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1. INTRODUCTION

Change detection methods are of crucial importance in many remote sensing applications such as monitoring and

surveillance, where the goal is to identify and separate changes of interest from pervasive differences inevitably

present in images taken at different times and in different environmental and illumination conditions. Anomalous

change detection (ACD) methods aim to identify rare, unusual or anomalous changes [1]. A number of these algo-

rithms can be expressed as quadratic functions of the data, where the coefficients are based on the covariances and

cross-covariances of the two images [2]; among these methods are Chronochrome and Covariance Equalization [3],

Multivariate Alteration Detection [4], Hyperbolic and Subpixel Hyperbolic methods [2, 5]. In the paper we will

focus our attention on the RX, Hyperbolic, Chronochrome and Subpixel Hyperbolic methods in the formulation

suggested in [2]. The knowledge of the eigenvalues of ACD matrices can provide valuable insights into the algebraic

and numerical properties of the covariance-based quadratic ACD methods and may ultimately shed the light on the

properties of the optimal ACD method. We will use singular vectors of the whitened cross-covariance matrix of two

hyper-spectral images and the Golub-Kahan permutations [6, 7] for obtaining equivalent tridiagonal representations

of the matrices of a family of covariance-based quadratic ACD methods. Due to the nature of the problem these

tridiagonal matrices have block-diagonal structure, which we exploit in order to identify analytical expressions for

the eigenvalues of ACD matrices as a function of the singular values of the whitened cross-covariance matrix. The

block-diagonal structure of the matrices of the RX, Hyperbolic, Chronochrome and Subpixel Hyperbolic ACD re-

vealed by the SVD and Golub-Kahan transformations shows both the similarities and the differences in the properties

of these change detectors.

2. ANOMALOUS CHANGE DETECTORS IN BLOCK-DIAGONAL FORM

Consider two hyper-spectral images Dx = [x1,x2, . . . ,xN ]T and Dy = [y1,y2, . . . ,yN ]T where the pixels xi ∈ R
dx , i =

1,2, . . . ,N in the Dx-image have dx hyper-spectral channels and the pixels yi ∈ R
dy , i = 1,2, . . . ,N in the Dy-image
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have dy hyper-spectral channels. We can assume, without the loss of generality, that the pixels in the images Dx and

Dy have zero mean. The scalar measure of anomalousness detected when comparing pixels xi ∈ Dx and yi ∈ Dy is

defined as follows [2]

A(xi,yi) = (xT
i yT

i )Q(xi yi)T , (1)

where the specific form of the matrix Q ∈ R
(dx+dy)×(dx+dy) is determined by the properties of the ACD method

used. Q is a dense symmetric matrix that is a function of the cross covariance and covariance matrices of the

two images Dx and Dy. The change between the pixels xi and yi is considered anomalous if A(xi,yi) exceeds a

given threshold. We define the cross covariance and the covariance matrices of the images Dx and Dy as follows:

X = Dx DT
x /N, Y = Dy DT

y /N, C = Dy DT
x /N. Covariance matrices X and Y are symmetric matrices of size dx×dx and

dy×dy respectively, and the cross covariance matrix C is a rectangular dy×dx matrix. In the whitened coordinates [2]

D̃x = X−1/2 Dx, D̃y = Y−1/2 Dy, that are used to ‘normalize’ the images with respect to illumination, environmental

and other ubiquitous changes [1], the covariance and the cross covariance matrices take the following form X̃ =
D̃x D̃x

T = I, Ỹ = D̃y D̃y
T = I, C̃ = D̃y D̃x

T = Y−1/2C X−1/2. Consider singular value decomposition (SVD) of the

whitened cross-covariance matrix C̃ = U Σ̃V T , where U and V are orthogonal matrices of singular vectors of the size

dy ×dy and dx ×dx respectively and Σ̃ is a rectangular dy ×dx matrix

Σ̃ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
Σ 0

]
, if dy < dx

Σ, if dy = dx[
Σ
0

]
, if dy > dx

(2)

with the diagonal block Σ = diag(σ1,σ2, . . . ,σn) comprised of n = min{dy,dx} singular values 1 ≥ σ1 ≥ σ2 ≥ ·· · ≥
σn ≥ 0. The fact that σ1 ≤ 1 follows immediately from the fact that due to the whitening the matrix is rescaled such

that ‖C̃‖2 ≤ 1. Since C̃ = Y−1/2C X−1/2 and C̃ = U Σ̃V T it follows that Σ̃ = UT Y−1/2C X−1/2V . Similar to the

approach used in the Optimal Covariance Equalization method [8] we can transform already whitened images Dx

and Dy in SVD basis as follows

x̄ = V T x̃, ȳ = UT ỹ. (3)

Since U and V are orthogonal, transformation (3) preserves the eigenvalue spectra of the matrices providing an equiv-

alent compact representation of the data that allows for efficient formulation and solution of quadratic covariance-

based ACD problems. When expressed in SVD-transformed whitened coordinates (3) the matrix Q of the RX

ACD [2] takes the following form

Q̃RX =

(
Idx Σ̃
Σ̃ Idy

)−1

=

⎛
⎜⎝

In Σ 0

Σ In 0

0 0 Im

⎞
⎟⎠

−1

, (4)



where m = |dx − dy| and In is an identity matrix of the order n and Σ̃ is a rectangular block matrix defined in (2).

