 

signatures to model the classes [6], and support vector machines [7] can be referred as the main categories of 

approaches. Although these approaches have obtained many achievements, they seldom take the real situation of 

presence of small land-cover patches or insufficiency of available training samples into account. This paper 

proposes a new efficient classification approach to tackle the problems of complexity and accuracy, in particular 

for small and scattered land-covers, through relevant vector machine (RVM). 

2. MATERIALS AND METHODS 

The proposed approach adopts a combined system using an appropriate data transformation technique with a 

multiclass RVM design to realize a noncomplex and accurate classifier. 

2.1. Key information preserving feature reduction 

The adopted class-oriented discriminant analysis method for this paper is Fisher linear discriminant analysis 

(FLDA), which is a standard supervised technique for dimension reduction in pattern recognition [8]. FLDA 



transformation maximizes the ratio of between class variance to within class (intraclass) variance. The model 

which presents the FLDA is the generalized eigen-problem specified by  
1

W BS S w w           (1) 

where  and  are the between and within class scatter matrices, respectively, and BS WS is a generalized 

eigenvalue.

2.2. Multiclass relevance vector machine classification 

RVM is a probabilistic sparse kernel model identical to support vector machine (SVM) in functional form which 

doesn’t suffer the drawbacks of SVM such as necessity to be a continuous symmetric kernel of a positive integral 

operator (Mercer’s condition) and liberal use of kernel functions (insufficient sparsity) [9].  

To adopt a binary classifier like RVM to the classification task of hyperspectral remote sensing data which 

usually involves simultaneous discrimination of numerous information classes, the general strategies are based on 

combining an ensemble of binary classifiers, a set of two-class problems, according to some decision rules. The 

adopted design for the proposed method is the one-against-one strategy with parallel architecture. In this design 

all possible pair-wise classifications are modeled by using ( 1) /M M 2 RVMs. Each pixel is analyzed 

by a discriminant function to define its belonging to one of information classes ,iC jC

where  and a positive score is given to the winner class of each one-against-one 

competition. The final decision about the class of each pixel is made on the total score each class obtains.

, ,i jC C C i j

3. RESULTS AND DISCUSSION 

3.1. The real data for experiments 

The test image is a remotely sensed hyperspectral image with a ground resolution of 3.5 meter and 126 available  
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Fig. 1. (a), (b), and (c) Large and integrated land-cover classes (C1, C2, and C3, respectively). (d), (e), and (f) 

Small and scattered land-cover classes (C4, C5, and C6, respectively). 



bands which is collected by the AVIRIS. A ground truth map of the image is available too. For experiments, 3 

land-cover classes of large and integrated shape (C1, C2, and C3) and 3 land-cover classes of scattered form 

including many small patches (C4, C5, and C6) are selected. Fig. 1 depicts the image and selected classes. 

3.2. Experiments and results 

The selected land-cover classes are used to generate sets of training samples in different sizes for each class. The 

proposed method (RVM+FLDA) is compared with RVM in join with the most common feature transformation 

technique in remote sensing, namely principal component analysis (PCA) and also SVM which is one of the most 

accurate supervised classification methods. Using PCA the original hyperspectral data in transformed to 3 

different reduced spaces with 10, 20, and 30 bands. SVM is applied with two most efficient kernel types, namely 

polynomial kernel (SVM-Poly) and Gaussian radial basis function kernel (SVM-RBF). Tables 1 and 2 tabulate 

the obtained results for training to test sample ratios of 1/15 and 1/120, respectively. 

Table 1. Single class classification accuracies and the computational times achieved through the different 
approaches. Train to test sample ratio: 1

15.

Classification Accuracy (%) Times (s) Method
C1 C2 C3 C4 C5 C6 Train Test

RVM+PCA10 99.57 96.74 98.49 90.38 88.90 94.38 403 1.8
RVM+PCA20 99.55 96.63 98.42 89.81 92.39 94.85 412 2.3
RVM+PCA30 99.57 96.76 98.52 90.15 93.14 95.18 461 2.9

SVM-Poly 99.87 97.90 99.16 91.75 92.33 95.69 4.2 3.1
SVM-RBF 99.86 97.67 98.95 90.61 90.68 95.22 1.6 6.8
RVM+FLD 99.57 98.64 99.16 97.37 94.79 96.91 662 1.3

Table 2. Single-class classification accuracies, and the computational time achieved through the different 
approaches. Train to test sample ratio: 1

120 .

Classification Accuracy (%) Times (s) Method
C1 C2 C3 C4 C5 C6 Train Test

RVM+PCA10 99.84 95.00 89.45 81.56 77.75 85.95 21 1.7
RVM+PCA20 99.84 94.81 89.45 74.91 78.15 85.48 21 1.9
RVM+PCA30 99.84 95.02 89.45 81.90 77.80 86.00 18.5 2.2

SVM-Poly 99.86 94.26 95.89 82.13 85.87 87.59 1 1.1
SVM-RBF 99.84 93.43 93.41 76.63 81.52 78.13 1 2.2
RVM+FLD 99.63 97.88 98.57 94.16 89.65 96.67 44 1

In low training to test sample ratio (1/15) the proposed method is comparable with the other techniques for 

integrated land-cover classes (C1-C3) while is superior to the other approaches for scattered land-cover classes 

(C4-C6). For lower training to test sample ratio (1/120) which is a much more realistic case, it dramatically 



outperforms the other techniques (except for C1) in particular for scattered land-cover classes. In terms of the 

computational time, it is slower in training phase but is faster in testing phase which makes it an appropriate 

option for real-time applications with a priori training. 

4. CONCLUSION 

A new method to enhance the classification accuracy of small and scattered patches of land-covers which often 

contain the key information in hyperspectral imaging is proposed in this paper. It is efficient in terms of 

complexity too. 
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