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1. INTRODUCTION

The recently launched polarimetric SAR (POLSAR) systems are now capable of producing high quality images of the Earth’s

surface with meter resolution. The goal of the estimation process is to derive the scene signature from the observed data set. In

the case of spatially changing surfaces (”heterogeneous” or ”textured” scenes) the rst step is to de ne an appropriate model

describing the dependency between the polarimetric signature and the observable as a function of the speckle. In general, the

multiplicative model has been employed for POLSAR data processing as a product between the square root of a scalar positive

quantity (texture) and the description of an equivalent homogeneous surface (speckle) [1]. The objective of this paper is to

present a new parameter estimation technique based on the consistent Spherically Invariant Random Vectors (SIRV) model.

2. SIRV CLUTTER MODEL WITH NORMALIZED TEXTURE

The SIRV is a class of non-homogeneous Gaussian processes with random variance known also as Gaussian scale mixture or

compound Gaussian model. The complex m-dimensional measurement k is de ned as the product between the independent

complex circular Gaussian vector ζ ∼ N (0, [T ]) (speckle) with zero mean and covariance matrix [T ] = E{ζζ†} and the square



root of the positive random variable ξ (representing the texture):

k =
√

ξ · ζ. (1)

It is important to notice that in the SIRV de nition, the PDF of the texture random variable is not explicitly speci ed. As a

consequence, SIRVs describe a whole class of stochastic processes.

For POLSAR clutter, the SIRV product model is the product of two separate random processes operating across two different

statistical axes [2]. The polarimetric diversity is modeled by the multidimensional Gaussian kernel. The randomness of spatial

variations in the radar backscattering from cell to cell is characterized by ξ. Relatively to the polarimetric axis, the texture

random variable ξ can be viewed as a unknown deterministic parameter from cell to cell.

The texture and the covariance matrix unknown parameters can be estimated from ML theory. For N i.i.d. secondary, let

Lk(k1, ...,kN |[T ], ξ1, ..., ξN ) be the likelihood function to maximize with respect to [T ] and ξi:

Lk(k1, ...,kN |[T ], ξ1, ..., ξN ) =
1

πmNdet{[T ]}N
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†
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ki
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)
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The corresponding ML estimators are given by [3]:

∂lnLk(k1, ...,kN |[T ], ξ1, ..., ξN )

∂ξi
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k
†
i
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m
, (3)

∂lnLk(k1, ...,kN |[T ], ξ1, ..., ξN )
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N

N∑
i=1

kik
†
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As the variables ξi are unknown, the following normalization constraint on the texture parameters insures that the ML

estimator of the speckle covariance matrix is the Sample Covariance Matrix (SCM):
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N
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†
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= [T̂ ]SCM ⇔ 1

N
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= [0m]. (5)

The generalized ML estimator for ξi are obtained by introducing Eq. 5 in Eq. 3.

3. SIRV CLUTTER MODEL WITH NORMALIZED COVARIANCE MATRIX

Let now the covariance matrix be of the form [T ] = σ[M ], such that Tr{[M ]} = 1. The product model form Eq. 1 can be also

written as:

k =
√

τ · z, (6)

where z ∼ N (0, [M ]). σ and ξ are two scalar positive quantities such that τ = σ · ξ.
Using the same procedure as in Sect. 2, the corresponding texture and normalized covariance ML estimators are given by:

∂lnLk(k1, ...,kN ; [M ], τ1, ..., τN )

∂τi

= 0 ⇔ τ̂i =
k
†
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, (7)

∂lnLk(k1, ...,kN ; [M ], τ1, ..., τN )
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Given the fact that the covariance matrix is normalized, it is possible to compute the generalized ML estimator of [M ] as



the solution of the following recursive equation:
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This approach has been used in [4] by Conte et al. to derive a recursive algorithm for estimating the matrix [M ]. This algorithm

consists in computing the Fixed Point of f using the sequence ([M ]i)i≥0 de ned by:

[M ]i+1 = f([M ]i). (10)

This study has been completed by the work of Pascal et al. [5], [6], which recently established the existence and the

uniqueness, up to a scalar factor, of the Fixed Point estimator of the normalized covariance matrix, as well as the convergence

of the recursive algorithm whatever the initialization. The algorithm can therefore be initialized with the identity matrix [M̂ ]0 =

[Im].

