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1. INTRODUCTION

Because of the coherent nature of radar waves, and the subsequent coherent processing, SAR images are corrupted by a strong

specific noise, called “speckle”. As a consequence, detecting objects and regions of interest in SAR images may be a severe

challenge even for an expert human interpreter, while automatic algorithms devoted to the same tasks are just not reliable

enough for most applications. For this reason, there has been a growing interest on SAR image denoising in recent years,

motivated also by the appearance of powerful techniques based on wavelet transform.

Indeed, wavelet shrinkage techniques, like that originally proposed by Donoho [1], have been readily applied to SAR images

[2], with some good results. However, the wavelet shrinkage approach relies on the hypotheses of additive and gaussian noise,

while SAR speckle can be better modeled as multiplicative noise. To circumvent this problem, a homomorphic transformation

is typically applied on the image beforehand, so as to obtain additive noise. Then, the wavelet coefficients can be properly

modeled in the log-domain and estimated by means of a bayesian approach, as proposed for example in [3] and [4], before

going back to the original domain. This approach, relatively simple, has the drawback of altering the statistics of the original

image, which might introduce unwanted artifacts. As an alternative, one can avoid the log-transform altogether, and model

instead the data as affected by a signal-dependent additive noise, using afterwards a wavelet transform [5, 6, 7].

More recently, speckle reduction techniques based on the “nonlocal” approach have been gaining ground [8, 9, 10], building

upon the nonlocal means algorithm originally proposed in [11]. This approach relies on the observation that most images

present clear self-similarities, as most patches repeat almost identically over and over in the image. Once these similar patches

are identified, one can carry out some form of noise filtering along such patches, wherever they are, rather than in a local

neighborhood of the pixel. A significant improvement w.r.t. the original algorithm, has been the evolution towards a multipoint
rather than pointwise filtering, where the nonlocal approach is combined with wavelet shrinkage in a two-step process. In the

Block-matching 3D (BM3D) algorithm [12], once a group of similar patches is collected, the whole group is denoised by means

of a (3D) wavelet shrinkage process. Then the partially cleaned image is used to estimate the parameters of a further denoising

step based on Wiener filtering. It seems safe to say that BM3D represents the state of the art for AWGN noise.

In this work we propose a new version of BM3D which is adapted to denoise SAR images by taking into account their

peculiar features. Experiments show the effectiveness of the new technique both in terms of signal-to-noise ratio (on simulated

speckled images) and of subjective quality (on actual SAR images).

2. THE NONLOCAL APPROACH

Traditional denoising techniques, based on local filtering, make the implicit hypothesis that neighboring pixels have the same

statistical nature. Therefore, they work quite well on homogeneous regions, significantly reducing noise power, but happen to

impair severely the image quality in the presence of fine structures, details, and texture, which are typically oversmoothed. A

plethora of adaptive techniques have been proposed in time to deal with this problem but results remain relatively poor.

The nonlocal approach [11] represents a complete change of perspective since the “true” value of the current pixel is not

estimated anymore from the pixels that are closest to it, but from those pixels, located anywhere in the image, which have the

most similar context. In more practical terms, for each pixel, we consider the patch surrounding it, then look in the whole image

for the most similar patches (according to a weighted euclidean distance), and use the center pixels of such patches to estimate

the pixel value. Clearly, this approach is particularly effective on quasi-periodic and textured areas, where repeated patterns

abound, but also in the presence of edges and relatively small details.

Experimental results show nonlocal denoising techniques to be very effective, at least for AWGN images. However, they

can be easily adapted to work with different noise models, such as the multiplicative one, provided that a suitably modified



distance measure is used. In the Probabilistic Patch-Based (PPB) algorithm [8], for example, a similarity criterion based on

the noise distribution model is considered, and the filtering weights are obtained through an iterative process which takes into

account the similarity between restored patches. Therefore, PPB works with both additive and multiplicative noise, generalizing

the original nonlocal-means (NL-means) algorithm.

