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1. INTRODUCTION

In remote sensing applications for earth observation, pushbroom cameras are prefered to other type of cameras as they provide

higher resolution images at a lower cost. For this purpose, spaceborne and airborne imagery combine multiple pushbroom

cameras in a same focal plane to acquire multispectral information of the observed scene. Figure (1.a) shows a standard focal

plane geometry of an observation satellite.

Concerning its principle, the pushbroom camera is a linear sensor that takes 1-D images at several time instants. The forward

motion of the imaging plateform makes the sensor sweeping out a region of space; stitching together all 1-D images gives a

complete 2-D image of the observed scene. This acquisition process is summarised in figure (1.b) where we define the three

component of the attitude (the yaw, the roll and the pitch).
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Fig. 1. (a) Standard focal plane geometry of an observation satellite with 4 pushbroom cameras: panchromatic, blue, green

and red (respectively enumerated as 1,2,3 and 4). What is seen by the camera 2 at time n will be seen by the camera 1 at time

n + τ12. (b) Pushbroom camera recording 1-D images over time denoted by n; the camera is moving straight along the x axis,

y is defined as the camera axis and z the orthogonal axis to the image plane. We define the orientation of the camera with the

yaw (rotation around the z axis), the roll (rotation around the x axis) and the pitch (rotation around the y axis). (c) Example of

warps in a regular checkerboard when the pushbroom camera is tilting around its 3 rotation axis.

Stability of the focal plane is a crucial point during the pushbroom acquisition process to keep a constant attitude of the

imaging plateform. Otherwise, small attitude variations can lead to noticeable geometric deformations of several pixels in the

2-D image and has to be corrected to properly represent the scene.

In airborne and spaceborne imagery, stability is an issue as the craft is exposed to dynamic disturbances caused by its engines as

well as athmospheric and space turbulance. Inertial sensors can be combined with GPS information and Ground Control Points

(GCP) to estimate camera orientation and thus rectify the images [1, 2]. However, such sensors are very costly for spaceborne

application and besides, do not guarantee that attitude variations are fully estimated as their sampling frequency (4Hz) is lower

than the sampling frequency of acquisition of the 1-D image acquisition (2, 500Hz).

In this paper, we present an original method to estimate attitude variations (also called vibrations [3]) of the pushbroom camera

which relies on image information only. To our best knowledge, only one paper describe a solution to estimate attitude variation

directly from images. However this method uses local features to estimate warps; it does not take into account the linear
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geometry of the camera and cannot estimate directly an absolute attitude variation. In our case, we exploit the geometry of the

focal plane and the stationnary property of the disturbance to register all acquired images in a same coordinate system. The

estimation is embedded in a Bayesian setting which allows us to combine a prior model and an image data term to obtain the

Maximum a Posteriori estimates (MAP) of the vibrations.

2. ATTITUDE ESTIMATION

In this paper, we denote the set of 4 images (red, blue, green and panchromatic) as I = {I1, I2, I3, I4}. Each image is defined

by its pixel coordinates (y, n) in the pixel set S, with n ∈ [0, N − 1] being the discretised time and N the total number of time

steps (which is also equivalent to the number of lines in the acquired images). We call θ(n) ∈ Θ the unknown attitude of the

satellite at time n; it is a (3 × 1) vector whose components are respectively the yaw θy(n), the roll θr(n) and the pitch θp(n).
We call θ the (3N × 1) vector that gathers all attitudes for all time instants.

2.1. MAP formulation

Given the observation images I, we seek to maximise the a posteriori probability of the vibrations θ:

θ̂ = argmax
θ

p(θ|I) ∝ argmax
θ

p(I|θ)︸ ︷︷ ︸
Image data term

p(θ)︸︷︷︸
Prior term

.

The first term of equation (1) is usually refered as the data term whereas the second term represents a prior on the vibrations. This

last term can also be understood as a penality function which constrains the solution to follow specific properties (depending

on the shape of this penality function).

