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1. INTRODUCTION

Landslides have resulted in loss of life and extensive damage in human settlements. Therefore, the systematic
prediction and prevention of landslides are very important aspects of land-use planning. In general, multiple
variables are considered for the appropriate analysis of the susceptibility of an area to landslides. Thus, landslide
susceptibility mapping can be regarded as a spatial data integration task. Various integration models based on
probability theory, fuzzy set theory, and artificial intelligence have been proposed and applied to landslide
susceptibility mapping [1], [2]. Among the spatial data integration models, an evidential reasoning approach, also
called Dempster-Shafer theory of evidence, proposed by Shafer [3] has been regarded as an effective spatial data
integration model. Despite its great potential for spatial data integration for geological applications, evidential
reasoning has only been applied to remote sensing applications for land-cover classification with multi-
source/sensor data sets [4], [5].

The main purpose of this paper is to evaluate the applicability of evidential reasoning for GIS-based landslide
susceptibility analysis with multiple geospatial data sets. Landslide susceptibility is quantitatively assessed on the
basis of mass function assignment and combination within a data-driven approach. A case study of the Jangheung

area in Korea was conducted to illustrate the proposed schemes.

2. EVIDENTIAL REASOING FOR LANDSLIDE SUSCEPTIBILITY MAPPING

Evidential reasoning, which was originally based on Dempster’s work on the generalization of Bayesian theory [6]
and was formalized by Shafer, can provide a mathematical framework for the description of incomplete knowledge.
For information representation and combination, mass function assignment and Dempster’s rule of combination are
applied in this evidential reasoning-based data integration. By using belief and plausibility functions, the unknown
true likelihood or probability lies somewhere between the belief and plausibility functions. The differences between
these two functions, also called the belief interval, are the main distinct characteristics of evidential reasoning as

compared to traditional probability theory.



In landslide susceptibility mapping based on evidential reasoning, a frame of discernment is defined as:
°={0.7,.T,.0} with ©={T,.T,} (1)

where T, denotes the target proposition such as “At each pixel p, it will be affected by future landslides”. The

opposite target proposition such as “At each pixel p, it will not be affected by future landslides” is denoted as ]_“p.

The essential part of the application of evidential reasoning to landslide susceptibility mapping is to define mass
functions using quantitative relationships between the known past landslide occurrences and input multiple data
layers. In this paper, likelihood ratio functions are used to define the mass functions. After deciding the target
proposition, two likelihood ratio functions for positive and opposite target propositions are separately defined. Since
the value of the likelihood ratio ranges from 0 to infinity, a standardization step is required to derive mass functions
from the two likelihood ratio functions. The likelihood ratios are divided by the sum of likelihood ratio values of all

class attributes in the given data, not only to satisfy the standardization condition of mass functions, but also to

account for the relative importance within class attribute values. Three mass functions, m(7,), m(]_“p) , and m(®),

which correspond to belief, disbelief, and ignorance functions, are defined as:
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s, = ZM T ZMTh

\m(®), =1-m(T,), ~m(T,), @)

where A(7,), and /1(]_"}, ) E, are likelihood ratio functions for supporting the positive and opposite target proposition
in the given attribute £, respectively.

When defining the belief and plausibility functions from likelihood ratio functions, two specific constraints related
to landslide occurrences are considered independently. When no landslides have occurred in the given attribute, this
corresponds to the case that there is no belief for the target proposition. However, this case does not mean that the

disbelief should be committed to its complement. This study considers this case with no belief as the case in which

there is only uncertainty. Thus, m(Z_"p )5 1s forced to 0 and as a result, m(®), is set to 1. The second constraint is
ij ij

complementary to the first one and related to landslide occurrences. In landslide susceptibility analysis, there exists
a specific case in which the first constraint (i.e., if there is no belief, then there is also no disbelief) cannot be
directly applied. Landslides cannot occur in flat areas where slope values are 0. In the flat areas, no belief is

committed to m(7),) £, since no landslides have occurred. If the first constraint is used, the disbelief should be 0
and m(0) K, should be 1. When considering the physical condition of the flat areas, however, the disbelief is forced

to 1. Thus, in the flat areas, m(7,), and m(®), are set to 0, and m(I_’p)Eb =1.



3. CASE STUDY
3.1. Study area

The Jangheung area in Korea, which had considerable landslide damage following heavy rain in 1998, was selected
as the study area. A landslide inventory was prepared by using KOMPSAT-1 EOC (Korean Multi-Purpose
SATellite-1 Electro-Optical Camera) imagery and digital topographic maps for visual inspection. The landslide
locations detected from the remote sensing imagery were then verified by fieldwork, and a total of 332 landsides
were finally mapped. Five multi-source spatial data layers including the forest type, soil, elevation, slope and aspect

maps were chosen as input causal factors for landslide susceptibility mapping and constructed as a GIS database.

3.2. Results

Several terms in equation (2) were first computed and then three mass functions were finally derived. Once three
mass functions for all input data layers had been prepared, Dempster’s rule of combination was applied to obtain
four combined functions. A landslide susceptibility map in the study area can be regarded as the spatial distribution
of the degree of support for the target proposition and thus the combined belief function map was used as the
landslide susceptibility map. To visualize relative landslide susceptibility levels over the study area, a rank order
transformation was applied to the combined belief function map and as a result, the final reclassified map with 200
classes with a 0.5% interval was generated (Fig. 1).

To evaluate the prediction capability of the landslide susceptibility map in the study area, a cross-validation
approach based on spatial random partitioning was applied in this study. First, past landslides were randomly
partitioned into two, mutually exclusive groups. One group was used as a training set to construct a landslide
susceptibility map. The other group was used as a validation set to evaluate the prediction capability of the
landslide susceptibility map based on the training set. This procedure was repeated by exchanging the roles of the
training set and the validation set. As a quantitative measure of prediction capability, a prediction rate curve, which
shows the cumulative proportion of landslide occurrences within each relative susceptibility level, was prepared and
analyzed. As comparison purposes, the same validation procedure was also applied to logistic regression, which has
been widely used for landslide susceptibility mapping. In the prediction rate curves in Fig. 2, the evidential
reasoning model showed better prediction capability than logistic regression. The superior prediction capability of
the evidential reasoning model was observed over about 70% of the study area. This difference of prediction
capabilities between the two models may be explained by the fact that a log-linear relationship between landslide
occurrences and input spatial data, which was assumed in the logistic regression, was not appropriate in the case

study.
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Fig. 1. Landslide susceptibility map in the study area Fig. 2. Prediction rate curve based on cross-validation

4. CONCLUSIONS

This paper presented a data-driven evidential reasoning approach for landslide susceptibility analysis. As a main
part of this study, the assignment of mass functions, which has been regarded as one of the main obstacles to the
application of evidential reasoning, was conducted by modifying the likelihood ratios of target propositions.

Experimental results from the case study illustrated that the proposed scheme can adequately represent quantitative
relationships between landslide occurrences and multiple spatial data layers by modeling the degree of uncertainty.
Unlike other spatial data integration models that provide only one integrated layer as output, a series of mass
functions including belief, disbelief, ignorance and plausibility allows one to derive meaningful interpretations for
landslide susceptibility and to outline the most hazardous areas in the study area. In terms of prediction capability,

the proposed approach showed a superior prediction capability to that of the logistic regression model.
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