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1. INTRODUCTION

Synthetic aperture radar (SAR) is a high resolution technique for target imaging and terrain mapping. Large volumes

of data are generated on airborne SAR platforms that need to be down linked over bandlimited channels for process-

ing or storage. There is therefore a major interest in efficient compression of SAR data. The most notable compres-

sion algorithm for SAR data is the block adaptive quantization (BAQ) algorithm [1] (and its variants), which has been

implemented in a number of SAR systems, including NASA’s Magellan Mission to Venus and Shuttle Imaging Radar

Mission C (SIR-C). The BAQ algorithm is a scalar quantization algorithm with varying threshold levels determined

by a scale factor depending on the signal variance. Other techniques include vector quantization [2, 3], quantiza-

tion in various transforms-domains [4–7], wavelet and wavelet packets [8, 9], trellis-coded quantization [10, 11],

entropy-constrained quantization [12], predictive coding [13], and compressive sensing [14].

Compression of SAR raw data is a challenging problem due to the statistical properties of the data. A widely

used statistical model for the SAR raw data, established in [1], is that the in-phase (I) and quadrature (Q) components

of SAR data samples are the sum of a very large number of independent contributions, each of which represents the

return from a surface element within the antenna footprint [1]. It follows from the central limit theorem that the I and

Q samples are Gaussian distributed with zero mean and slowly varying average power. Moreover, the data samples

are uncorrelated within a pulse return (in range) and across pulse returns (across range).

To improve the data compression performance further, it is critical to identify correlation in the SAR raw data.

One promising possibility is presented with the variable-rate vector quantization with range-focusing by Poggi et. al.

[6]. Range focusing is the first step in the SAR image formation process, and [6] demonstrated that the range-focused

data exhibit more correlation than the raw data. Furthermore, in [15], we extended Poggi’s findings by analyzing the

inverse Fourier transform of the dechirped raw data for spotlight-mode SAR. This approach for spotlight mode SAR

is comparable to the range-focused data for strip-mode SAR in [6]). Furthermore, it is shown in [15] that, over a

short window across pulse returns, the inverse Fourier transform of the raw data is well modeled by an autoregressive

(AR) process [16].

Based on our findings in [15], in this paper we propose two AR-model based quantization algorithms:

transform-domain block predictive quantization (TDBPQ) and transform-domain block predictive vector quanti-

zation (TDBPVQ). Both methods operate on the inverse discrete Fourier transform (IDFT) of the dechirped SAR

data. Implementation of IDFT does not require a great deal of computational power since it can be performed very

efficiently using fast Fourier transform. Furthermore, since it is performed only in one dimension (range), and on
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short blocks, the memory requirements are low. After the IDFT operation the AR parameters and the variance of the

innovation process are estimated over short strips of the IDFT data across the SAR returns (range). Although any

AR estimators can be utilized, we use Yule-Walker method [16] for its computational efficiency.

2. PREDICTIVE QUANTIZATION METHODS

Having estimated the parameters of the AR model, we employ a predictive quantization scheme to compress the

IDFT transformed SAR signals. Specifically, we use the differential pulse code modulation (DPCM) algorithm [17].

The DPCM technique was also utilized by Magli and Olmo [13]. However, they applied the DPCM algorithm

directly to the down-converted SAR raw data. Preprocessing the signal through IDFT improves the performance of

the compression algorithm as it reveals the underlying correlation behavior of the SAR return signals. The predictor

order is chosen as four since this oder is shown to remove most of the correlation in the Gotcha SAR data set [15].

As described above the predictor coefficients are estimated for each data strip (a frame in the azimuth direction)

using the Yule-Walker method. The input to the quantizer can be approximated by the innovation process of the AR

model. Since the SAR data is Gaussian distributed, one may assume that the innovation process is also Gaussian.