2.2. Image data term

We first assume that all images are radiometrically calibrated; we discuss the way we handle multi-modalities in the results

section. Also, we start by comparing two images and will derive a global formulation thereafter.

Let σ2
i being the variance of a zero mean Gaussian acquisition noise i.i.d. over all pixels in images. Given I1 and I2 spaced by

τ12 in the focal plane, we expect to have the following relationship:[
I1

(
W (y, n; θ(n))

)− I2

(
W (y, n + τ12; θ(n + τ12))

)] ∼ N (0, σ2
i ) (1)

where W : S × Θ → S is a warp function that maps pixel coordinates to a new position depending on the attitude of the

pushbroom camera. Fixing I1 as the reference image, equation (1) is equivalent to the following one:[
I1(y, n)− I2

(
W (y, n + τ12; θ(n + τ12)− θ(n))

)] ∼ N (0, σ2
i ). (2)

Let ∗ denotes the convolution operator. From previous equation, one can notice that:

θ(n + τ12)− θ(n)) = (θ ∗ k12)(n), with k12 = [−1 0 . . . 0︸ ︷︷ ︸
τ12−1 zeros

1]. (3)

k12 is a kernel built upon the time gap between the acquisition of I1 and I2. This basically shows that trying to estimate θ from

any pair of images {Ii, Ij} acquired by the focal plane leads to the deconvolution of θ by a kernel kij .

In a global formulation, let I
τij

i (y, n) = Ii(y, n+ τij) be the shifted image in time with factor τij , y = [y, n] the vector of pixel

coordinates, and Kij the matrix convolution operator with kernel kij , then the log-likelihood arises immediately:

log(p(I|θ)) ∝
∑

i,j;i �=j

∑
y∈S

(
Ii(y)− I

τij

j

(
W (y; Kijθ)

))2

+ cst. (4)

This last equation is the expression of a pixel-based registration method, also known as the Lucas-Kanade method [4, 5]. The

outer sum takes into account all possible pairs of images while the inner one is a summation over all pixels in the images.

The additional constant term refers to the normalizing term of the Gaussian p.d.f. which is independent of θ, and thus of no

importance for the minimization procedure. Let us stress that this expression relates the absolute vibrations to all image data,

thus ensuring the global coherence of the estimation with respect to all image pairs. This is opposed to [3] where relative
vibrations between each pair of images are first estimated, and then filtered with a Wiener deconvolution operator to recover

the absolute vibrations; this leads to a suboptimal estimate [6].



2.3. Prior term

Variations in the attitude of the satellite are mainly due to its engines. One basic and general assumption is the stationary

property of the vibratory signal, meaning that it keeps the values of its harmonic frequencies constant over time. Smoothness

prior is usually well adapted to vibrations as we are not expecting to have strong non-stationary variations in the signal.

The Tikhonov prior encourages global smoothness in the solution by penalizing its Euclidean norm:

log(p(θ)) ∝ ‖θ‖2 + cst (5)

The constant term accounts for the normalizing factor of the Gaussian p.d.f.. Due to its linear form with θ, equation (5) is well

suited to solve ill-posed least-squares problems; the solution is closed-form and thus easy to compute.

2.4. Global equation

Deduced from eq.(4) and eq.(5), we need to minimise over θ the following equation:

log(p(I|θ)p(θ)) =
∑

i,j;i �=j

‖Ii(y)− I
τij

j

(
W (y; Kijθ)

)‖2 + λ‖θ‖2. (6)

where λ is a trade-off scalar between the data and the prior term. Due to the non linear form of the image data term, this

expression has to be minimised iteratively. In pratice, we use a Gauss-Newton algorithm to estimate θ for its good performance

in registration methods [5].

One should notice that using a gradient descent algorithm does not require the knowledge of an analytical form of the

warp W as long as derivatives of the warp ∂W
∂y and ∂W

∂n are available. In our experiments, we use numerical derivatives of W
computed using known calibration pattern on earth. This has several advantages as Digital Elevation Model (DEM) and optical

distortions of the lens can be directly added to those numerical derivatives of W .