NL-means itself, however, has been clearly surpassed by more recent denoising techniques based on a nonlocal multipoint
approach, like the BM3D [12, 13], where both context and spatial correlation are taken into account to optimize results. The

first action taken by BM3D, just like in NL-means, is to locate similar patches by means of a block-matching algorithm with

Euclidean metric. Unlike in NL-means, however, all such patches are then collected in a 3D structure which undergoes a decor-

relating transform (typically wavelet) so as to exploit both spatial and contextual dependencies. Once a sparse representation

is obtained, some forms of shrinkage is used to remove noise components (collaborative filtering), before going back in the

image domain. Since filtered patches can overlap, several estimates of the same pixel are typically obtained, and their weighted

average must be computed to reconstruct a “basic estimate” of the denoised image.

At this point, a further denoising step is carried out, where block-matching takes place on a cleaner image (the basic

estimate) so as to obtain more reliable matches, a new 3D structure is created, and its empirical energy spectrum is computed

to perform Wiener filtering on the transformed noisy 3D structure.

3. MODIFIED BM3D FOR SAR IMAGE DENOISING

BM3D can be applied to SAR images as it is, provided that a homomorphic transform of the data is taken beforehand. As

mentioned in the introduction, however, the log operation changes the data dynamics and, therefore, the distances among

patches. Based on such a consideration, we discard the homomorphic approach, here, and work directly on the original image.

The first consequence of this choice is that we cannot use hard-thresholding anymore, since it does not make any sense in this

case, and must look for some other type of wavelet shrinkage suitable for multiplicative noise.

As in classic BM3D, the first step is block matching. In BM3D an L2 distance is used to measure block similarity. Indeed, if

the noise variance is low, this kind of measure is robust for independent additive noise, while if this is not the case, a preliminary

thresholding on the block wavelet coefficients can be carried out to reduce noise power before computing block distances, as

suggested in [12]. It is clear that we cannot use this strategy on speckled images, so we have changed the measure for block

distance as suggested in PPB.

After block-matching, our modified BM3D stacks similar blocks together to form a 3D array, applies the undecimated

wavelet transform, and finally performs shrinkage. The shrinkage strategy used is very similar to that proposed by Argenti et

al. in [5]. Let z be the observed noisy image and x the noise-free reflectivity ( we consider speckle intensity model), hence:

z(n) = x(n)u(n) = x(n) + [u(n) − 1]x(n) = x(n) + v(n), (1)

where u(n) is the speckle that we suppose to be stationary, uncorrelated and independent of x(n). In addition, we assume

that E[u(n)] = 1, that is E[u(n) − 1] = 0 which leads us to consider an additive, zero-mean, signal-dependent noise model,

represented in (1) by the term v(n).
In the transform domain (1) becomes

Wz(n) = Wx(n) + Wv(n), (2)

where Wy is the wavelet transform of a generic signal y. As proposed in [5] we apply the following local linear MMSE

estimator

Ŵx(n) = max(0,
E[W 2

z (n)] − E[W 2
v (n)]

E[W 2
z (n)]

)Wz(n) (3)

to every detail subband of the UDWT decomposition (which in our case is a 3D transform), and then carry out the inverse

transform. For the hypotheses made on speckle noise, it is possible to estimate E[W 2
v (n)] in the generic j-th subband from the

space-varying second-order moment of the noisy image z, as

E[W 2
v (n)] =

σ2
u

1 + σ2
u

∑

i

heq(i)E[z2(n − i)] (4)

where heq is the equivalent filter of the j-th subband. Unlike in [5], where the statistics are computed pixel by pixel using a

7× 7 local window, we reduce the computational burden by assuming E[z2(n)] to be constant in each 3D block, which is quite

reasonable considering that they are usually quite small. This choice, together with the use of normalized filters, turns (4) into

the simpler expression E[W 2
v (n)] = σ2

u

1+σ2
u
E[z2

B ], where E[z2
B ] is the mean square value computed on the generic block.



