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1. INTRODUCTION

The detection of anomalies (and of anomalous changes) requires that the samples that are anomalous be distinguished from

the samples that are normal [1]. One way this can be achieved is by identifying two probability distributions: one for normal

data and one for anomalies. The normal data distribution is generally fit to the data, while the anomalies are defined (often

implicitly) with a distribution that is usually much broader and flatter than the normal data distribution. If both distributions

were precisely known, then their ratio would provide the Bayes optimal detector of those anomalies.

While the choice of distribution for modelling the anomalies does require some care, the main technical challenge in

anomaly detection is the characterization of the normal data distribution. The more “tightly” fit the distribution is to the normal

data, the more accurately one can detect those data that do not fit the normal model.

For anomaly detection problems, very low false alarm rates are desired. Thus the challenge is even greater because we need

to characterize the density in regions where the data are sparse; that is, on the periphery (or the ”tail”) of the distribution. Yet,

traditional density estimation methods for anomaly detection (e.g. the simplest and most common approach is to fit a single

Gaussian to the data) are dominated by the high-density core - where most of the data samples are located.

In this work, we will investigate two approaches for characterizing the periphery of a data distribution, and evaluate their

performance for a set of anomaly detection and anomalous change detection problems.

In all of the examples here, our model for characterizing the periphery of a multivariate distribution will be an ellipsoid; our

aim then, is to estimate a covariance matrix that characterizes that ellipsoid. We remark that the overall scale of the covariance

is not of particular concern to us; for the single scalar measure of overall size, we can adjust the parameter to achieve whatever

desired false alarm rate α that is desired. What is of more concern to us is the O(d2) parameters, where d is the number of

spectral channels, that characterize the centroid and shape of the ellipsoid.
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2. IN DEFIANCE OF ROBUST STATISTICS

For robust statistical estimation of the mean μ and covariance matrix R, one employs equations of the form [2]:

μ =
m∑

i=1

wixi

/ m∑

i=1

wi,

R =
m∑

i=1

w2
i (xi − μ)(xi − μ)T

/ m∑

i=1

w2
i . (1)

When the weights are all equal (e.g., wi = 1 for all i), then the standard estimators for mean and covariance are obtained. For

a robust estimator, one can alter these weights depending on how far the samples are from the mean. Distance to the mean is

measured in terms of the Mahalanobis distance

ri =
[
(xi − μ)T R−1(xi − μ)

]T
. (2)

To make the robust estimator less sensitive to outliers, one discounts the large r samples; for instance:

Robust: w(r) =

⎧
⎨

⎩
1 if r ≤ ro

ro/r if r > ro.
(3)

To use this in practice requires an iterative approach, since the weights depend on Mahalanobis distance; Mahalanobis distance

depends on μ and R; and μ and R depend on the weights. One must also choose a value for the cutoff radius ro. For a

d-dimensional Gaussian, the squared Mahalanobis distance r2 is chi-squared distributed, with d degrees of freedom. The mean

of r2 is d and the variance is 2d; it follows that r will have mean d1/2 and standard deviation 1/
√

2. This suggests that a good

choice for ro is of the form ro =
√

d + n/
√

2 where n is of the order of a few. We used n = 2 in our numerical experiments.

But for problems which depend primarily on the periphery of the distribution, this scheme seems to be getting it backwards:

it discounts just the data that we most need to pay attention to. Instead, we considered a weighting scheme that discounts the

small Mahalanobis points:

Fragile: w(r) =

⎧
⎨

⎩
(r/ro)2 if r ≤ ro

1 if r > ro.
(4)

Now, although we do want to characterize the periphery, we don’t want to be unduly influenced by the actual outliers (a.k.a.

anomalies) in the data, so we actually considered the following scheme:

Periphery-weighted: w(r) =

⎧
⎨

⎩
(r/ro)2 if r ≤ ro

ro/r if r > ro.
(5)

The points for which r ≈ ro will be the most heavily weighted in this scheme, and this suggests a strategy for choosing ro. If

we desire a false alarm rate in the regime of α � 1, then choose ro so that a fraction α of the data points have Mahalanobis

distance larger than ro.

