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1. INTRODUCTION 
 

Obtaining labeled data for supervised classification of remotely sensed imagery is expensive and time 

consuming. Further, manual selection of the training set is often subjective and tends to induce redundancy into 

the supervised classifier, thus considerably slowing the training phase. Active learning (AL) integrates data 

acquisition with the classifier design by ranking the unlabeled data to provide advice for the next query which has 

the highest training utility [1][2][3]. Thus, it explores the maximum potential of the learner toward both the 

labeled and unlabeled data, and the training set can be maintained as small as possible and focused on the most 

representative samples for the entire data space. This potentially leads to greater exploitation of the information in 

the data, while significantly reducing the cost of data collection.   

Although active learning has been widely studied in document retrieval and natural language learning [4][5], 

related research has been extremely limited in remote sensing (see [2] for a brief literature summary). Rajan et al. 

[1] and Jun and Ghosh [3] investigated AL using a hierarchical classification framework. To avoid the problem of 

high dimensionality, Rajan et al. [1] first applied dimension reduction to the data, which may result in information 

loss for classification. Tuia et al. [2] proposed two methods. The first is an extension of the SVM margin 

sampling that further incorporates data distribution, while the second is an entropy based extension of query-by-

bagging algorithm. However, because the committee is generated by bagging, the candidates selected may not be 

most relevant for decreasing the classification error and be representative of the true data space. 

The hundreds of narrow spectral bands in hyperspectral data provide a natural way to construct a diverse and 

independent committee that can better describe the entire data space while exploiting the "value of disagreement" 

in a multi-view framework. Generating views by segmenting the data into several disjoint contiguous sub-band 

sets avoids the risk of biased sampling by bootstrap, as well as the small sample problem associated with high 

dimensionality. Moreover, multi-view based learning typically converges quickly to the target concept which can 

greatly reduce the number of required labeled samples [4]. Also there is no assumption about the properties of the 

base learner, which allows selection of the best base learner for different types of data.  



Co-testing [4], the first multi-view active learning method, queries all the samples with at least two-view 

disagreement, which results in a much looser confliction level when the number of views is larger. Further, it 

lacks a delicate measurement for the strength and weakness of each view, which is not ideal for hyperspectral 

image data since different spectral ranges (views) may have different discriminative ability. 

An active learning method based on a multi-view adaptive weighted disagreement measure (AMD-WVE) is 

proposed to attack the two key problems in multi-view based active learning: 1) view generation by utilizing the 

intrinsic spectral correlation of the hyperspectral image; 2) contention pool generation and pruning by an 

adaptively quantified disagreement measure coupled with evaluation of the discriminative capability of each view 

towards each class.  

 
2. MULTIVIEW GENERATION 

 
Denote each hyperspectral pixel vector as x and the label set 1 2, , , c with cn classes. The purpose is to find 

the correct label: 'ˆ arg max ( , ',{ , })y L Uy f y D Dx , where LD is the labeled data pool with Ln samples, and UD the 

unlabeled data pool with Un samples. The available attributes are decomposed into disjoint vn  sets as different 

views, and an instance is viewed as 1 2( , , , )vn
i i ix x x . Two basic requirements [4] for views: compatibility and 

independence, are  loosely obtained by segmenting the data into several disjoint contiguous sub-band sets along 

the spectral dimension according to the band correlation index. Each sub-band set has lower correlation with other 

sub-band sets. Since views are weakly dependent, the ratio of contention points to unlabeled samples wii 

represents an upper-bound of the learning error for pair-wise views [6]. Different spectral ranges contain different 

information, thus the diversity of “views” is satisfied. The use of both the labeled and unlabeled data to obtain the 

correlation coefficients further improves the generalization ability. The lower dimensionality of each view also 

mitigates the problem of high dimensionality relative to the small number of training samples.  

 
3. PROPOSED METHODOLOGY 

The estimate of the label of a sample i UDx from view v is obtained by 'ˆ arg max ( , ')i y iy f yx . The disagreement 

level is defined as the number of different estimates:
1
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Contention pool AMDC  is constructed by only selecting unlabeled samples with the maximum disagreement level: 
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Samples in AMDC  represent the maximum disagreement thus contain the most uncertainty information. Querying 

samples from it will bootstrap views both to best learn the training set, and to “agree” with each other on the extra 

unlabeled data. The more views that agree, the smaller the v-intersection of the hypotheses generated from 



different views, by which the upper bound of the generalization error can be reduced. As learning progresses, the 

disagreement level will decrease. To avoid the inflating of the contention pool, we use the weighted voting 

entropy (WVE) to quantitatively measure the “uncertainty” of the given votes by each view, which also 

incorporates the differences in discrimination ability of each view with respect to each class.  

First initialize the v cn n weighting matrix with each entry , 1vc v cW and let 1

1 1
,

v cn n

vc
v c

v cW ,

ˆ1,
ˆ

ˆ0,c

c

c

y
y

y
. 1 ,vc v cW  is the weighting matrix of last query, and

1

1
,

v

c

c

n
v

i vc i
v

wve v c fz W z , the weighted voting entropy at the th query for i AMDCz  is: 

1

( ) ( )1( ) log( )
log

cn
c i c i

i
c

wve wve
WVE

z zz                                                      (2) 

Only samples with higher entropy values will be further selected into the second stage contention pool WVEC  : 

: ( ) ( )WVE i i iC WVE WVEq q q                                                                (3) 

where i WVECq , i WVECq , and WVE WVE AMDC C C . The desired ratio of the size of WVEC  to AMDC can be set by a 

threshold. Then query the next Qn  samples by random sampling (denoted as R ) from WVEC : 

1 2, , ,
QN R WVECq q q                                                                       (4) 

Then vcW is updated by the (0-1) loss rule and the feedback information from the queried samples: 
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where1 Q Qi n , each column of vcW is further scaled to sum to one, and Y  is a v Qn n matrix that contains the 

labels estimated by each view before the th query corresponding to the queried Qn samples. Each entry is: 
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4. EXPERIMENT 

 
Two AVIRIS data sets (KSCI and KSCII) at 18-m spatial resolution with 10 classes are used here. Five views 

were generated. Algorithms ran for 10 x cross-validation and 870 epochs each time, adding the pixel with the 

highest WVE value to the labeled training set at each query. Classification result was obtained by training the 

SVM base learner using the whole spectral range. The obtained weighting matrix shows that the discriminative 

ability of each view differs and is class dependent. Also, as learning progresses, the overall classification accuracy 



of each view for the unlabeled data clearly tends to agree with each other, and the maximum WVE value 

decreases, indicating that the degree of confusion of the unlabeled data for the learner committee decreases. Our 

proposed algorithm superior outperforms the random selection and SVMSIMPLE both on the unlabeled data and the 

unseen data (Fig. 1).  

 

 

 

 

 

 

 

 

Fig.1. Classification accuracy for unlabeled data (a) KSCI (c) KSCII and for unseen data (b) KSCI (d) KSCII. 

5. CONLUSTIONS 
 
A multi-view based active learning method AMD-WVE is proposed which utilizes the intrinsic multi-view 

character of the hyperspectral data and adaptively and quantitatively measuring the disagreement level. Further it 

incorporates the different discriminative ability of different spectral ranges towards each class into the learning 

process. The proposed method shows substantially superior results compared to random selection and SVMSIMPLE 

on both the unlabeled and unseen data from two AVIRIS hyperspectral image data sets with 10 classes.   
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