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1. INTRODUCTION

The use of altimetry measurements over ocean surfaces has been demonstrating its effectiveness for many years. Due to the
improved ability of new altimeters to acquire return echoes from oceans, many efforts are now devoted to a better understanding
of the signals near the coasts, in the hydrological basins and over land surfaces. The use of altimetry measurements over all
these surfaces is now a well identi ed goal for present and future altimetry missions (conventional or not). Even though the
physical processes that induce altimetric signals over land, coastal areas and inland water are different, the contamination of
land signals in the altimetric measurements considerably damages the availability and the quality of the data in these cases.
Consequently, it becomes crucial to be able to classify altimetric echoes with different shapes with two main objectives: the
rst objective is to propose dedicated algorithms (called retracking algorithms) able to extract the best geophysical information

from each return echo, the second objective is to provide to the user an information about the signal shape giving him the level
of con dence he can put on the various retracking algorithm output. A previous work presented in [1] addressed the problem
of classifying altimetric signals according to the over own surface. This paper shows that the methodology proposed in [1] can
be modi ed for classifying altimetric signals according to their shapes.

2. ATIMETRIC SIGNAL MODEL AND PATTERN RECOGNITION SYSTEM

The objective of this paper is to propose a fast pattern recognition algorithm for classifying different shapes of altimetric signals.
More precisely, the algorithm will assign a given altimetric signal to one of K classes denoted as ω1, ..., ωK . Each class ωi is
characterized by a template T i = [Ti(1), ..., Ti(N)]. The K = 14 class templates used in this study are depicted in Fig. 1. A
given altimetric signal from class ωi is supposed to be a noisy version of the corresponding template T i.

The template T 1 associated to the rst class results from a simpli ed formulation of Brown’s model. Brown’s model was
initially studied in [2] and [3]. It has been shown to be appropriate to more than 95% of all altimetric waveforms backscattered
from ocean surfaces [4]. The simpli ed formulation considered in this paper assumes that the received altimeter waveform is
parameterized by three parameters: the amplitude P , the epoch τ and the signi cant wave height SWH. An altimeter waveform
denoted as s(t) can be classically written as
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dz stands for the Gaussian error function, c denotes the speed of light, α and σ2
p are two known parameters

(depending on the satellite and on the altimeter) and Pi is the instrument thermal noise. The thermal noise can be classically
estimated from the rst data samples of s(t) and subtracted from (1). As a consequence, the additive noise Pi can be removed
from the model (1) with very good approximation. The received signal is sampled with the sampling period Ts, yielding
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where T1(n) = s(nTs)− Pi and the following notations have been used
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Note that the parameter P in (2) represents the amplitude of the waveform, the epoch τ corresponds to the central point of
the “leading edge”, while the signi cant wave height SWH is related to the slope of the “leading edge”. The three parameters
P, τ, SWH can be estimated from any altimetric signal from class ω1 using the maximum likelihood estimator (MLE) [5]. The
mean square error between the received altimetric signal and the estimated template T 1 (obtained after replacing the unknown
parameters P, τ, SWH by their MLEs) will be denoted as MSE.

The proposed pattern recognition system contains three different components referred to as anomaly detection, feature
extraction and Bayesian classi cation. These components are detailed in the following subsections.

2.1. Anomaly detection

Anomaly detection has received a great attention in the literature (see for instance the recent survey of Chandola [6] and
references therein). This paper concentrates on the one-class support vector machine (SVM) method [7, Chap. 8], [8] that
has shown interesting properties in many applications. These applications include document classi cation [9] and audio signal
segmentation [10]. The one-class SVM method is used here as a way of isolating Brown echoes (class ω1) from abnormal
echoes departing from the Brown model (classes ω2, ..., ω14). This step is interesting since it allows one to isolate very fast the
large number of echoes that can be represented accurately by the Brown model. Only echoes declared as abnormal will enter
the feature extraction and Bayesian classi cation blocks.

The anomaly detection procedure considered in this section associates to any altimetric waveform a 3 dimensional vector
x = (P, τ, SWH) composed of the altimetric signal amplitude P , epoch τ and signi cant wave height SWH. A training set
χ = {x1, ...,xNt

} composed of Nt signals associated to class ω1 is supposed to be available. This training set contains Brown
echoes associated to real signals backscattered by ocean surfaces.

The rst step of the one-class SVM approach maps the training data vectors into a feature space F via an appropriate
transformation Φ. The transformation Φ is chosen such that the inner product between two transformed vectors Φ(x) and Φ(y)
de nes a kernel k (x, y) = 〈Φ(x), Φ(y)〉. This paper focuses on the Gaussian kernel de ned as

k (x, y) = e−
‖x−y‖2

σ2 (3)

where the kernel parameter σ2 has been optimized using the kernel-alignment criterion developed in [11].
The second step of the one-class SVM method determines a separating hyperplane between the data vectors of class ω1

and the anomalies (belonging to classes ω2, ..., ωK). The separating hyperplane is the set of vectors x satisfying the equation
〈w, Φ(x)〉 − ρ = 0. It is classically determined by minimizing the following criterion [8]
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Nt with the constraints ξi ≥ 0 and 〈w, Φ(xi)〉 ≥ ρ − ξi for i = 1, ..., Nt. The
slack variables ξi account for possible errors in the anomaly detection procedure. Indeed, ξi > 0 means there is an error in
the classi cation of the training vector xi whereas ξi = 0 means the vector xi has been classi ed without error. The value of
parameter ν is related to the fraction of possible outliers as discussed in [8].

