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1. ABSTRACT

This paper proposes a new method for change detection measurement independent from system configuration in a set of multi-

temporal-multidimensional SAR images. The method is based on the Kullback-Leibler (KL-divergence) test, known as Mutual
Information. In order to develop an algorithm independent from the system configuration, firstly the joint distribution of

PolInSAR data set, based on the second order statistics has been derived. Such a derivation accounts for the whole multi-

temporal system configurations as interferometric and partial-PolInSAR data sets. Then the KL-divergence test is used to

measure the difference between the joint density of multi-temporal PolSAR data set and their marginal density known as

complex Wishart distribution. A comparison between the proposed and the other well-known change detection (e.g. cross

correlation and the maximum likelihood ratio test) techniques is shown, describing the advantages due to the fact that the

proposed change detector involve almost every facet of applied change detection.

2. INTRODUCTION

The experimental results presented in [1], [2] and [3] encourage to use of the approach of KL-divergence test with the aim of

detecting changes in temporal SAR images. [1] is not direct application of the KL-divergence test, it is the implementation of

bivariate Gamma distribution into image registration and change detection. The KL-divergence test has been used to overcome

the problem of estimating the correlation between two temporal intensity images. However, the technique proposed in [2]

evaluates the local statistics of interferometric temporal data set through KL-divergence test. Instead of using fixed PDF,

cumulant-based series expansion which approximates the PDF from samples has been used to calculate the KL-divergence

scalar. Morio et al [3] did a very interesting work by analyzing the KL-divergence test for contrast measurement for multi-

channel SAR data set. They show that the KL-divergence test for contrast measurement allows to precisely characterize the

contribution of each channel for different system configurations, including intensity, polarimetric, and interferometric images.

Here, the idea of change detection with the use of the KL-divergence is to extend the previous applications into the second order

statistics of temporal data sets.

The section 3 introduces the joint distribution of multi-temporal polarimetric data set. The next section will define the KL-

divergence test measuring the difference between two probability distributions and its implementation to temporal polarimetric

dataset to detect the change, while it also reviews the other well-known polarimetric change detection techniques to make a

comparison between the proposed technique and the well-known technique regarding accuracy assessment.

3. THE JOINT DISTRIBUTION OF TEMPORAL POLARIMETRIC SAR IMAGES

Let the temporal target vector k = [k1 k2]
T

be a complex target vector distributed as a multicomponent circular Gaussian

NC(0,Σ) that consist of two target vectors k1 ∼ NC(0,Σ11) and k2 ∼ NC(0,Σ22) obtained from multi-temporal SAR

images at time t1 and t2. Thus, these two observations are a correlated or uncorrelated process over time depending on the

monitored objects. To not to make any assumption concerning their independence, Σ may be used to characterize the behavior

of the temporal multi-channel data. The number of elements in one of the target vector ki at the time ti is represented by m,

and hence the temporal target vector k has the dimension of q = 2×m.

Σ as well as its estimation n samples covariance matrix A = 1
n

∑n
j=1 kjk

†
j can be portioned as

Σ =
[
Σ11 Σ12

Σ21 Σ22

]
and A =

[
A11 A12

A21 A22

]
(1)



which summaries the whole (joint and marginal) information from temporal multi-channel SAR systems. The matrices A11 and

A22 are the standard n samples (n-look in the case of SAR images) m×m covariance matrices from separate temporal images.

A12 = A†
21 is a m×m cross correlation matrix between k1 and k2. The properties of the hermitian matrix A permit to define

the joint and the conditional probability of the temporal images. The joint density of element A22 conditioned on A11 follows

the complex Wishart distribution with n−m degrees of freedom p(A11|A22) =WC(n−m,Σ11|22) [4] where Σ11|22 = Σ11−
Σ12Σ−1

22 Σ21 is independent from A12 and A22. Moreover, as the sample covariance matrix of A22 follows a complex Wishart

density function with n degrees of freedom WC(n,Σ22), the conditional probability density of A12 given A22 is a complex

normal function p(A12|A22) = N C(Σ12Σ−1
22 A22,Σ11|22⊗A22) [5]. Using that any linear transformation of a normal vector has

a normal distribution and multiplying (p(A12|A22)) with A
−1/2
12 results in p(A12A

