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1. INTRODUCTION 
 
Recently global climate change has been a great environmental concern in many countries. Most of the 

populations in the Southeast Asia region reside in coastal zones, which will be affected by sea level rise due to 

climate change. Change in precipitation, land and sea surface temperature and cloud cover will have effects on 

agriculture, forest vegetation, ecology and living habitats. In this paper, we focus our study on the spatio-

temporal variability of rainfall in the Southeast Asia region. The data set used is the TRMM 3B43v6 monthly 

precipitation product which was calibrated with monthly rain gauge data from the Global Precipitation 

Climatology Project (GPCP) [1]. The empirical orthogonal function (EOF) analysis [2, 3] is used to investigate 

the spatial and temporal variations of precipitation rate. Basically, the EOF analysis decomposes the rainfall data 

into several modes of variations. Each mode can be associated with one or several mechanisms of variations. We 

found that the strongest mode is associated with the annual variations mainly due to the seasonal monsoons. The 

second and third modes are moderately correlated with El-Nino. Possible associations with global warming are 

being investigated. 

2. TRMM 3B43 PRECIPITATION DATASET 
 
The Tropical Rainfall Measuring Mission (TRMM) satellite carries an active Precipitation Radar (PR) instrument 

besides the passive Thematic Microwave Imager (TMI). The TRMM Multisatellites Precipitation Analysis 

(TMPA) products are generated using data from all the available sensors. TMPA products are quasi-global, 

multiyear combined sensor precipitation estimates of rain rate [1]. The TRMM 3B43v6 monthly average rainrate 

product on a 0.25o spatial grid is used for our analysis. This is a combined multi-sensor product calibrated with 

monthly rain gauge analysis from the Global Precipitation Climatology Project (GPCP) [1]. The 3B43 dataset has 

been validated by several research groups [5, 6]. The TRMM 3B43v6 global precipitation rate dataset was 

obtained from Goddard Earth Science Data and Information Services Center (GES DISC). The global 

precipitation data consist of the mean monthly rain rate, in mm per hour, resampled on 0.25 degree grids, 

covering the period from Jan 1998. We extract a subset over the Southeast Asia region (80oE to 130oE, 15oS to 



25oN) for analysis. To determine correlations with El-Nino, we use the Ocean Nino Index (ONI) produced by 

NOAA's Climate Prediction Center. The ONI is defined as the 3 month running mean of ERSST.v3b SST 

anomalies in the Niño 3.4 region (i.e. 5oN-5oS, 120o-170oW). The onset of an El Niño episode is declared when 

the ONI exceeds 0.5oC. 

3. METHODS 
 
The EOF analysis is similar to the principal components analysis (PCA) commonly used for decorrelating a set of 

variables. The dataset of the observed parameter can be treated as a function ),,( tyxs  of the spatial coordinates 

(x, y) and time t. The EOF analysis basically decomposes ),,( tyxs  into a series of orthogonal functions 

),( yxfi  of the spatial coordinates only. The temporal variation is captured in a series of temporal functions 

)(tg  such that, 
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where N is the total number of observations made in time. The EOF’s ),( yxfi  and their respective coefficients 

)(tg  can be found by solving the eigenvalue equation constructed from the covariance matrix of ),,( tyxs . The 

orthogonal functions ),( yxfi  are arranged in decreasing order of the corresponding eigenvalues of the 

covariance matrix. Thus, the first few orthogonal functions usually account for most of the spatial variance that 

exists in the dataset.  

4. RESULTS 
 

    
 

Fig. 1: Average monthly rainrate for the months of (left to right) March, June, September and December. 
 
The average monthly rainrate for the months of March, June, September and December are shown in Figure 1. 
The continental part is dry in northern winter and spring while the insular part is generally wet. The northern 
region becomes wetter in summer and fall.  
 
EOF analysis is performed on the precipitation rate data set. The first three modes are shown in Fig. 2. Mode 1 
corresponds to the seasonal variation of precipitation as illustrated by the sinusoidal variations of the temporal 
coefficients (bottom left of Fig. 2). This oscillation has a maximum in June-July and minimum in Dec-Jan. The 
spatial variation of this mode is illustrated in the corresponding EOF1 (top left of Fig. 2). Positive values of 
EOF1 indicate the temporal variation in phase with the variations of the temporal coefficients while negative 



values indicate an out of phase variation. These observations are in generally agreement with the monthly mean 
precipitation rate shown in Fig. 1.  
 

   

   
Fig. 2: The first three EOF modes, (top row, left to right) EOF1, EOF2 and EOF3. The corresponding temporal 
coefficients are shown on the bottom row. 
 
The second mode EOF2 shows a more erratic temporal pattern. Fourier analysis of the temporal coefficients 
shows two dominant periodic components of 12 and 6 months cycles. The EOF2 temporal coefficients are shown 
in Fig. 3, together with the climatological trend line composed from the average monthly values superimposed on 
a linear trend. In this case, the linear trend has a slight but non significant negative slope. The deviation of the 
EOF2 temporal coefficients from the climatological trend line (EOF2 temporal anomaly) is shown in Fig. 4. It is 
interesting to note that the EOF2 temporal anomaly seems to vary in anti-phase with the Ocean Nino Index, 
though higher frequency oscillations are also present. Indeed, regression of the EOF2 anomaly with the Ocean 
Nino Index (Fig. 5 left) gives a coefficient of determination R2 = 0.47, i.e. about 47% of the variance in EOF2 
anomaly can be attributed to El-Nino. A similar analysis is performed on EOF3 and the EOF3 temporal anomaly 
exhibits a positive correlation with Nino Index (Fig. 5 right) with R2 = 0.38. 
 

-20
-15

-10
-5

0
5

10

15
20

25
30

0 12 24 36 48 60 72 84 96 108 120

Month (since Jan 1998)

T
em

p
o

ra
l c

o
ef

fic
ie

n
ts

 o
f M

o
d

e 
2

 
Fig. 3: Temporal coefficients of EOF2. The red line is the climatological trend line composed from the average 

monthly values superimposed on a linear trend.  
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Fig. 4: EOF2 temporal anomaly (top) and the Ocean Nino Index (bottom) from Jan 1998 to Dec 2007.   
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Fig. 5: Linear regressions of EOF2 (left) and EOF3 (right) temporal anomalies with Ocean Nino Index  

 
5. CONCLUSIONS 

 
EOF analysis is a useful tool in analyzing climate data. Our results show that EOF analysis can decompose the 
spatial and temporal variations of precipitation rate into several modes. The strongest mode is associated with the 
seasonal monsoons while the second and third modes are partly associated with El-Nino. In the full paper, we 
will explore the possible associations with global warming by correlating with the global warming index 
composed from land or sea surface temperature.  The higher order modes will also be investigated to establish 
relations with other climate forcing factors.    
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