Lena Napoli

L=1 L=2 L=4 L=16 L=1 L=2 L=4 L=16

noisy 12.11 14.90 17.84 23.79 14.28 17.05 19.99 25.98

modified BM3D 27.08 29.27 31.16 34.40 23.33 24.92 26.62 30.31
SA-WBMMAE 25.09 27.13 28.94 32.42 22.00 23.21 24.57 27.46

PPB SAR 25it 26.72 28.39 29.85 32.68 21.58 23.10 24.86 28.23

BM3D 26.45 29.19 31.24 34.50 22.87 24.65 26.33 29.95

NLM 21.79 25.66 28.53 33.16 21.31 23.65 25.66 28.92

PPB 25it 25.25 27.88 29.68 32.85 21.49 23.09 24.82 27.98

Table 1: PSNR results for test images with simulated speckle.

4. EXPERIMENTAL RESULTS

We have investigated the performance of the proposed technique with both natural images degraded by simulated speckle noise

and actual SAR images. The first type of experiment allows us to compute a reliable quantitative measure of the algorithm

performance, something which is not possible with real SAR images. We have selected the well-known image “Lena” to obtain

results easily comparable with the literature, and an aerial photograph of the city of Naples (Fig. 1), Italy, since it has statistics

more similar to those of a SAR image. Results are compared with those of the most recent techniques proposed for SAR image

denoising, that is PPB-SAR [8] (nonlocal) and SA-WBMMAE [4] (local), as well as with the nonlocal algorithms for AWGN

images mentioned before (NLM, PPB, BM3D). For these last techniques, we carry out preliminarily a log-transform, and then

estimate and subtract the non-zero mean [4] of the noise. In Tab. 4 we report PSNR results for Lena and Napoli corrupted by

speckle noise in amplitude format (square-root intensity [14]) with different number of looks. The proposed modified version

of BM3D provides almost always the best performance, better than all other SAR-oriented denoising techniques, especially

for the aerial image which more closely resembles an actual SAR image. A visual inspection of the filtered images further

reinforces this point since the SAR-oriented PPB, despite its good PSNR level, outputs an unacceptably oversmoothed image,

contrary to what happens with the proposed technique which preserves accurately all details. Only with the low-noise versions

of Lena (4 and 16 looks) the homomorphic BM3D behaves slightly better. Considering that something similar happens with

the two versions of PPB, this seems to confirm that with a large number of looks the log-transformed speckle is approximately

gaussian [14], justifying the homomorphic approach in this circumstances. In any case, the proposed SAR-oriented version

behaves clearly better than all other techniques with a small number of looks, by far the most critical and interesting case.

Finally, we show results for a real AIRSAR image from the NASA/Jet Propulsion Laboratory taken over the Collier Fig. 2.

As already said, assessing the performance for actual SAR images is quite difficult, lacking a “clean” reference image, and

measures like the equivalent number of looks tell very little about detail preservation. Therefore, we prefer to rely on visual

inspection to compare the different techniques. Again, it seems safe to say that the proposed technique does a very good job,

reducing significantly the noise power without appreciably affecting image details, while competing techniques give rise to

moderate (SA-WBMMAE) or even severe (PPB-SAR) oversmoothing phenomena.

(a) Noisy image (b) modified BM3D (c) SA-WBMMAE (d) PPB SAR 25it

Fig. 1: Napoli L=1.



(a) Original image (b) modified BM3D (d) SA-WBMMAE (e) PPB SAR 25it

Fig. 2: Collier.
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[10] P. Coupé, P. Hellier, C. Kervrann, and C. Barillot, “Bayesian non local means-based speckle filtering,” Proceedings of
IEEE International Symposium on Biomedical Imaging, pp. 1291–1294, May 2008.

[11] A. Buades, B. Coll, and J.M.Morel, “A review of image denoising algorithms, with a new one,” Multiscale Model. Simul.,
vol. 4, no. 2, pp. 490–530, Jul. 2005.

[12] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain collaborative

filtering,” IEEE Transactions on Image Processing, vol. 16, no. 8, pp. 2080–2095, Aug. 2007.

[13] V. Katkovnik, A. Foi, K. Egiazarian, and J. Astola, “From local kernel to nonlocal multiple-model image denoising,”

International Journal of Computer Vision, to be published.

[14] H. Xie, L. E. Pierce, and F. T. Ulaby, “Statistical properties of logarithmically transformed speckle,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 40, no. 3, pp. 721–727, Mar. 2002.