−1
12 |A22) = N C(Σ12Σ−1

22 A
1/2
22 ,Σ11|22⊗ Im).

Then, re-formulating A12A
−1
22 A21 as A12A

−1/2
22 (A12A

−1/2
22 )†, we can write p(A12A

−1
22 A21|A22) as a complex Non-central

Wishart distribution with the help of [6, Definition II]:

p(A12A
−1
22 A21|A22) =WC(m,Σ11|22,Σ12Σ−1

22 A22Σ−1
22 Σ21Σ11|22). (2)

Let A12A
−1
22 A21 = D, then the density function of p(A11|22, A22,D|A22) can be written as

p(A11|22, A22,D|A22) = p(A11|22)p(A22)p(D|A22)

=
nm(n−m)|A11|22|n−2m exp(−ntrΣ−1

11|22A11|22)

|Σ11|22|n−mΓ̃m(n−m)
× 0F̃1(m, n2Σ−1

11|22Σ12Σ−1
22 A22Σ−1

22 Σ21Σ−1
11|22D)

×
exp(−ntrΣ−1

11|22D)exp(−ntrΣ−1
11|22Σ12Σ−1

22 A22Σ−1
22 Σ21)

|Σ11|22|mΓ̃m(m)
× nmn|A22|n−m exp(−ntrΣ−1

22 A22)
|Σ22|nΓ̃m(n)

.

(3)

Here, 0F̃1(n,M) is the complex hypergeometric function of matrix M and closely related to Bessel functions. This function

can be calculated with the help of positive eigenvalues of the Hermitian matrix M by [7].

Substituting A11 = A11|22+D, R2 = A
−1/2
11 A12A

−1
22 A

−1/2
11 into (3) and applying the change of variable [4, Teorem 2.1.5],

R2 = A
−1/2
11 DA

−1/2
11 =⇒ dR2 = |A11|mdD, we can write p(A11, A22, R

2) as

p(A11, A22, R
2) =

n−qn|A22|n−metr(−nΣ−1
22|11A22)

|Σ22|nΓ̃m(n)Γ̃m(n−m)

|I −R2|n−q|A11|n−m exp(−ntrΣ−1
11|22A11)

|Σ11|n|Im − P 2|nΓ̃m(m)

× 0F̃1(m,n2A
1/2
11 Σ

−1
11|22Σ12Σ−1

22 A22Σ−1
22 Σ21Σ−1

11|22A
1/2
11 R2)

(4)

where P 2 = Σ−1/2
11 Σ12Σ−1

22 Σ
−1/2
11 . It is clear that (4) is valid under the condition of A11, A22 > 0 and 0 < R2 < Im which

means that A11, A22, R
2 and Im −R2 are positive definitive matrix1. Integrating R2 over (4), the joint distribution of temporal

multi-channel SAR systems is given by

p (A11,A22) = e

„
nΣ

−1
22 A22+Σ

−1
11 A11

−(I−P2)

«
n2mn|Σ11Σ22|−n|A11A22|n−m

|I − P 2|nΓ̃m(n)Γ̃m(n)
0F̃1

(
n, n2A1/2

11 Σ−1
11.2Σ12Σ−1

22 A22Σ−1
22 Σ21Σ−1

11.2A
1/2
11

)
.

(5)

Fig.1 plots the comparison between the theoretical bivariate distribution (5) and 3D bivariate histogram from Monte Carlo

simulations in the case of m = 1. The 3D bivariate histogram represents the occurrence as a series of 3D bars. It can be

considered to be a conjunction of two simple (i.e., univariate) histograms, combined such that the frequencies of co-occurrences

of values on the two analyzed variables can be examined.

