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1. INTRODUCTION 

Remote sensing using light detection and ranging (LiDAR) technology has seen considerable 

advancement with the advent of full waveform digitizing sensors.  LiDAR remote sensing systems 

operate by transmitting a monochromatic light pulse and measuring the reflection of this light pulse off of 

a scattering surface.  The intensity of the laser pulse is recorded as a function of the time it takes for the 

energy to leave the emitter, interact with the surface, and return to the sensor.  Waveform LiDAR sensors 

have the advantage of being able to record the backscattered energy at a very high sampling rate, typically 

on the order of nanoseconds.  The combination of high temporal resolution detection and full backscatter 

digitization enable the extraction of structural information that is embedded within the waveform [1]. 

Various studies have shown that signal metrics, calculated from large footprint LiDAR waveforms (on the 

order of 10s of meters), can be used to assess vegetation structure in forested environments [e.g., 2, 3], 

while small-footprint LiDAR waveforms can be used to accurately classify various land cover types [4].  

Measures such as tree height, crown volume, and biomass have been accurately predicted and modeled, 

resulting in good correlation between waveform-derived metrics and available field data [e.g., 5].  

However, two specific challenges remain in terms of land cover assessment: (i) most previous work has 

dealt with large-footprint systems, which results in the measured field data typically being an order of 

magnitude smaller in actual ground area than the footprint size and (ii) a detailed breakdown of woody, 

herbaceous, and bare ground structural components, similar to the "end member" concept in an imaging 

spectroscopy context [6], is still lacking.  This latter aspect has bearing on our ability to map land cover 

types in the structural (3D) domain, as opposed to the traditional spectral approaches. 



The objectives of this study are to (1) establish a method by which to extract structural components, e.g., 

woody, herbaceous, and bare ground  from small-footprint LiDAR waveforms, (2) assess how these 

components and their extraction vary within different footprint sizes, and (3) establish how these 

structural components can be mapped across the landscape. We will accomplish this by using plot-level 

waveforms, generated by compositing small-footprint waveform LiDAR (0.56 m footprint) returns, and 

extracting waveform-derived metrics to identify unique structural components and map woody and 

herbaceous biomass for a typical protected savanna land use area. This scalable approach will increase 

our understanding of the interaction between waveform footprint and land cover object sizes and aid in 

the development of improved relationships between structural waveform metrics and measured field data.   

 

2. METHODS 

The study area is located in and around the Kruger National Park (KNP) in South Africa.  The area is 

bounded by (22°8’00” S; 30°34’52” E) and (25°32’48” S; 32°2’50” E).  Field and remote sensing data 

have been collected for structural assessment of land degradation across a land use gradient that includes 

the KNP and an adjacent subsistence farming, communal area; this layout effectively juxta-positions a 

“protected” and “communal" area (Figure 1). An example of a protected savanna site from the study area 

is also shown in Figure 1.  Plotted over the image are markers indicating the locations of plot-level field 

data on a 10 m grid spacing. The field data is based on 9 sites and 4-5 sites per land use type. Each site, in 

turn, consists of 36 plot-level measurements of herbaceous biomass, tree height and diameter, species, and 

a qualitative assessment of cover (crusting, bare soil, herbaceous, and woody cover). These field data will 

be modeled using metrics derived from composite plot-size waveforms composed of small-footprint 

waveform returns within each plot. Field data were collected during May 2008 in association with an 

airborne data collection campaign; waveform LiDAR data were collected by the Carnegie Airborne 

Observatory (CAO), using an Optech waveform digitizer, at 0.56 m footprint size and 1 ns temporal 

(vertical) resolution. Figure 2 shows an example of a composite waveform, constructed from 81 sample 

waveforms from a 9x9 pixel window around a plot-center. The resultant waveform footprint is 

approximately 5 meters in diameter.   

We will test the assumption that plot-level composite waveforms are linear combinations of the structural 

components (structural end members) within each plot.  This will be achieved by applying algorithms 

common in hyperspectral unmixing, such as linear mixture models (LMM), to determine the fractional 

abundance of structural components within a plot. It should be noted that linear and nonlinear mixture 

models have been applied to multi- and hyperspectral imagery as a way to unmix a pixel’s spectrum into 



abundances of target spectra, most commonly referred to as spectral end members, and provide a 

theoretical basis for our approach [7]. We will also test the assumption that these waveforms are nonlinear 

combinations of structural components as a comparative measure. 

Waveform metrics such as canopy energy, ground energy, rise time of the leading edge of the waveform, 

fall time of the trailing edge of the waveform, height of median energy (HOME), and centroid height [4] 

will be extracted towards defining structural components (end members) within the waveform. Novel 

metrics, e.g., the time (ns) it takes to complete the 10-90% integration range of the entire integrated 

waveform area, will also be investigated.  These metrics furthermore will be applied in different 

combinations in order to estimate the field-measured woody and herbaceous biomass for each plot.  

Combinations of waveform metrics, end member fractions, and biomass estimations will finally be 

compared across the protected and degraded sites to assess their usefulness for describing differences in 

land cover characteristics at the site level. 

 

Figure 1. Left: Study area for this research.  Our study focuses on the protected Kruger National Park and degraded 
Buschbuckridge (communal) areas. Right: An example of a protected savanna land use site in Kruger National Park, South 

Africa.  Field-measured plots are shown as red crosshairs. 

 

Figure 2. An example of a composite waveform, formed by averaging waveforms from a 9x9 pixel window (shown in dark 
blue), along with waveforms from each pixel in that window. 



3. CONCLUSIONS 

This research aims to contribute to improved modeling and estimation of plot level, land cover/use-

specific structural parameters using metrics derived from small-footprint LiDAR waveforms.  We expect 

that as the footprint size of these waveforms more closely resembles plot size,  estimations of woody and 

herbaceous biomass, bare ground cover, woody cover, etc., will exhibit higher correlations with 

waveform metrics when compared to either significantly smaller- or larger-footprint sensors. We 

hypothesize that within-object waveform interaction (small-footprint waveforms) and the integration of 

multiple objects in a single waveform (large-footprint waveforms), will prove less amenable to extraction 

of structural land cover components than is the case with matched footprint-plot coverage.  Results will 

be presented at the conference. 
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