Next we notice that there always exists an orthogonal permutation Π, ΠΠT = I such that

T = Π

(
I Σ̃
Σ̃ I

)
ΠT = Π

(
0 Σ̃
Σ̃ 0

)
ΠT + I = ΠJ ΠT + I = G+ I, (5)

where J is the Jordan-Wielandt matrix [7] and G is its tridiagonal Golub-Kahan form [6, 7]. This means that T is a

symmetric tridiagonal matrix with ones on the main diagonal and singular values of the whitened cross covariance

matrix interlaced with zeros on the upper and low diagonals, that is, matrix T is block-diagonal with each block

i = 1,2, . . . ,n of the form (
1 σi

σi 1

)
. (6)

We can now define the permuted RX matrix

Q̄RX = Π Q̃RX ΠT =

(
T 0

0 I

)−1

, (7)

where Π is the Golub-Kahan permutation (5). Q̄RX is block-diagonal with its first n blocks Q̄RXi , i = 1,2, . . . ,n of

the form

Q̄RXi = 1/(1−σ2
i )

(
1 −σi

−σi 1

)
(8)

followed by an identity block. Since Q̄RX is a block-diagonal matrix its eigenvalue spectrum Λ(Q̄RX) is the union of

the eigenvalue spectra of its blocks. It is easy to see that Λ(Q̄RX) = {1/(1±σi), 1,1, . . . ,1︸ ︷︷ ︸
m

| i = 1, . . . ,n}. We can

obtain a family of covariance-based ACD matrices in the block-diagonal form similar to (8) by applying the SVD

transformation (3) followed the Golub-Kahan tridiagonalization. There always exists a Golub-Kahan permutation

Π, such, that SVD-transformed ACD matrices can be expressed in tridiagonal form. Similar to the RX case these

tridiagonalized matrices can be viewed as block-diagonal matrices consisting of 2× 2 blocks. Again, this simple

block diagonal structure makes it easy to determine analytical expressions for the eigenvalues of these matrices

as a function of the singular values of the whitened cross-covariance matrix of the data. In Table 1 we show the

structure of the blocks and the eigenvalue spectra of SVD-transformed RX, Hyperbolic, Chronochrome and Subpixel

Hyperbolic ACD matrices in Golub-Kahan-permuted form. Since σi ∈ [0,1], it is clear that the eigenvalues of the

matrices of the RX and Chronochrome anomalous change detectors are positive, while the the eigenvalues of the

Hyperbolic and Subpixel Hyperbolic ACD matrices may take both positive and negative values.

3. CONCLUSIONS

The presented methodology provides a novel approach for the analysis of the algebraic properties and for efficient

numerical implementation of the RX, Hyperbolic, Chronochrome and Subpixel Hyperbolic ACD. Specifically, we

demonstrated that it is sufficient to compute singular value decomposition of the cross covariance matrix of the data in

whitened coordinates in order to almost immediately obtain highly structured sparse matrices of the RX, Hyperbolic,



Table 1. The block structure and the eigenvalues of the RX, Hyperbolic, Chronochrome and Subpixel Hyperbolic

whitened ACD matrices in block-diagonal form.

ACD Matrix Matrix Block Structure Matrix Eigenvalues

Q̄RX 1/(1−σ 2
i )
(

1 −σi

−σi 1

)
{1/(1±σi), 1,1, . . . ,1︸ ︷︷ ︸

m

| i = 1,2, . . . ,n}

Q̄Hyper σi/(1−σ 2
i )
(

σi −1

−1 σi

)
{∓σi/(1±σi), 0,0, . . . ,0︸ ︷︷ ︸

m

| i = 1,2, . . . ,n}

Q̄CC 1/(1−σ 2
i )
(

σ2
i −σi

−σi 1

)
{(1+σ 2

i )/(1−σ2
i ), 0,0, . . . ,0︸ ︷︷ ︸

n+m

| i = 1,2, . . . ,n}

Q̄Subpix σi/(1−σ 2
i )2

( −2σi 1+σ2
i

1+σ2
i −2σi

)
{±σi/(1±σi)2, 0,0, . . . ,0︸ ︷︷ ︸

m

| i = 1,2, . . . ,n}

Chronochrome and Subpixel Hyperbolic ACD and their eigenvalue spectra, significantly reducing matrix inversion

costs while reformulating these methods in a compact, easy to analyze form.

4. REFERENCES

[1] M. T. Eismann, J. Meola, A. D. Stocker, S. G. Beaven, and A. P. Schaum, “Airborne hyperspectral detection of

small changes,” Applied Optics, vol. 47, no. 28, pp. F27–F45, 2008.

[2] J. Theiler, “Quantitative comparison of quadratic covariance-based anomalous change detectors,” Applied

Optics, vol. 47, no. 28, pp. F12–F26, 2008.

[3] A. P. Schaum and A. D. Stocker, “Linear chromodynamics models for hyperspectral target detection,” in

Aerospace Conference Proceedings. 2003, pp. 1879–1885, IEEE.

[4] A. A. Nielsen, “The regularized iteratively reweighted mad method for change detection in multi- and hyper-

spectral data,” IEEE Transactions on Image Processing, vol. 16, no. 2, pp. 463–478, 2007.

[5] J. Theiler, “Subpixel anomalous change detection in remote sensing imagery,” in Proceedings of the IEEE

Southwest Symposium on Image Analysis and Interpretation. 2008, pp. 165–168, IEEE Computer Society.

[6] G. Golub and W. Kahan, “Calculating the singular values and pseudo-inverse of a matrix,” SIAM Journal on

Numerical Analysis, vol. 2, no. 2, pp. 205–224, 1965.

[7] K. V. Fernando, “Accurately counting singular values of bidiagonal matrices and eigenvalues of skew-symmetric

tridiagonal matrices,” SIAM Journal on Matrix Analysis and Applications, vol. 20, no. 2, pp. 373–399, 1998.

[8] A. Schaum and A. Stocker, “Estimating hyperspectral target signature evolution with a background chromody-

namics model,” in International Symposium on Spectral Sensing Research, 2003.