4. KL-DIVERGENCE AND CHANGE DETECTION

In probability theory and information theory, the KL-divergence test is a non-commutative measure of the difference between

two probability distributions pX(x) and pY (y) of the random variables X and Y , respectively. KL-divergence from Y to X is

given by

DKL =
∫

log

(
pX(x)
pY (y)

)
pX(x)dx

= H (pX(x), pY (y))
(6)

1The real case of this distribution can be found in [8] and the key theorems in the complex case, concerning the derivation of p(A11, A22), can be found in

[9].
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Fig. 1. Comparison between theoretical bivariate distribution (5) and 3D bivariate histogram from simulated data in the case of

m = 1. In both case, the powers are given by σ1 = σ2 = 1 and correlation by ρ = 0.1. When n → ∞, a1 = σ1 = 1 and

a2 = σ2 = 1.

whereH (pX(x), pY (y)) is called the relative entropy. It can be seen from (6) that the KL-divergence test is based on a relative

entropy of continuous random variables, which does not change under invertible transformations.

Therefore, the KL-divergence can be interpreted as the measure of the discrimination between the hypothesisHX andHY ,

if HypothesisHX is associated with the PDF pX(x) andHY with that of pY (y).
To investigate the temporal behavior of multidimensional SAR systems including whole the system configurations, i.e.,

m = 1 interferometric pair and m = 3 polarimetric-interferometric pair, the joint density functions of polarimetric multi-

temporal images derived in (5) and the statistical similarity measurement of two densities explained in (6) will be combined.

The basic concept behind the definition of the KL-divergence test is to define a convenient scalar change detection parameter

which is independent of the number of channel and to extend the previous applications into the second order statistics of multi-

temporal data set. Since p(A11, A22) characterize the joint behavior of the second order statistics of the temporal data set,

p(A11, A22) = p(A11)p(A22) if and only if the multi-temporal data set are independent. Due to this, the KL-divergence scalar

with the aim of change detection can be written as

Dn =
∫

log

[
p(A11, A22)

p(A11)p(A22)

]
p(A11, A22)d

−→
A (7)

where p(A11) and p(A22) are marginal densities of the m2 complex element vector obtained by stacking the columns of A11

and A22 respectively and A is the vector including 2m2 elements obtained by stacking the A11 and A22 consecutively. Here,

n indicates the number of samples using in the estimation of the covariance matrices. Substituting the joint density (5) and the

marginal densities known as Wishart distribution into (7) and writing Σ11.2 = Σ−1
11 (Im − P 2) and Σ22.1 = Σ−1

22 (Im − P 2)
imply the following result

Dn = E
{
log

(
0F̃1(n, n2A

1/2
11 Σ

−1
11.2Σ12Σ−1

22 A22Σ−1
22 Σ21Σ−1

11.2A
1/2
11 )

)}
− tr

(
2nP 2

Im − P 2

)
− n log(|Im − P 2|) (8)

At this point, it can be seen from (8) that the KL-divergence decision statistic Dn and the cross correlation R are related to each

other. Thus the final goal of this change detection study is to highlight the advantage of using the KL-divergence compared

to correlation. We will evaluate the performance of KL-divergence detector with correlation in two levels of samples n = 9
and n = 49. In particular, the average Probability of Errors (PE) analysis will be performed using the Receiver Operating
Characteristic (ROC) curves. The averaged PE is a function of threshold T including the sum of the rejection of a null

hypothesis (1− PD) and the fail of rejecting a alternative hypothesis (PFA), i.e., PE = (1/2)(1− PD + PFA).
Assuming that we would like to make the change detection with the condition of PE ≤ 0.3 where PE = 0.5 is the highest

error. In that case it is clearly seen from Fig.2 that there are more thresholds values supplying this condition by KL-divergence

instead of correlation paremater. Fig.2 summaries that improvements for detection problem are obtainable by increasing the

number of samples. Similar results have been obtained in [1] with the system configuration m = 1. Note that Pe in the below

curves would change if H0 and H1 were chosen to be some other values.
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Fig. 2. The plots of probability of errors versus threshold for KL-divergence (the dashed line) and correlation (the solid line)

between second order statistics estimators at two level of samples, n = 9 and n = 49. It has to be noted that the correlation in

the case of m = 1 is not the interferometric coherence, it is the correlation between two intensity images.

5. CONCLUSION

A new joint distribution and a change detection decision statistic based on the second order statistic has been proposed for

multi-channel temporal SAR Images. A new algorithm for change detection, which is based on the KL-divergence test, is

independent of system configuration. The proposed detector has been compared to the classical change detector and has been

shown to have a more robust behavior than the classical algorithms based on simulated and real data.
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