3. RESULTS AND DISCUSSION

We present experimental results on two satellite datasets to show performance of our algorithm. They both have been simulated

by ASTRIUM, meaning that the ground truth on vibrations is available. The simulation process creates real-life condition data

acquisition and can be considered as difficult as could be real data.

Each dataset is composed of 4 multispectral images: green, red, blue and panchromatic. All images are of size (2564 × 900)
pixels; the pushbroom sensor size being 900 pixels. For all experiments we use a Matlab implementation on a Core2 duo at

3GHz with 3.8GiB, and obtain a computational time of approximatively 200 seconds.

We choose to handle multi-modalities using a linear model to correct radiometric differences between images. This method

showed slightly better results than filtering methods; this can be linked to the fact that panchromatic and RGB modalities are

quite well correlated by default.
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Fig. 2. The top and bottom figures show respectively results for the first and the second dataset. The curves are estimates

of attitude variations in radian for the roll (left) and pitch (right) compared to ground truth and depending on the time of

acquisition; the error is the substraction between the estimation and the real attitude.

The first dataset is a typical case where our algorithm gives its best performance. 5 iterations are needed to obtain the final

MAP estimates of attitude vibrations. Figure 2 shows the error on the vibrations estimation which is negligible with a standard
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Fig. 3. The top and bottom figures show respectively extracted patches of (400 × 400) for the first and second dataset. The

error images are the differences of intensity between the real image and the distorted image (the one which is acquired) in the

middle, and the differences between the real image and the rectified image on the right.

deviation below 9
100 in pixel unit.

The second dataset is a challenging case as the vibration signal has a low frequency component. The algorithm converged in

5 iterations. In this case, the error between the ground truth and the estimate reveals low frequency variations which were not

restored during the registration process (the standard deviation is below 21
100 in pixel unit). Due to the convolution kernels kij ,

most of the low frequency information is lost and the deconvolution process becomes highly ill posed. Thus, the Tikhonov prior

helps regularizing the estimate in those frequencies.

These experimental results demonstrate the performance and limits of our algorithm, the latter appearing mainly in the low

frequency estimation of attitude variation. Also, the method presents very good results in high frequency estimation, which can

not be obtained by the use of inertial sensors alone, as they only provide low frequency information. Our next step will be to

fuse measurements from images and inertial sensors so as to get the best estimate of attitude variations for all frequencies. The

Bayesian setting we used easily allows us to combine prior as well as observations by other sensors in a coherent manner.

4. REFERENCES

[1] Daniela Poli, “General model for airborne and spaceborne linear array sensors,” in Int. Archives of Photogrammetry and
Remote Sensing, 2002, vol. 34.

[2] Michael Cramer, Dirk Stallmann, and Norbert Haala, “Direct georeferencing using GPS/inertial exterior orientations for

photogrammetric applications,” in Int. Archives of Photogrammetry and Remote Sensing, Vol. 33, 2000, pp. 198–205.

[3] F. de Lussy, D. Greslou, and L. Gross Colzy, “Process line for geometrical image correction of disruptive microvibrations,”

in Int. Society for Photogrammetry and Remote Sensing, 2008, pp. 27–35.

[4] Bruce D. Lucas and Takeo Kanade, “An iterative image registration technique with an application to stereo vision,” in

Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI ’81), 1981, pp. 674–679.

[5] Simon Baker and Iain Matthews, “Lucas-Kanade 20 years on: A unifying framework,” International Journal of Computer
Vision, vol. 56, no. 1, pp. 221 – 255, 2004.

[6] S. Farsiu, M. Elad, and P. Milanfar, “Constrained, globally optimal, multi-frame motion estimation,” in Proc. of the 2005
IEEE Workshop on Statistical Signal Processing, 2005, pp. 1396 – 1401.


