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ABSTRACT 
Differential SAR tomography extends the synthetic aperture principle into the elevation and time directions for 4-D imaging. 
With modern meter-resolution space-borne SAR systems like TerraSAR-X and COSMO-Skymed systematic tomographic 
imaging of urban infrastructure and its deformations becomes feasible. We demonstrate the use of TerraSAR-X data for this 
purpose and introduce several novel concepts.  
Since building deformation in general is nonlinear, e.g. due to thermal dilation, we start from a tomographic system 
formulation that is general enough to allow for the inclusion of motion models (linear, periodic, etc.). By appropriate 
warping of the time axis we map the motion model function to become linear and lead to a peak in the spectral domain. 
For the differential tomographic inversion itself we propose a 2-D compressive sensing (CS) approach. CS requires sparsity 
of the signals to be reconstructed which is true for meter-resolution SAR data of urban environment. We demonstrate the 
super-resolution power and the robustness of CS both with simulated and with real data. We also show that CS is an 
attractive compromise between parametric and non-parametric methods. A full reconstruction of a building complex and its 
seasonal deformation from a stack of TerraSAR-X spotlight data is finally presented. 

Index Terms— differential SAR tomography, nonlinear motion, compressive sensing, super-resolution 

1. INTRODUCTION
Differential SAR Tomography (D-TomoSAR), also referred to as 4-D focusing, uses stacks of repeat-pass acquisitions to 
reconstruct reflectivity and deformation profiles of the scattering objects along elevation s by means of 2-D spectral analysis 
for every azimuth-range (x-r) pixel.  
Currently, very high spatial resolution (VHR) SAR satellites like TerraSAR-X (TS-X) and COSMO-Skymed provide data up 
to 1m resolution, which are particularly suited for tomographic imaging of urban infrastructure and their temporal 
deformations. Due to the repeat-pass nature of data acquisition, deformation terms must always be accounted for by the 
reconstruction algorithms, and be it only as nuisance parameters. Most often pronounced seasonal thermal dilation prohibits 
the use of the popular linear motion assumption. In this paper we propose a model-based time warp method for nonlinear 
motion monitoring. 
Due to the tight orbit control of these satellites the elevation resolution can be about 50 times (TS-X) worse than the one in 
azimuth or range. This extreme anisotropy calls for super-resolution algorithms. We work with TS-X spotlight data and 
concentrate on single-look super-resolution methods to exploit the potential of VHR data. All methods that require multi-look 
estimates of covariance matrices (e.g. CAPON, MUSIC) would reduce the azimuth-range resolution and are not able to 
resolve structural building elements in the important meter scale. In this paper compressive sensing (CS) [1] D-TomoSAR is 
introduced and we demonstrate its favourable properties like super-resolution, robustness against phase noise, etc. 

2. SYSTEM MODEL
The measurement ng  at an (x-r) pixel for the nth acquisition at aperture position  and time  ( ) is nb nt 1,...,n N [2]:

exp 2 2 , /n n
s

ng s j s d s t ds (1)

where s  represents the reflectivity function along elevation s  with an extent of s  and 2n nb r  is the spatial 

(elevation) frequency.  is the line-of-sight (LOS) deformation as a function of elevation and time. By introducing the 

temporal frequency 

, nd s t

2 /n n  as a function of an artificial temporal baseline n  and a motion parameter p s , the 
proposed time warp method leads to a generalized system model which is adapted for different nonlinear motion models: 
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For instance, in case of linear motion, n tn and the motion parameter p s stands for the LOS velocity. In case of 
seasonal motion caused by thermal expansion, 0sin 2n nt t and the deformation parameter stands for the 
amplitude of the periodic motion along s; is the initial phase offset which can be estimated from the temperature history. 
After the time warp, the system model 

p s

0t
(2) can be easily rewritten as: 
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where is the scattering distribution in the elevation-motion (s-p) plane. Equation ,a s p s p p s
,a s p

(3) is a 2-D 
Fourier transform of  which is a delta-line in the elevation-motion (s-p) plane along . Its projection onto 
the elevation axis is the reflectivity profile 

p p s
s . This model is a generalization of the one introduced in [2]. For the 

following we use a discretized version of equation (3), i.e. a 2-D discrete Fourier transform:  
g R  (4) 

where g  is the measurement vector with N elements, R  with ( ) exp 2n l Lq n l n qR j s p  is an N LQ  mapping 

matrix,  is the discrete in elevation ,a s p ( )l 1,...,s l L  and velocity ( 1,..., )qp q Q . Its inversion provides retrieval 
of the elevation and deformation information even in the case of multiple scatterers inside an azimuth-range resolution cell.  

