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1. INTRODUCTION

It is well known that a proper exploitation of the spatial information is essential in the analysis of remote sensing images of very high
geometrical resolution (VHR), especially when dealing with urban areas. Approaches based on mathematical morphology have already
proved to be effective for the processing of VHR images [1]. In particular, techniques that employ morphological connected filters [2], (e.g.,
opening and closing by reconstruction, attribute filters, etc.) are able to process an image without distorting the geometrical characteristics
of the structures in the scene, which is a fundamental feature of this kind of imagery. Moreover, these operators can be used for performing
a multi-level analysis of the images which permits the extraction of structural information of the objects in the scene. In [3], Pesaresi
and Benediktsson defined a data structure, called morphological profile (MP), generated by a sequence of the morphological operators of
opening and closing by reconstruction of increasing size computed on a VHR panchromatic image. Since the MPs perform a multi-scale
decomposition of the original image, they provide features which are useful for inferring the size of the objects in the image. In [4], feature
extraction techniques were proposed in order to reduce the high redundancy generated by the MPs. The concept of MP was extended to
the analysis of hyperspectral data in [5], by concatenating in a single data structure, called extended morphological profile (EMP), the MPs
computed on the first principal components of the original hyperspectral data. Moreover, the morphological features extracted by the EMP
were considered along with the original hyperspectral data in [6]. Although the features extracted by the morphological profiles generated
with operators by reconstruction provide important information on the geometry of the structures, they only model the size of the structures in
the image. Since, other structural and spectral features might be interesting rather than only the size of the objects, in [2] we recently proposed
to use morphological attribute filters for the analysis of VHR panchromatic images. Attribute filters can process the image according to many
different attributes not only related to the concept of scale [7]. In [8] attribute profiles (APs), a generalization of the MP based on attribute
filters, were proposed. Thanks to the introduction of attribute filters in the analysis, APs can model different spatial features of the image.
Analogously, for hyperspectral data, the concept of EAP was generalized by introducing the definition of extended attribute profiles (EAPs)
generated by attribute filters [9]. The use of multiple profiles built on different attributes has proved to provide richer descriptions of the spatial
information contained in the scene with respect to an approach bases on the conventional profiles built by the operators by reconstruction
[8]-[9]. Nevertheless, the presence of redundant information already noticeable in MPs and EMPs is increased when considering multiple
APs/EAPs computed on the same images. When a classification task is considered, the high dimensionality and the high redundancy that can
be reached by the features generated by the morphological processing can decrease the performaces of the classification, especially if a low
number of training sample is available. Furthermore, the use of feature extraction approaches for the extended attribute profiles becomes very
important in order to make the best use of the available computational resources in the classification.

In this paper we propose an approach for the classification of VHR hyperspectral images based on extended profiles, computed with
attribute filters, and feature extraction techniques. In particular, at first, morphological attribute profiles are computed on the first principal
components of a VHR hyperspectral image leading to the generation of EAPs based on different attributes. Subsequently, the dimensionality
of the generated profiles is reduced by the discriminant analysis feature extraction (DAFE) and the decision boundary feature extraction
(DBFE) techniques. The features extracted are then classified by a random forest classifier [10].

2. PROPOSED CLASSIFICATION APPROACH

In this section the concepts at the basis of the proposed approach are presented.



2.1. Extended Attribute Profiles

We recall the definition of AP as the concatenation of two profiles, ΠφT and ΠγT generated by an extensive (i.e., closing or thickening) and
anti-extensive (i.e., opening or thinning) morphological attribute operator respectively:

AP (f) = Πi :

fi
Πi = ΠφTλ , with λ = (n− 1 + i) ∀λ ∈ [1, n];
Πi = ΠγTλ , with λ = (i− n− 1) ∀λ ∈ [n + 1, 2n + 1].

(1)

with φTλ and γTλ denoting a morphological attribute closing and opening respectively for an increasing criterion T and λ a set of scalar
values used as reference in the filtering procedure. If the attribute considered in the analysis is not increasing, then the criterion is also not
increasing. This leads to have operators of thickening and thinning instead of closing and opening respectively [7].

