IMPROVED MODELS FOR CHLA ESTIMATION BY
CONSIDERING THE EFFECT OF PHYTOPLANKTON
SPECIFIC ABSORPTION
Jingping Xu*1,2, Xingfa Gu1,2, Bai Zhang3, Tao Yu1,2, Fang Li4, Juan Li1,2
1. State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the
Institute of Remote Sensing Applications of Chinese Academy of Sciences and
Beijing Normal University, Beijing 100101, China;
2. The Center for National Spaceborne Demonstration, Beijing 100101, China;
3. Department of RS and GIS, Northeast Institute of Geography and Agroecology,
Chinese Academy of Science, Changchun 130012, China
4. National Marine Environmental Monitoring Center, Dalian 116023, China;
*Corresponding author, Email: xjingping@gmail.com

Abstract: In water color remote sensing, the importance of studying chlorophyll-a has been
recognized for decades not only due to its indicative status for bio-production of water bodies
but also for its importance to determine water trophic state. Different kinds of algorithms were
developed to retrieve Chla information [1-4], from empirical models to semi-empirical ones.
Recently, a conceptual three-band model \[R_{rs}^{-1}(\lambda_1)-R_{rs}^{-1}(\lambda_2)\times R_{rs}(\lambda_3)\] and its revised version the
four-band model \[R_{rs}^{-1}(\lambda_1)-R_{rs}^{-1}(\lambda_2)\times[R_{rs}^{-1}(\lambda_3)-R_{rs}^{-1}(\lambda_4)]\] were proposed for Chla estimation in
Case-II waters [5,6]. Although a series of researches have confirmed their robust use in turbid,
productive waters [7,8], they were all based on the assumption that the optical parameter of
phytoplankton specific absorption coefficient \(a^*_{ph}\) remained constant. In practice, the
parameter is variable from site to site owing to the changes in phytoplankton cell size,
intracellular pigment concentration and the relative importance of auxiliary pigments [9,10].
Therefore, the assumption of a constant for \(a^*_{ph}\) would be a significant source of uncertainty in
models for the remote estimation of Chla.

In this paper, we present newly improved models, \[R_{rs}^{-1}(\lambda_1)-R_{rs}^{-1}(\lambda_2)\times a^*_{ph}^{-1}(\lambda_1)\]
and \[R_{rs}^{-1}(\lambda_1)-R_{rs}^{-1}(\lambda_2)\times[R_{rs}^{-1}(\lambda_3)-R_{rs}^{-1}(\lambda_4)] \times a^*_{ph}^{-1}(\lambda_1),\] to eliminate interferences from \(a^*_{ph}\) for a
more accurate estimation of Chla. A case study in Shitoukoumen Reservoir, Jilin Province
China, was carried out. Spectral properties and inherent optical properties (IOPs) of target
water were analyzed first based on two filed campaigns in different seasons in 2008, as well
as associated laboratory analyses. Results showed that as a typical example of inland Case-II
waters, Shitoukoumen Reservoir had two distinct diagnostic peaks in its specific absorption spectrum of phytoplankton pigments among which $a_{ph}^*(675)$ could vary up to three folds between different samples. Although the spectrally tuned results of conceptual three-band model and four-band model had pretty good relationship with Chla contents (Figure 1), when we retuned the two models under the consideration of a_{ph}^* more accurate results were achieved (Figure 2). Comparison indicated that four-band models performed better than three-band models and the improved four-band model owned the best determination coefficient (R^2) and root mean square errors (RMSE), implying that consideration of a_{ph}^* could effectively enhance retrieving accuracy of Chla. Although the findings underline the rationale behind the improved models, an extensive database containing data in different water conditions and water types is required to generalize their application.

![Figure 1](image_url). Estimation of Chla based on conceptual three-band model and four-band model

$$y = 126.08x + 37.206$$
$$R^2 = 0.86, \ RMSE=2.46\mu g^{-1}$$

$$y = 17.324\ln(x) + 111.09$$
$$R^2 = 0.58, \ RMSE=5.26\mu g^{-1}$$

$$y = 1.4112x + 26.377$$
$$R^2 = 0.86, \ RMSE=2.53\mu g^{-1}$$

$$y = 22.675x + 2.2768$$
$$R^2 = 0.74, \ RMSE=4.03\mu g^{-1}$$
Figure 2 Estimation of Chla based on the improved three-band model and four-band model

References:

