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1. INTRODUCTION 

Leaf Area Index, LAI is a key parameter which determines mass, energy and momentum exchange between land 

surface and atmosphere. Monitoring global vegetation state and changes is necessary under global change. Large 

area LAI dynamic observation is essential in global carbon circle and climate change researching [1]. 

Remote sensing provides a powerful tool to estimate of large area LAI. There are two main methods to 

estimate LAI from remote sensing observation. One is based on the relationship between field measured LAI and 

remote sensing spectral index [2]. The other is based on canopy radiation models which characterize the 

relationship between canopy reflectance and biophysical parameters [1, 3]. Although the VIs-based approach is 

more computation efficient, it is very difficult to gather representative field measurements to fit the empirical 

model for large-scale application [2]. The physically based models have been proved to be more suitable to large 

area LAI retrieval as they describe the physical process of transfer and interaction of radiation inside the canopy. 

Directly inversions of canopy radiation model are often not practical for global applications due to its significant 

computational resources and time needs. Several inversion techniques have been employed, such as look-up tables 

(LUT) and neural networks [1, 3]. Neural network simulation is more efficient compared to LUT method, which 

is essential in large scale application [4].  

The remote sensed land surface reflectances depend on the observational geometry and the vegetation 

structure. LAI is a key vegetation structure parameter, so observational geometric information would be important 

for retrieval of LAI from land surface reflectances. CYCLOPES algorithm utilizes the BRDF normalized spectral 

reflectances of the VEGETATION to produce 10 days composite LAI products [3]. However, BRDF 

normalization probably induced uncertainty for large area application because the solar zenith angle varies 

significantly for any given date and large normalization errors may occur when the reflectance is forced to a 

standard geometry [5]. This uncertainty is particularly of concern as kernel-driven BRDF models are widely used 

in this normalization. For this reason, GlobalCarbon algorithm explicitly considers the BRDF effect of vegetation 

and produces global LAI using 4-scale geometrical optical model and VI-based LAI algorithm to simulate the 

relationship between LAI and the directional spectral properties without BRDF normalization of reflectance [5]. 

However, this LAI product tends to display erratic variations [6]. 



In this paper, an algorithm based on neural network to derive leaf area index from MODIS directional 

reflectance and geometry data is presented. This algorithm directly utilizes the directional reflectances instead of 

the BRDF normalized data to avoid complex BRDF normalization and the error occurred in this process. The 

estimated LAI is finally compared against existing MODIS/CYCLOPES LAI products and ground measurements 

of annual crop LAI in 2004 in Hengshui, China. 

2. METHOD 

The algorithm utilizes remote sensing directional land surface reflectances and geometry data to retrieve LAI. We 

use Four-Scale model combined with neural network to apply this algorithm. Firstly, Four-Scale model is used to 

simulate LAI at different land surface and geometric situations for crop. Then, the neural networks are trained 

with the simulated LAI dataset. After the neural network is calibrated, the MODIS directional land surface 

reflectances and geometry data are used as network inputs to efficiently produce LAI.  

2.1 Radiative transfer model 

The algorithm is developed based on the Four-scale Bidirectional Reflectance model. This geometric-optical 

model developed by Chen and Leblanc considers four scales of canopy architecture [7]. Compared with other 

radiative transfer models, this GO model is easier in investigating BRDFs for a large set of input parameters [8].  

A large number of simulations are made using a large combination of input model variables and observation 

geometries to produce training dataset. Simple Ratio (SR) is used to combine the information of red and near-

infrared bands and form the training dataset. Besides the conventional red and NIR bands, the shortwave infrared 

(SWIR) band is also used to replicate better the behavior of the vegetation reflectance in satellite images. In total, 

23040 simulations were performed for crop. Two third of these were randomly selected to compose the learning 

database, the others were used as testing database to evaluate the neural network performances. 

2.2 Networks design and calibrate 

In this paper, a two-layer back-propagation artificial neural network was trained. Inputs of the network are Simple 

ratio, short wave infrared reflectance, solar zenith angle, and view zenith angle as well as cosine value of relative 

azimuth angle. Network output is LAI. 

The learning database made of pairs of inputs and outputs were first normalized according to: 

)/()( minmaxmin XXXXX norm  where minX  and maxX are respectively the minimum and maximum values 

for variable X. Then two third of the standardized learning database cases were used to train the network. After 

several tests, the network provided the best performance with relative simple architecture was selected. The 

optimal network is made of one input layer with 5 linear neurons, one hidden layer of 11 tangent-sigmoid transfer 

functions and one output layer with 1 linear neuron. The network was calibrated by minimizing of a misfit 

function, which was defined as the mean square error (MSE) between the targeted variables and the network 



outputs. The Levenberg-Marquardt minimization algorithm was used in the learning process due to its efficient 

convergence performances. 

2.3 Theoretical performances 

After the network calibrated, its performances were evaluated on the testing database of 7680 cases. The network 

inversion to retrieve LAI with a fairly good accuracy (RMSE=0.1808). The network simulated and targeted LAI 

keep good consistent with correlation coefficient of 0.97. And the majority of difference between network 

simulated and targeted LAI centralized at zero. 

3. RESULTS AND VALIDATION 

The neural network performances are evaluated by analyzing the consistency between the results and the MODIS 

and CYCLOPES LAI products. Then, directly validation with ground measurements of annual crop LAI of 2004 

in Hengshui is presented. 

3.1. Comparison with 2001-2003 MODIS\CYCLOPES LAI products 

MODIS clear-sky non-snow high-quality land surface reflectance and geometry data were selected over 33 winter 

wheat experimental sites in Hengshui. Then the extracted data were used to drive the network and simulate LAI. 

The simulated LAI were matched with the most spatial and temporal proximal MODIS and CYCLOPES LAI data 

from 2001-2003. Figure 1 and 2 shows a good agreement between simulated and MODIS and CYCLOPES LAI 

both in spatial pattern and Interannual as well as seasonal variations.  

3.2 Validation against ground LAI measurements in Hengshui 

The network LAI algorithm was validated against ground-based LAI data in Hengshui from 2003 to 2004. Seven 

fine-resolution (30m) Landsat ETM+ scenes from October, 2003 to April, 2004 were used to map the LAI images 

of study area. For the sample sites, vegetation index NDVI was computed from these ETM+ images, and the 

relationship between measured LAI and ETM+ NDVI was established. The relationship is LAI=1.747 ln(NDVI)

+ 3.240. Then, a fine resolution LAI map was produced using this relationship based on ETM+ image acquired on 

Julian day 190, 2002. The validation results are shown in Figure 3. The spatial structure of LAI map using our 

algorithm is consistent with the corresponding MODIS and CYCLOPES products at 1km resolution. 



Figure 1. network simulated LAI 
Comparison with: a) MODIS LAI 

product, b) CYCLOPES LAI,  
Interannual and seasonal variations 

over c) site 1, d) site 7 

Figure 2. Maps of a) CYCLOPES, 
b) MODIS c)network simulated 

LAI in April, 2002 

Figure 3. Validation of LAI. a) 
CYCLOPES LAI product in 
Hengshui at Julian Day 190, 2002; 
b) MODIS LAI product; c) our
algorithm results; d) ETM+ LAI 
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