Furthermore, as mentioned previously, the variance of the samples of the innovation process for each data strip are

estimated by the Yule-Walker method. Therefore, the quantizer is designed for a Gaussian distributed input which is

scaled according to the estimated variance of the innovation process. This choice of the predictor and quantizer are

not necessarily optimal [18]. In a closed loop DPCM system the predictor inputs are not the actual samples of the

data and the quantizer does not operate on the innovation process. However, it is well known that for high signal to

noise ratios, these choices of predictor and quantizer are close to optimal.

Next we extend the TDBPQ to TDBPVQ using predictive vector quantization, [19], to code multiple IDFT data

strips together across azimuth (hereafter we denote this set of data strips as a data block). For a typical (linear)

predictive vector quantization application, a two-dimensional AR model needs to be employed in order to take

advantage of the correlation across the vector elements. With the IDFT of the SAR raw data, however, for the

majority of the blocks the strips in the block are either not correlated or have low correlation. There are, however,

some blocks that show correlation between the strips. Therefore to reduce the complexity of AR estimation, we

use a one dimensional AR model for each strip. During the encoding process a vector of K samples comprising

of one sample from each strip enters the encoder. The predictor operates on the K components of this vector as

if they were independent with each sample predicted with its own predictor. The K residuals from the predictors

form a vector that is quantized by the vector quantizer. The vector quantizer codebook is designed using the LBG

(K-means) algorithms [20].

3. NUMERICAL RESULTS

To show the efficacy of our approach we apply the compression techniques proposed here to the AFRL’s Gotcha

SAR Dataset [21]. In Table 1 we summarize the performance of the two methods proposed here with that of the

block adaptive quantization (BAQ). All three methods quantize data samples at 2 bits/sample. Both the BAQ and

TDBPQ algorithms use a data strip of 128 samples across the returns (range). The TDBPVQ also uses 128 sample

data strips and forms a data block by stacking two strips (across azimuth) together. The vector quantizer’s codebook

is designed using a larger block of 106×256 samples. As mentioned previously we have used an AR model of order

four for both TDBPQ and TDBPVQ.

As shown in Table 1, the TDBPQ outperforms the BAQ by at least 6.0 dB in average signal-to-noise ratio (SNR).

This is a significant gain and translates into a bit rate reduction of nearly one bit per sample. The TDBPVQ improves

over the TDBPQ performance by 0.6 dB on average. As mentioned earlier, the correlation between data strips is

highly low and highly varying, with some portions of data show more correlation than others. Fig. 1 demonstrates

this as it shows the short-term average SNR over the full dataset. The SNR for each of the three schemes experiences



Table 1. Performance Summary of Three Quantizers

Method Macro-Block Size Overhead (#coef/sample) SNR (dB)

BAQ 1 × 128 0.0078 7.86

TDBPQ 1 × 128 0.0703 13.81

TDBPVQ 106 × 256 0.1002 14.68

Fig. 1. SNR performance of three compression methods on Gotcha data.

fluctuations. However, the fluctuations are higher for TDBPVQ (as much as 6 dB) followed by TDBPQ (as much as

4 dB). The largest SNR improvement of TDBPVQ over TDBPQ is about 1.5 dB. Finally in Table 1 we have included

a brief study of each scheme’s overhead in terms of the number of coefficients and parameters per data sample. The

overhead for our two methods is less than 10% and for the BAQ it is less than one 1%. However, the increase in the

overhead is expected as the proposed quantization methods are more complex and is well warranted by the resulting

improvement in signal to noise ratio.

4. CONCLUSION

Based on our findings in [15], in this paper we propose two AR-model based quantization algorithms: transform-

domain block predictive quantization (TDBPQ) and transform-domain block predictive vector quantization (TDBPVQ).

Both methods operate on the inverse discrete Fourier transform (IDFT) of the dechirped SAR data. It is shown that

as a result of the correlation in the IDFT of the SAR data, the predictive quantization can provide up to 6 dB

improvement in signal to noise ratio.
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