3. SUPPORT VECTOR MACHINE

The idea that the boundary of the distribution should depend on points near that boundary, and not be influenced by the

details of how the points in the core are distributed, motivates the use of a support vector machine for estimating mean and
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Fig. 1. Coverage plots show how the volume V of the ellipsoid increases as the fraction of uncovered data (the alarm rate) α

decreases, using three different methods to estimate the ellipsoid shape. The two panels are for (a) the first three and (b) the first

ten d = 10 principal components of the AVIRIS (Airborne Visual/InfraRed Imaging Spectrometer [4]) hyperspectral image of

the Florida coastline, from data set f960323t01p02 r04 sc01. Half of the points are used to estimate covariance, and the other

half are used to estimate performance, so these are out-of-sample results. The standard estimator uses Eq. (1) with all weights

equal to one. The robust estimator uses weights given by Eq. (3), with ro =
√

d + 2/
√

2. The “periphery-characterizing”

estimator uses Eq. (5) with ro =
√

d + 2/
√

2.

covariance. Instead of computing moments (or Mahalanobis distance weighted moments), the support vector machine estimates

only the boundary between the two distributions. Employing the scheme detailed in Ref. [3], and constraining the solution to

be quadratic1, we are able to produce a mean and covariance estimator that depends, quite formally2, only on the points on the

periphery of the distribution.

4. A MEASURE OF PERFORMANCE FOR ANOMALY DETECTION

Because anomalies are rare, measuring the performance of an anomaly detection algorithm is somewhat problematic. Rather

than concentrate on the anomalies, however, we will emphasize how well the model fits the normal data. In particular, given

an alarm rate α (the rate at which normal samples are predicted to be anomalous), we will compute the volume V (α) of the

ellipsoid which contains a fraction 1 − α of the data. We will plot V versus α and our best algorithms with give the smallest

values of V at low α. As we adjust the overall radius of the ellipsoid whose shape is specified by a given covariance matrix,

we will trace out a curve in the V -versus-α space that has the flavor of a ROC curve. In fact, the α directly corresponds to false

alarm rate. The V corresponds to a kind of missed detection rate, for the anomalies that are inside the volume V are the ones

that will not be detected.

Fig. 1 shows such curves. As the alarm rate decreases, the volume necessary for achieving that alarm rate increases. For

the low alarm rates, we see that the periphery-characterizing estimates outperform the standard and robust estimates. The

1This is effectively done by using quadratic kernels, though the implementation is slightly different from that.
2Points that are inside the boundary by a distance larger than the “margin” are not support vectors, and do not influence the fitting of the boundary to the

data.



robust estimate is worse than the standard estimate at low α, but for larger α ≈ 0.5, the robust is slightly better. That is: the

robust estimator better characterizes the core of the distribution while the periphery-characterizing estimates are better at, well,

characterizing the periphery.

5. DISCUSSION AND CONCLUSIONS

In the ideal case of a multivariate Gaussian distribution, the contours are concentric ellipsoids, fully characterized by a mean

vector and covariance matrix. Furthermore, the optimal estimator of these parameters are just the sample mean and sample

covariance from classical statistics. These statistics give equal weight to all data samples, whether they are from the core or the

periphery of the distribution.

But for deviations from this ideal, it may be preferable to preferentially use the data in the periphery of the distribution

to estimate the shape of the contour in the periphery. This is done explicitly in the weighting function shown in Eq. (5), and

implicitly when a support vector machine is used to learn that contour.

It is widely recognized that hyperspectral data is generally more fat-tailed than a Gaussian distribution, but it has recently

become apparent that the “fatness” of those tails is different in different directions [5, 6, 7]. A consequence of this observation

is that the best covariance matrix for characterizing the core of the data may differ from the best covariance matrix for charac-

terizing the periphery. The approach we suggest here follows Vapnik’s dictum [8] – rather that attempt to characterize the full

distribution, we seek instead to characterize only the contour on the periphery.
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