The generalized ML estimator for τi are obtained by introducing [M̂ ]FP in Eq. 7.

4. MAIN RESULT

The span (total power) σ can be derived using the covariance matrix estimators presented in Sect. 2 and Sect. 3 as:

σ̂ =
k
†[M̂ ]−1

FP
k

k†[T̂ ]−1

SCM
k

. (11)

Note that Eq. 11 is valid when considering N identically distributed linearly independent secondary data with deterministic

unknown texture from cell to cell. It can be seen as a double polarimetric whitening lter issued from two equivalent SIRV

clutter models: with normalized texture variables and with normalized covariance matrix parameter.

The main advantage of the proposed estimation scheme is that it can be directly applied with standard boxcar neighborhoods.

Fig. 1 illustrates the span σ estimation with high resolution POLSAR X-band data acquired by the ONERA RAMSES system

with a spatial resolution of approximately 1.5 m. 5 × 5 boxcar neighborhood has been selected for illustration. The proposed

estimator from Fig. 1-(c) exhibits better performances in terms of spatial resolution preservation than the standard span estimator

illustrated in Fig. 1-(b).

(a) (b) (c)

Fig. 1. Brétigny, RAMSES POLSAR data, X-band. (a) initial 1-look span estimated as σSLC = k
†
k, (b) 25-look span estimated

as σSCM = Tr
{

[T̂ ]SCM

}
, and (c) span estimated using σ̂ from Eq. 11

Finally, Fig. 2 presents the three SIRV parameters which completely describe the POLSAR data set: the total power, the

normalized texture and the normalized covariance matrix.



(a) (b) (c)

Fig. 2. Brétigny, RAMSES POLSAR data, X-band. (a) span estimated using σ̂ from Eq. 11, (b) normalized texture ξ, and (c)
color composition of the normalized coherency diagonal elements [M ]11-[M ]33-[M ]22.

5. CONCLUSIONS

This paper presented a new estimation scheme for optimally deriving clutter parameters with high resolution POLSAR images.

The proposed approach couples nonlinear ML estimators with conventional boxcar neighborhoods for taking the local scene

heterogeneity into account.

The heterogeneous clutter in POLSAR data was described by the SIRV model. Three estimators were introduced for

describing the high resolution POLSAR data set: the span, the normalized texture and the speckle normalized covariance

matrix.

In the nal version of this paper, authors propose to study the asymptotic distribution of the new span estimator. The

estimation bias on homogeneous regions will be assessed also. However, preliminary Monte Carlo studies indicate that the

proposed estimator is unbiased at least assimptotically.

6. REFERENCES

[1] F. T. Ulaby, F. Kouyate, B. Brisco, and T. H. L. Williams. Textural information in SAR images. IEEE Transactions on

Geoscience and Remote Sensing, GE-24(2):235–245, 1986.

[2] G. Vasile, J. P. Ovarlez, F. Pascal, and C. Tison. Coherency matrix estimation of heterogeneous clutter in high resolution

polarimetric SAR images. IEEE Transactions on Geoscience and Remote Sensing, to appear, 2009.

[3] F. Gini and M. V. Greco. Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter. Signal

Processing, 82(12):1847–1859, 2002.

[4] E. Conte, A. DeMaio, and G. Ricci. Recursive estimation of the covariance matrix of a compound-Gaussian process and

its application to adaptive CFAR detection. IEEE Transactions on Image Processing, 50(8):1908–1915, 2002.

[5] F. Pascal, Y. Chitour, J. P. Ovarlez, P. Forster, and P. Larzabal. Covariance structure maximum-likelihood estimates in

compound Gaussian noise: existence and algorithm analysis. IEEE Transactions on Signal Processing, 56(1):34–48, 2008.

[6] F. Pascal, P. Forster, J. P. Ovarlez, and P. Larzabal. Performance analysis of covariance matrix estimates in impulsive noise.

IEEE Transactions on Signal Processing, 56(6):2206–2216, 2008.


