
ASSIMILATION OF SVM-BASED ESTIMATES OF LAND SURFACE TEMPERATURE FOR

THE RETRIEVAL OF SURFACE ENERGY BALANCE COMPONENTS

Giorgio Boni2, Federica Martina2, Gabriele Moser1, and Sebastiano B. Serpico1

1 University of Genoa, Dept. of Biophysical and Electronic Eng. (DIBE),

Via Opera Pia 11a, I-16145, Genoa (Italy), e-mail: sebastiano.serpico@unige.it
2 CIMA Research Foundation, Savona University Campus,

Via Armando Magliotto 2, I-17100 Savona (Italy), e-mail: giorgio.boni@cimafoundation.org

1. EXTENDED ABSTRACT

Thanks to the recent missions for spaceborne Earth observation, remote-sensing data acquired with very different

spatial resolutions and revisit times currently offer the opportunity to monitor and analyze the behaviors of the

Earth surface at the required (local, regional, or global) observation scales. In particular, geostationary satellites

(e.g., Meteosat Second Generation, MSG) currently allow wide-scale images to be acquired with very short revisit

times (e.g., around 15 minutes). In order to exploit this great amount of information into dynamic physical models

used to predict the evolution of hydrological processes, suitable techniques must be used. In this framework data

assimilation (DA) represents the most effective approach to couple in a statistically optimal way dynamic models

and observations to retrieve and estimate land surface variables [1, 2, 3].

In this paper, the DA perspective is adopted in order to address the problem of the estimation of the mass

and energy exchanges at the soil surface in the framework of the application to ood prevention. DA can play

an important role in inferring uxes from successive remote sensing measurements of state variables such as land

surface temperature (LST). LST time series over land contains a large amount of information about energy and mass

uxes at the soil surface: these exchanges have signi cant variations on a diurnal basis [4]. The signature of these

large variations is evident in LST observations. On the other hand ground-based data of latent and sensible heat

uxes are available only for limited time periods and over small eld experiment areas. Tower instruments within

measurement networks are costly to install and maintain.

Here, a novel integrated method is proposed that assimilates LST estimates generated by a recently proposed

algorithm based on support vector regression [5, 6, 7] into a model for surface energy ux estimation [8]. The



model is based on a simpli ed version of the surface energy balance equation, namely the Force-Restore equation

[9], coupled with a soil wetness dynamic equation based on the antecedent precipitation index (API) [10]. The

system dynamic equations are incorporated in an adjoint-state variational scheme as given by [11]. In particular, the

proposed DA scheme aims at taking bene t from the capability of the techniques introduced in [5, 6, 7] of providing

both a fully automatic LST estimation from satellite infrared data and a pixelwise evaluation of the statistics of the

related LST-estimation error.

Many physically-based algorithms have been devised to retrieve LST from infrared space radiometry, typically

involving prior information about the atmosphere (e.g., temperature and water vapor pro les) and the surface (e.g.,

emissivity) [12]. A different approach has recently been proposed in [5] based on pattern recognition using support

vector machines (SVMs) [13]. SVMs represent a general family of supervised learning (i.e., classi cation, regres-

sion, or probability density estimation) techniques. In the case of LST-estimation, SVMs compute a nonparametric

approximation of the relationship between satellite data and corresponding in-situ measurements, which are used for

training purposes and can be collected, for instance, by a network of micrometeorological stations in the monitored

area. This strategy can be theoretically proven to exhibit very good generalization and robustness [13] and, when

applied to LST estimation, it proved complementary with respect to the aforementioned physically-based methods.

Indeed, it was experimentally remarked that SVMs can generate more accurate estimates than these methods, even

though with increased computational burden. Moreover, SVMs do not require prior information on atmospheric and

surface properties, but they rely on the availability of in situ measurements to be used for training purposes [7].

Given these training data, a fully automatic SVM-based LST-estimation method was developed in [5] by auto-

matically optimizing the values of the related model parameters. The formulation of SVM-based regression intrinsi-

cally involves regularization and kernel parameters [13, 14], whose values are often chosen through time-expensive

and human-error prone “trial-and-error” procedures. The approach in [5] formalizes the parameter-optimization

problem as the numerical minimization of the span-bound functional, which is a (tight) analytical upper bound on

the leave-one-out regression error [14] and has also been found to be often strongly correlated with test-set hold-out

errors [14, 5]. As the span bound is a nondifferentiable function of the SVM parameters, Powell’s method is used to

address the related numerical minimization [15, 5].

Moreover, in order to effectively integrate LST estimates in the above mentioned DA variational scheme, a

further critical piece of information is represented by the LST regression-error statistics. However, classical error-

estimation procedures, such as cross-validation or leave-one-out sampling, provide only global information. They

characterize each map of LST estimates on the basis of a single numerical error index (e.g., a root-mean square error)

without a pointwise characterization of the error associated with each pixel. Unlike this classical approach, the prob-

lem of pixelwise modeling the statistics of the LST regression error was addressed in [6]. This modeling problem



has only recently been explored in the SVM literature. It has been proven in [16] that the intrinsically nonbayesian

SVM approach to regression can be equivalently reformulated as a Bayesian “maximum-a-posteriori” regression

with respect to suitably de ned conditional likelihood and prior distributions. According to this formulation, the

regression error on each sample is expressed as the sum of two independent multidimensional stochastic processes

related to the SVM functional approximator and to the intrinsic uncertainty in the input data, respectively [16]. In

this framework, two techniques were developed in [6] to model the pixelwise regression-error statistics by com-

bining the nonstationary kernel-based characterization proposed in [16] for the error contribution due to the SVM

functional approximator, and case-speci c maximum-likelihood and con dence-interval estimators for the stationary

error contribution due to data uncertainty.

In particular, the DA approach that is followed here to exploit the LST estimates and the related regression-error

statistics is an adjoint-state variational scheme [11]. This scheme is based on the de nition of a performance cost

function that incorporates, through Lagrange multipliers, the system (LST and API) dynamics. The cost function is a

quadratic penalty function that weights the mis t errors between model and observed LST according to the statistics

of the observation errors estimated with the procedure described above.

The proposed integrated DA-SVM method is experimentally validated over a time series of MSG images ac-

quired over Italy between 7:00 am and 6:00 pm local time by MSG-SEVIRI between August and September 2005,

and endowed with corresponding ground temperature measurements collected by the ARSIA network of micromete-

orological stations in Tuscany (Italy). Validation is performed by forcing hydrological models with the energy uxes

estimated by assimilating both standard (physically-based) and SVM-based LST estimates. The errors in the esti-

mation of the different terms of the hydrologic cycle (compared with ground-based observations) are then quanti ed

for the two assimilations and the performance of the integrated DA-SVM algorithm is quanti ed.
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