2.2. Feature extraction

After the anomaly detection step, Brown echoes belonging to class ω1 have been isolated (more than 95% of ocean waveforms
should be classi ed as Brown echoes). The second step of the proposed pattern recognition system consists of classifying
the remaining signals (which have not been identi ed as Brown echoes) in the K − 1 classes ω2, ..., ωK . The present study
concentrates on altimetric waveforms registered by the Jason-2 satellite. Many features can be computed from an altimetric
waveform for classi cation purposes. These features include statistical moments (mean, variance, skewness, kurtosis, ...),
parameters related to the Brown model (signi cant wave height, backscatter coef cient, ...) or features related to the shape



of the altimetric waveform (peakiness, rise time of the echo, ...). The resulting parameter vector will be detailed carefully in
the nal version of this paper. Following the ideas developed in [1], we propose to extract pertinent information from these
features by using linear discriminant analysis (LDA). LDA consists of projecting any data vector θ (containing the parameters
of interest) onto appropriate axes (called discriminant axes). The resulting projected feature vector will be denoted as θp.
The discriminant axes are de ned as the eigenvectors w associated to the non zero eigenvalues of the following generalized
eigenvalue problem

SBw = λSW w, (4)

where SB and SW are the between-class and within-class scatter matrices de ned as

SB =

K∑
i=2

ni (mi −m) (mi −m)
T

, SW =

K∑
i=2

∑
θ∈Θi

(θ −mi)(θ −mi)
T ,

and where Θi is the subset of the learning set containing the parameter vectors associated to the class ωi, mi is the average of
these parameter vectors and m = 1
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ni (see [12, p. 117] for more details).

2.3. Bayes decision rule

The Bayesian classi er (BC) is optimal in the sense that it minimizes the probability of classi cation error (or an appropriate
risk [12, p. 25]). The BC requires to de ne a loss function summarizing the cost of the different classi cation errors. In the
case of a zero-one loss function (i.e., no loss to correct decisions and unit loss to any error), the BC reduces to the maximum a
posteriori (MAP) rule which assigns a given waveform de ned by the parameter vector θp to class ωi if

f (θp|ωi)P (ωi) > f (θp|ωj)P (ωj) for all j �= i

where P (ωi) is the prior probability of the class ωi and f (θp|ωi) is the probability density function (pdf) of θp conditional to
the class ωi. This study assumes that the different classes are equally likely (i.e., P (ωj) = 1/(K − 1) for all j = 2, ..., K).
In this case, the BC reduces to the maximum likelihood classi er. The maximum likelihood classi er assigns θp to class ωi

if f (θp|ωi) > f (θp|ωj) for all j �= i. We assume that the conditional pdfs f (θp|ωi) are Gaussian (this assumption has
been validated using different learning sets and will be illustrated in the nal paper). Note that the statistical properties of the
observed altimetric signals are more dif cult to determine (the template is corrupted by multiplicative speckle noise with gamma
distribution and by additive Gaussian noise). Thus, it is more complicated to derive the Bayesian classi er based directly on
the altimetric signals.

3. SIMULATION RESULTS

Many experiments have been conducted to validate the proposed shape classi cation strategy. Because of space limitations,
we concentrate in this summary on classi cation results obtained after anomaly detection and feature extraction (these two
steps will be detailed in the nal paper). These results have been obtained from a signal database constructed from Jason-2
altimetric signals. More precisely, ni = 40 echoes have been manually selected for each class (i = 1, ..., 14) resulting in a total
of ntotal = 560 signals. The confusion matrix displayed in Table 1 shows the percentages of signals classi ed in each class.
This confusion matrix has been obtained using the “Leave-One-Out” method [12, p. 485]. More precisely, ntotal − 1 signals
are used to train the classi er and the remaining signal is classi ed using the proposed classi cation strategy (feature selection
+ LDA + Bayesian rule). This operation is repeated ntotal times and the confusion matrix is obtained after averaging the ntotal

classi cation results. The results depicted in Table 1 show the good performance of the proposed pattern recognition system for
classifying shapes of altimetric signals.



Fig. 1. Different shapes of altimetric signals to be classi-
ed.
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ωi 2 3 4 5 6 7 8 9 10 11 12 13 14
2 98 0 0 2 0 0 0 0 0 0 0 0 0
3 0 86 2 2 0 7 0 2 0 0 0 0 0
4 0 3 88 3 0 3 3 0 0 0 0 0 0
5 0 0 0 98 0 0 0 0 0 0 0 0 0
6 0 0 0 0 65 33 0 0 0 0 0 0 0
7 0 0 0 12 0 83 0 0 0 0 0 2 0
8 0 0 0 0 0 5 82 2 0 7 0 2 0
9 0 0 0 0 0 0 11 85 0 0 0 2 0
10 0 0 0 0 0 14 2 0 76 0 2 5 0
11 0 0 0 0 0 10 2 0 0 85 0 0 0
12 0 0 0 2 0 2 0 0 0 0 96 0 0
13 0 0 0 3 0 8 0 0 3 0 0 88 0
14 0 0 0 7 0 0 0 0 0 0 0 0 93

Table 1. Confusion matrix after anomaly detection.

4. CONCLUSIONS

This paper studied a pattern recognition system for classifying different shapes of altimetric signals. The system consisted
of three steps, i.e., anomaly detection, feature extraction and Bayesian classi cation. The results obtained with the proposed
system on real JASON-2 altimetric data are promising. The nal paper will include a comparison with a classi cation strategy
based on neural networks considered within the frame of the CNES project called PISTACH [4]. This project was aimed to
improve altimetry products over coastal and hydrological areas.
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