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1. INTRODUCTION

The use of synthetic aperture radar (SAR) has become an integral part of terrestrial and environmental monitoring

applications, such as sea-ice monitoring [1] and land cover classification [2]. In SAR imaging systems, electro-

magnetic pulses in the microwave range (e.g., C-band for RADARSAT-1) are transmitted towards the surface of the

Earth. The amplitude and phase signals at the receiver are then combined as if they were produced from a much

larger antenna than the one used to transmit and detect the pulses, thus creating a large synthetic aperture.

An important challenge faced in SAR imaging is the presence of speckle, which arises from the constructive

and destructive interference of the backscatter signal. Such complex speckle patterns occlude important details,

thus limiting the level of accuracy that can be achieved when analyzing such data. While a large number of new

despeckling algorithms have been proposed [3, 4, 5], the performance of such methods are often limited due to

the fact that a majority of such methods do not account for the coherence between backscatter signals, resulting in

correlated speckle patterns. Therefore, an important step in SAR data reconstruction may be the decorrelation of the

SAR data, which can then be processed using existing despeckling algorithms to greater effect. Such decorrelation

is often difficult since the point-spread function (PSF) of the SAR imaging system is not readily available.

In this paper, we investigate a new Bayesian source separation approach to blind decorrelation of SAR data,

where the PSF is estimated directly from the SAR data. The key contribution is the patch-wise computation of

the PSF, to account for spatial nonstationarities. Interestingly, similar nonstationary PSFs are present in medical

ultrasound data, and this method should have similar applicability there.

2. METHODOLOGY

Assuming linear wave propagation and weak scattering, the received signal f is modeled as the convolution

f(x, y) =
∫ ∫

h(x, y, α, β) · r (α, β) dαdβ + m(d, θ), (1)

where h is the PSF of the imaging system, m is all phenomena not accounted for by h, and r is the reflectance

function defining the population of scatterers. While h is not spatially invariant, to simplify the model, h is commonly

assumed to be spatially invariant within a sufficiently small region. As such, a segment from f , denoted as f ′, can
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Fig. 1. Decorrelation results using simulated speckle

be modeled as the convolution of a linear, space-invariant PSF h′ and a segment of the reflectance function r′:

f ′(x, y) = h′(d, θ) ∗ r′(x, y) + m(x, y), (2)

Based on f ′, the demodulated, in-phase/quadrature data g′ can be expressed as

g′(x, y) = f ′(x, y) + jC
(
f ′(x, y)

)
, (3)

where C denotes the Hilbert transform. To decorrelate f ′, we must first estimate h′. Given the linear nature of the

demodulation step, f ′ can be computed by taking the real part of g′. The Fourier transform of (2) is then

F ′(u, v) = H ′(u, v)R′(u, v) + M(u, v). (4)

where H ′, R′, and M are the Fourier transforms of h′, r′, and m, respectively. Assuming that the phenomena not

accounted for by h′ have little effect on the system, we simplify (4) by ignoring M , we can decouple H ′ and R′ by

performing the logarithm transform on (4):

log{|F ′(u, v)|} = log{|H ′(u, v)|} + log{|R′(u, v)|}. (5)

Given (5), the problem of estimating H ′ becomes an additive source separation problem, where the goal is to separate

log{|H ′(u, v)|} from log{|R′(u, v)|}. We model the problem as Bayesian least squares

Ĥ ′
l(u, v) = arg min

H′
l(u,v)

{
E

[(
H ′

l(u, v) − Ĥ ′
l(u, v)

)2 |F ′
l (u, v)

]}
, (6)

where H ′
l(u, v) = log{|H ′(u, v)|} and F ′

l (u, v) = log{|F ′(u, v)|}. From (6), the analytical solution is well known

to be Ĥ ′
l(u, v) = E [H ′

l(u, v)|F ′
l (u, v)]. If we follow the common assumption that the prior p(H ′

l(u, v)) is uniform

in the situation where no prior information is known, the Bayesian estimator can be simplified to be a function of the

likelihood p(F ′
l (u, v)|H ′

l(u, v)). Based on the common Gaussian scatter model for R′, R′
l follows a Fisher-Tippett

distribution [6]. Therefore, the likelihood p(F ′
l (u, v)|H ′

l(u, v)) can be expressed as

p(F ′
l |H ′

l) = 2 exp
[
2

(
F ′

l (u, v) − H ′
l(u, v)

) − ln 2σ2
F ′

l
− exp

[
2

(
F ′

l (u, v) − H ′
l(u, v)

) − ln 2σ2
F ′

l

]]
. (7)

After estimating Ĥ ′
l , H ′ can be computed by taking the exponential transform and, finally, the SAR data F ′ can be

decorrelated using the Wiener filter.



Fig. 2. Autocorrelation functions based on simulated data.

Fig. 3. Autocorrelation functions based on real, correlated RADARSAT-2 SAR sea-ice data.

3. EXPERIMENTAL RESULTS

To validate the proposed decorrelation methodology, we investigate its performance using both simulated SAR data

and real RADARSAT-2 SAR sea-ice data obtained from the Canadian Ice Service (CIS).

Figures 2 and 3 show the effect of the proposed decorrelation. That the simulated tests involve realistic assump-

tions is supported by the similarity in behaviour of the decorrelation in both simulated and real cases. The actual

decorrelation of a small synthetic data patch was shown in Figure 1. At least for that one example, the ability to

learn the correct PSF, to successfully decorrelate the patch, is clear.

The most impressive results are shown in Figure 4, where the method is applied to a large (1041× 1041) sea-ice

SAR image. The method is applied patch-wise, to take into account the spatial nonstationarities present in SAR.

The sharpness of the decorrelated and despeckled image is striking, and would lead to improved classification,

particularly in the small, elongated bright and dark morphological features.

Given the promising results obtained, future work involves applying the method to additional samples of SAR

data, and then coupled with tests on classification algorithms, to test the efficacy of the decorrelation approach in

improving SAR image analysis. Related tests will be performed on medical ultrasound images, which suffer from

more striking nonstationarities than SAR, and frequently also with much inferior signal-to-noise ratios, where a

decorrelative approach would have much to offer.
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Fig. 4. Decorrelation results using an example RADARSAT-2 SAR sea-ice scene
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