3. D-TOMOSAR VIA COMPRESSIVE SENSING
Compressive sensing (CS) is a favourable approach for sparse signal reconstruction [1]. As described in [3], for VHR space-
borne X-band TomoSAR the signal  to be reconstructed has typically K=1-3 point-like contributions of unknown positions, 
amplitudes, phases, and motion parameters, i.e.  is sparse in the identity orthogonal basis . In order to measure 
efficiently, the sensing matrix  should spread out the information of localized sparse signals in the entire projection space 
and thus makes them insensitive to “undersampling”. This property is the so called incoherence between the sensing matrix 
and the orthogonal basis. According to equations (1) and (2) the sensing matrix R  is a randomly distributed Fourier 
sampling matrix which is known to have the best incoherence property with I . The aim is to find the solution of with
least number of scatterers, i.e. minimal L0 norm, to satisfy measurements: 

I
R

0
min s.t. g = R  (5) 

For , which is fulfilled due to the small number K of scatterers, CS theory tells us that L1 norm 
minimization leads to the same result as L0 norm. In the presence of noise, the solution can finally be approximated by 

log /N K L K
[4]:
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K is a factor adjusted according to the noise level. The choice of K  is described in [4]. Equation (6) can be solved by basis 
pursuit methods [4]. Instead of detecting the K most significant coefficients, they minimize the residual by employing a L1
norm regularization. By providing the over-completeness of , they provide more robust solutions than (5).

4. EXPERIMENTS 
4.1. The Data Set
We work with TS-X spotlight data with a resolution of 0.6m in slant range and 1m in azimuth. Our test site is Las Vegas, 
Nevada, USA. The orbit of TS-X is controlled in a tube of 500m diameter. The data stack consists of 25 scenes with an 
elevation aperture size =269.5m. With non-parametric linear spectral analysis based on regularized SVD b [2][5] we obtain 
a 3dB elevation resolution of = 33s m or about 16m in height z (look angle =31.8 ). The Cramér-Rao lower bound 
(CRLB) of the elevation estimates of a single scatterer is 1.1m for a SNR=10dB in this configuration [5].

4.2 Simulation 
In this section, the CS approach is compared to conventional non-parametric and parametric methods using simulated data 
with the elevation sampling of the real data. Decorrelation is introduced by adding Gaussian noise with variable SNR. Phase 
noise due to unmodeled motion and atmospheric effects is simulated by adding a uniformly distributed phase. 
Figure 1 shows the 4-D reconstruction with linear motion using a singular value decomposition method with Wiener-type 
regularization (SVD-Wiener) [5] (left) and CS (right). We simulate the situation of two scatterers inside one resolution cell 
with elevation of 0m and 20m and linear deformation velocity of 0.9 cm/y and 1.1 cm/y, respectively. SVD-Wiener is not 
able to distinguish them while CS detects very clearly two individual scatterers. Figure 2 shows the same plot as Figure 1 but 



with seasonal motion. The two scatterers are far apart from each other with elevation of -30 and 20m and seasonal motion 
amplitude of 8mm and 4mm. With time warp, the amplitudes of seasonal motion can be well reconstructed. 
In [3], CS has been compared to maxima detection (MD) and NLS, where MD simply uses the maxima of the SVD-Wiener 
reconstruction as estimates and NLS is the theoretically best solution under Gaussian noise. Compared to MD, besides the 
super-resolution property, CS shows no sidelobe interference. Compared to NLS, CS has comparable performance with 
lower computational effort and does not require the number of scatterers as a prior. 
Figure 3 shows the elevation estimation accuracy of a single scatterer in the phase-noise-free case using NLS and CS 
compared to the CRLB as a function of SNR. The estimation accuracy of CS is almost identical to NLS and reaches the 
CRLB. Figure 4 shows the elevation error under phase noise uniformly distributed in ,n n . Obviously CS is more 
robust against non-Gaussian phase noise than NLS. Taking all those aspects into account, CS provides the best of the two 
worlds of non-parametric and parametric spectral estimation methods and, hence, is proven very attractive for D-TomoSAR.  

