EXTENSION OF THE TARGET SCATTERING VECTOR MODEL TO THE BISTATIC CASE
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1. INTRODUCTION

In the context of Polarimetric Synthetic Aperture Radar (PolSAR) imagery, the extraction of roll-invariant parameters is one of
the major point of interest for the segmentation, classification and detection. In 2007, for the monostatic case, Ridha Touzi has
proposed a new Target Scattering Vector Model (TSVM) to extract physical parameters [1]. Based on the Kennaugh-Huynen
decomposition, this model allows to extract four roll-invariant parameters.

For the bistatic case, the reciprocity assumption is in general no more valid. This paper presents a generalization of the
TSVM when the cross-polarization terms are not equal. First, a presentation of bistatic polarimetry is exposed by means of the
Kennaugh-Huynen decomposition [2]. Then, the TSVM is introduced as a projection of the scattering matrix in the Pauli basis
to extract roll-invariant parameters [1] and a comparison with the monostatic case is carried out. Finally, a presentation of the
computation of the TSVM parameters is exposed.

2. THE KENNAUGH-HUYNEN CON-DIAGONALIZATION

Coherent targets are fully described by their scattering matrix S. For the context bistatic polarimetry, S is a complex 2 x 2
) S S L .
matrix, S = HH av where the cross-polarization elements Spy and Sy are not equal in general.
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Kennaugh and Huynen have proposed to apply the characteristic decomposition on the scattering matrix to retrieve physical
parameters [2] [3] [4]. The Kennaugh-Huynen decomposition is parametrized by means of 8 independent parameters: 6z, Tg,

O, TE, V, iU, k and v by [2] [5] [6]:
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o; are the spin Pauli matrices.f i and 0 are the tilt angles. 7 and 7 are the helicity. The subscript R and E stand respectively
for reception and emission. y is the maximum amplitude return.  and v are respectively referred as the characteristic and skip

angles. « is the absolute phase of the target, this term is generally ignored except for interferometric applications.



Moreover, it can be shown that:
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where A\ et A\, are the two complex con-eigenvalues of S.

3. THE TARGET SCATTERING VECTOR MODEL
3.1. Definition

The TSVM consists in the projection in the projection in the Pauli basis of the scattering matrix con- diagonalized by the Takagi

T
method. It yields that kp = 1/\@[51{1{ + Svv,Sug — Svv,Suv + Svw,j(Suv — Sym)| . After some mathematical

manipulations, one can express the target vector kp by means of Huynen’s parameters by:
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By following the same procedure as proposed by Touzi in [1], one can introduce the symmetric scattering type magnitude and
phase, denoted o5 and ®,,, by:
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By combining (4) and (5), it yields:
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®, corresponds to the phase of \; + A2. According to (6), one can decompose kp as the product of three terms:
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It can be noticed that the first and second terms are “rotation” matrices which depend only on the tilt angles 0z and 6.

3.2. Roll-invariant target vector

As a consequence, for the bistatic case, the expression of the roll-invariant target vector k& ™™™ is given by:
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In bistatic polarimetry, five parameters (namely p, 7r, Tr, as and ®,_) are necessary for an unambiguous description of a

coherent target.
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3.3. Link with the monostatic case

The monostatic case can be retrieved from the bistatic case by assuming § = 0 = 0 and 7,,, = 7r = 7g. Consequently,
when the reciprocity assumption holds, the roll-invariant target vector, introduced by Touzi, is:
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4. TSVM PARAMETERS COMPUTATION

4.1. The Kennaugh matrix

The Kennaugh matrix K is another representation of the scattering matrix S, its expression is given by K = 2A*WA ~! with
W =S ®S. ® is the Kronecker product, and:
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4.2. The Kennaugh matrices of orders 0 to 2
Let O1, O3 and Og be the three “rotation matrices” defined by [5]:
10 0 0 1 0 0 0 1 0 0
0 1 0 0 0 2 0 2 0 20) —sin(20
01 (2) 0,(2) = cos(27) sin(27) [05(20) — cos(26) sin(26)
0 0 cos(2v) —sin(2v) 0 0 1 0 0 sin(20) cos(20)
0 0 sin(2v) cos(2v) 0 —sin(27) 0 cos(27) 0 0 0
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The Kennaugh matrices of orders 0 to 2, denoted KO are defined by:
K® = 03(—20r) K O3(205)
KM = 05(27) K® 0y(—275) (12)
K© = 05(—2v)K® 04(2v)

4.3. Link with the TSVM parameters
4.3.1. Tilt angles

In practice, thanks to the scattering scattering matrix S, the Kennaugh matrix K is first computed. The tilt angles 8z and 6

are then directly deduced from the Kennaugh matrix K by [7]:

K K
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Once O and fp are found, the Kennaugh matrix of order 2, namely K® is computed according to (12). Moreover, as this

matrix does not depend on the tilt angles, it can be viewed as the roll-invariant Kennaugh matrix.
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4.3.2. Helicity angles

Similarly, the helicity angles 75 are 7 are issued from the Kennaugh matrix of order 2 by [7]:

2) K
tan(27g) = % and tan(27g) = %. (14)
Kio Koy

4.3.3. vand~y

Next, v and ~ are deduced from the Kennaugh matrices of order 1 et O by:
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with A = zé) . The solution adopted is the A + /A? — 1 ranging in the interval [—1, 1].
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4.34. asand D,

Finally, the symmetric scattering type magnitude and phase, as and @, are directly deduced from parameters v and «y by:
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It yields:
tanas = |B| and ®,, = arg(B). (17)

5. CONCLUSION

In this paper, a generalization of the Target Scattering Vector Model to the bistatic case has been proposed. Based on the
Kennaugh-Huynen decomposition, five parameters are necessary for an unambiguous description of a coherent target. The
“monostatic” TSVM has been retrieved as a particular case of the proposed method. In the final version of the paper, author
will present results on POISAR data. Moreover, the roll-invariant incoherent target decomposition (ICTD) inspired from Cloude-
Pottier ICTD will be introduced for the bistatic case, and a comparison with the so-called o« — 3 model parameters will be carried

out.
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