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1. INTRODUCTION

Anomaly detection is an important and challenging problem, which can potentially benefit from hyperspectral 

data. Greater availability of hyperspectral data over extended areas has increased the viability of its use in 

operational environments and stimulated increased research activity. Anomalies are spectrally different from their 

surroundings; generally, they are very small in spatial extent and have low probability of occurrence.  

Dimensionality reduction (DR) is a useful preprocessing step for hyperspectral image data, both to reduce 

redundancy and improve performance. Although DR is lossy, it may improve separation between an anomaly and 

background signatures, resulting in improved detection [1]. Widely used linear DR methods such as principal 

component analysis (PCA) may not exploit the nonlinear properties that are often intrinsic in hyperspectral data 

[2]. Manifold learning addresses the problem of modeling nonlinear structures in the data by assuming that the 

original high dimensional data actually lie on a low dimensional manifold, and identifying coordinates that 

parameterize the data manifold. Manifold learning methods have been successfully applied to a variety of 

problems in hyperspectral image analysis [2]-[4]. 

Local tangent space alignment (LTSA) is a local manifold learning method, where the local geometry is 

described by the local tangent space of each data point [5]. We have previously applied it to hyperspectral image 

classification [6], and now investigate its effectiveness for anomaly detection. We propose to utilize the LTSA for 

DR, and then employ the minimum distance between a testing point and the global background in the embedded 

space for anomaly detection; our approach is denoted hereafter as LTSA-MD. 

Applying LTSA to anomaly detection, problems of computational complexity and anomalous contamination 

must be addressed. The computational complexity of LTSA prevents its direct implementation for large images. 

Therefore, we choose a portion of points as training data to pass to the LTSA, and employ the kernel-based out-

of-sample extension method to obtain the manifold coordinates for the whole image [6], [7]. For anomaly 

detection, the training data must represent all the background types in the image, but should not contain anomalies. 

Otherwise, detection performance deteriorates [8].  As an example, the popular kernel RX (KRX) detector [9] is 



impacted if the background covariance matrix estimated by training data contains anomalous information. 

Similarly, anomalies might contaminate the background manifold provided by LTSA, and thus affect anomaly 

detection. In this paper, the recursive hierarchical segmentation (RHSEG) algorithm [10] is applied to generate a 

much smaller number of spectral vectors (centroids of segments) to represent all the data. Moreover, the small 

segments that may represent the possible anomalies are removed, and the remaining segments are employed as 

training data to construct the background manifold. 

2. METHODOLOGY 

We employ the RHSEG method to generate background training data that are then utilized by LTSA to construct 

a reliable background manifold. Anomaly detection is achieved by measuring the separation of testing data and 

the background manifold. This LTSA-MD is applied according to the following implementation:  

1: Select background training data via RHSEG. 

2: Apply LTSA to the training data. 

3: Employ the kernel-based out-of-sample extension for the whole image. 

4: Calculate the minimum Euclidian distance between each point and background manifold. 

RHSEG is a spatial-spectral image segmentation approach based on iterative hierarchical step-wise region 

growing [10]. In the implementation of RHSEG, merges are allowed only between spatially adjacent regions, 

which prevents the disjoint anomalies from merging. Consequently, potential anomalies can be removed by 

eliminating small segments, if the thresholding size parameter is assigned according to the size of desired 

anomalies. The remaining segments that represent reliable background are considered as training data. 

Additionally, we use Spectral Angle Mapper (SAM) as the distance metric in RHSEG, as it favors spectral shape 

over spectral magnitude, which is beneficial to hyperspectral data. 

The LTSA-MD detector is adaptive to a background manifold with any shape, and has no assumption about 

data distribution. Moreover, the Euclidian distance on the manifold coordinates is equivalent to a nonlinear 

distance metric on the original data, which might improve the separation between anomalies and background. 

3. EXPERIMENTAL RESUTLS 

Two sets of hyperspectral data were utilized for experiments. The 242-band Hyperion data were acquired over an 

agricultural area of the state of Indiana, USA, in 2008. An area of 150×150 pixels was used for the experiments to 

illustrate the method. The interesting anomalies are a metal roof and storage silo. The 210-band HYDICE data 

were collected from an urban scene. The experimental data set is from a sub-image of 80×100 pixels, where two 

kinds of anomalies (car and roof) occurred.   

3.1. Results of Anomaly Detection Experiments 



Five other well-known anomaly detectors were applied to investigate the effectiveness of our algorithm. They 

were PCA DR followed by RX detection (PCA-RX), global KRX, local KRX, global RX and local RX, where 

dual windows (size of 5×5 and 15×15) were employed in the local methods, and the Gaussian radial basis 

function (RBF) kernel was used in the KRX detector with an experimentally selected value of sigma. It should be 

noted that the LTSA-MD and global KRX utilized the same background training data generated by RHSEG. The 

receiver operating characteristic (ROC) curve was employed for quantitative evaluation. Fig.1 (a) shows the ROC 

evaluation for Hyperion data: the LTSA-MD performed best with 2 false alarms under 100% probability of 

detection; both global KRX and PCA-RX achieved satisfactory results; local KRX and local RX yielded similar 

results; global RX resulted in the most interference. For HYDICE data, similar performances of the six 

approaches were observed, which are shown in Fig.1 (b). With our method, there were 3 false alarms under 100% 

probability of detection. 
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Fig.1. ROC evaluation of different anomaly detectors: (a) Hyperion data, (b) HYDICE data. 

3.2. Sensitivity Analysis of Parameters in LTSA-MD 

Three free parameters were required for the LTSA-MD: the number of neighbors (k), the dimensionality of local 

tangent space (dL), and the dimensionality of global manifold (dG), where k>dL. Results from Hyperion and 

HYDICE data suggest: (1) For k and dL, the k value of 20 performed worst, while larger values of k (from 25 to 

40) yielded similar good performance. Also, values of dL ranging from 15 to 30 achieved superior performance to 

dL=10. These indicate that the large values of k and dL are appropriate, and there is a large range for their 

selection. (2) For dG within the range of 8 to 12, the number of false alarms remained low, while outside that 

range (smaller or larger), the number increased. This suggests that dG is not difficult to choose, since the LTSA 

has good capability to distinguish anomalies from background using a small number of features. 

4. CONCLUSIONS 



This investigation of LTSA to anomaly detection in hyperspectral images indicated that the method is able to 

exploit the nonlinear properties of hyperspectral data and distinguish the anomalies from background. For these 

experiments, LTSA-MD outperformed the RX, PCA-RX, and KRX detectors. Additionally, anomaly detection 

using LTSA-MD was not sensitive to the number of neighbors and the dimensionality of local tangent space over 

a large range of values; the dimensionality of global manifold was also not difficult to choose since the first major 

features of LTSA have good separability. We can conclude from the experiments that the LTSA is an effective 

DR method for the application of anomaly detection in hyperspectral images. 
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