An EAP can be computed by concatenating the APs computed by considering the same attribute on the c principal components, PCs,
extracted from the original hyperspectral data. Thus, the EAP can be formally defined as:

EAP = {AP (PC1), AP (PC2), . . . , AP (PCc)}. (2)

The attribute chosen for building the APS and the corresponding EAP, determines the type of processing that is performed on the image and
the related characteristics of the structures that can be modeled. For example, if the area of the regions is considered as an attribute, then the
multi-level analysis performed on the image leads to the extraction of information on the size of the structures. Conversely, by considering
attributes such as, the shape factor, the moments invariant, the eccentricity, etc. the geometry of the regions is characterized. Furthermore,
with attributes related to the contrast or to the spectral homogeneity of the regions, other different features can be extracted. In order to
perform an analysis of the image suitable for discriminating among different thematic objects present in the scene, the number of the levels
selected in the definition of the profile has to be sufficient to extract the different characteristics of the data. On the other hand, the selection
of too many levels in the analysis would lead to both a great presence of redundant information and the increase of the dimensionality of the
features. For this reason, considering feature extraction techniques for reduce the effect of noisy features can be of help in the analysis.

2.2. Feature Extraction Techniques

Two well known feature extraction techniques are considered: DAFE and DBFE. The technique of discriminant analysis feature extraction
performs the Fisher discriminant analysis [11], which is a linear projection of the multivariate data on the C − 1 orthogonal directions that
are the most discriminant for the C Gaussian distributions estimated on the thematic classes in the image. We remind that if the number of
features is less than the number of classes, then the number of features becomes the maximum number of discriminant components that can
be extracted. The most discriminant features are found as those which maximize a separability criterion J = tr(Σ−1

W ΣB) where ΣW denotes
the within-scatter matrix which gives a measure of the overlapping of the different distributions and ΣB the between-scatter matrix which
indicates the separability of the means of the distributions.

The Decision Boundary Feature Extraction (DBFE) technique, in contrast to DAFE, does not take into account the statistics of the class
distributions, since it is based on the analysis of the boundary that separates the different classes. In greater detail, discriminant features in
the DBFE are extracted as directions orthogonal to the decision boundary.

3. EXPERIMENTAL RESULTS

The data set considered in the experiments is a 610×340 pixels very high resolution hyperspectral image acquired by the airborne sensor
ROSIS-03 (Reflective Optics Systems Imaging Spectrometer) on the University campus of the city of Pavia, Italy. The geometrical resolution
of the image is 1.3 m. From the 115 spectral bands acquired on the range 0,43 μm to 0,86 μm 12 were discarded due to noise. The geospatial
objects surveyed by this image are belonging to nine thematic classes: Trees, Asphalt, Bitumen, Gravel, Metal sheets, Shadows, Self-blocking
Bricks, Meadows, and Bare soil. For those, a training and reference data, used as test in the experiments, were available.

From the hyperspectral data four PCs were considered for the analysis in order to explain more than the 99% of the total variance of
the data. Subsequently, four EAPs were computed with different attributes: i) a, area of the regions; ii) d, length of the diagonal of the box
bounding the region; iii) i, first moment invariant of Hu, or moment of inertia, [12]; and iv) s, standard deviation of the gray-level values
of the pixels in the regions. The area and the length of the diagonal of the bounding box are increasing attributes that are useful to perform
a multi-scale analysis of the data. The moment of inertia attribute is also a purely geometric descriptor that results sensitive to measure the
elongation of the regions. Since it is scale invariant it is not increasing and can be employed for extracting information on the geometry
of the regions regardless their scale. Finally, the standard deviation attribute measures the homogeneity of the intensity values of the pixels
belonging to each region in the image and it gives information that is not dependent on the geometry of the regions but on the spectral contrast
of the pixels. Four reference values, λ in 1, were considered for building each of the four EAPs, leading to 36-dimensional profiles (composed
by four APs of 9 levels computed on the PCs). The λs are listed in the following:

1. EAPa: λa = [100 500 1000 5000];

2. EAPd: λd = [10 25 50 100];

3. EAPi: λi = [0.2 0.3 0.4 0.5];

4. EAPs: λs = [20 30 40 50].



Table 1. Overall Accuracy (OA), Average Accuracy (AA) and Kappa coefficient of the results obtained without feature extraction.