Figure 2: 4-D reconstruction with seasonal motion: SVD-Wiener 
(left) vs. CS (right). SNR=10dB; s=-30m, 20m; amplitude of 

seasonal motion=8mm, 4mm. 

Figure 1: 4-D reconstruction with linear motion: SVD-Wiener (left) 
vs. CS (right). SNR=10dB; s=0, 20m; v=0.9cm/y,1.1cm/y. 

Figure 4: Single scatterer elevation estimation error of NLS and 
CS as a function of phase noise (SNR=20dB). 

Figure 3: Single scatterer elevation estimation error of NLS and 
CS compared to the CRLB as a function of SNR 

4.3 Real Data 
We use the Las Vegas convention center as a test site. It has a height of about 20m, roughly the resolution limit of SVD-
Wiener for our elevation aperture size. The left image in Figure 5 shows the TS-X intensity map. The presence of two 
scatterers within an azimuth-range pixel is expected in layover areas and has been validated in [5]. Thus, we are able to 
compare the performance of CS to SVD-Wiener in the layover areas. Figure 5, center, shows the projections of the 4-D 
reconstruction for the pixel P (red dot) to elevation direction, i.e. the reflectivity profile. Two scatterers have been detected 
by SVD-Wiener (red line), one on the roof, the other on the parking place on the ground. The blue line in Figure 5 shows the 
result using CS. Two very close scatterers have been detected, i.e. D-TomoSAR via CS provides super resolution up to 2m in 
height (i.e. about 4m in elevation) in this case. 
With the approximately one year time spread of our data set, nonlinear (e.g. thermally induced) movements of different 
building parts must be expected. Hence, by using our time warp method, the surface model and amplitude map of seasonal 
motion is obtained for the whole building. The center image of Figure 6 shows the surface model generated from the 
elevation estimates (converted to height). The full structure of the convention center has been captured at a very detailed 
level. Besides the building, more detail such as the roads surrounding the convention center, as well as two bridges above the 
roads which have weak but correlated returns are clearly resolved. The height estimates are very precise compared to the 
33m elevation resolution due to the high SNR of TS-X data. The right image of Figure 6 represents the amplitude map of the 
seasonal motion. The amplitude variance is smooth for individual structural blocks with sudden amplitude changes between 
adjacent blocks. The amplitude difference is up to 8mm. Figure 7 shows the final surface model over-layed with the 
reflectivity map, i.e. a 3-D SAR image. This visualizes in detail how the convention center would look like from the position 
of TS-X if our eyes could see X-band radiation. This may lead to a better understanding of the nature of scattering. 



Figure 5: Reflectivity reconstruction for a pixel located at the 
layover area by using SVD-Wiener (red) and CS (blue). 

 
Figure 6: The world at X-band: tomographic surface reconstruction 

overlayed by 3-D reflectivity map. 

Figure 7: Left: TS-X intensity map of Las Vegas convention center; middle: Reconstructed digital surface model (DSM) from  
D-TomoSAR, [unit: m]; right: Estimated amplitude of seasonal motion using the time warp method [unit: mm] 

5. CONCLUSION 
The new class of space-borne high resolution spotlight SAR data is very attractive for 3-D and 4-D tomographic mapping of 
urban infrastructure. Compared to the medium resolution SAR systems available so far, the information content and level of 
detail has increased dramatically. 
Recognizing the sparsity of the signal in elevation, CS as a new and promising technique for sparse signal reconstruction has 
been introduced to D-TomoSAR. It provides a very elegant compromise between conventional non-parametric and 
parametric tomographic methods. For instance, it shows high robustness w.r.t. unmodeled non-Gaussian phase noise. 
Compared to non-parametric methods, it provides super-resolution properties without sacrificing the azimuth or range 
resolution; it does not suffer from the sidelobe interference effect. Compared to parametric methods, like NLS, in the single 
scatterer case and under Gaussian noise CS approaches the accuracy of NLS with lower computational effort. In addition, CS 
does not need model selection, i.e. it “automatically” chooses the number of scatterers that can be resolved. 
A new model-based time warp method has been proposed for nonlinear motion monitoring. By forming an artificial temporal 
baseline, it provides the possibility of focusing the desired parameter, e.g. the amplitude of seasonal motion, to the 
coefficient space. The time warp method has been validated by reconstructing seasonal motion caused by thermal expansion 
of a building complex. A full tomographic high resolution reconstruction of the Las Vegas convention center is presented.
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