Spectr. PCs EAPa EAPd EAPi EAPs EAPall

Features 103 4 36 36 36 33 129

OA (%) 71.31 70.04 92.75 86.58 76.26 77.63 89.64

AA (%) 82.00 78.88 92.73 87.43 84.30 85.58 89.74

Kappa 0.65 0.63 0.90 0.82 0.70 0.72 0.86

Table 2. Overall Accuracy (OA), Average Accuracy (AA) and Kappa coefficient of the results obtained with DAFE.

EAPa EAPd EAPi EAPs EAPall

Features 8 8 8 8 32

OA (%) 87.65 86.95 71.27 71.70 84.29

AA (%) 89.48 89.48 83.93 85.44 90.13
Kappa 0.84 0.83 0.65 0.66 0.80

From each of the profiles considered the feature extraction techniques DAFE and DBFE were applied. The estimation of the covariance
matrices of the different thematic distributions, required for the computation of DAFE was done by the leave-one-out covariance estimator
since the high redundancy present in the profiles led to singular matrices by using the conventional estimator.

Preliminary results were obtained by classifying the data with a random forest classifier created with 200 trees [10] and considering as
the number of variables, investigated in each split of the trees, the square root of the number of the features of the data, as suggested in [10].
The classification results were quantitatively evaluated by measuring the Overall Accuracy (OA), the Average Accuracy (AA) and the Kappa
coefficient (K) on the reference data.

In Table 1, the accuracies obtained without the feature extraction techniques are presented. It is possible to notice how similar results are
obtained by considering only the hyperspectral values (Spectr) and the first PCs. As expected, by considering the EAPs, higher accuracies are
obtained. In particular, the EAPa performed extremely well with respect to the EAPs with other attributes. When considering all the profiles
together, the obtained accuracies are higher than all the single EAPs except the EAPa.

The results obtained by considering the DAFE technique are presented in Table 2. The dimensionality was reduced to 8 features for each
EAP. The EAPall considered all the features extracted by the four profiles. The achieved accuracies are comparable to those obtained by the
profiles without feature extraction but, in general, slightly lower. However, the EAPa achieved the best OA and K accuracies while the best
AA accuracy was obtained by the EAPall.

In Table 3 are reported the results obtained by considering the DBFE technique. The number of feature extracted by the analysis was
selected in order to achieve more than the 99% of the total variance of the data. The best accuracies were obtained by considering all the
features extracted from each single EAP together.

When comparing the results in Table 2 and 3 it is possible to notice that by performing DAFE the accuracy achieved is higher than by
considering the DBFE technique for EAPa, EAPd and EAPi. Conversely, better results were obtained by applying DBFE instead of DAFE
for the EAPs and EAPall.

From the preliminary obtained results it can be noticed how the use of feature extraction techniques in most of the cases led to lower,
even if still comparable, values of the accuracies with respect to considering the data in its original dimensions. This behaviour can be due to
i) the availability of a set of training samples that can fully describe the class variabily and ii) the use of a random forest classifier which has
proved to be robust in handling redundant features.

In conclusion based on the preliminary results carried out, it is possible to notice how by using feature extraction techniques the dimen-
sionality of the data is significantly reduced (i.e., requiring less computational resources) while achieving results which are comparable to
those obtained by the data with full dimensionality. In the full paper further results of our on-going research aimed at exploring the role of
feature extraction techniques with EAPs will be presented.

Table 3. Overall Accuracy (OA), Average Accuracy (AA) and Kappa coefficient of the results obtained with DBFE.

EAPa EAPd EAPi EAPs EAPall

Features 17 18 20 17 72

OA (%) 86.22 80.34 70.48 76.66 88.58
AA (%) 89.35 85.94 82.99 84.73 90.40
Kappa 0.82 0.75 0.64 0.71 0.85
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