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1. INTRODUCTION 

Many strategies for UXO detection and discrimination utilize phenomenological models to produce the features 
used as inputs to statistical decision algorithms.  Therefore, it is necessary to develop robust model inversion 
techniques to backfit the forward phenomenological model to the measured data.  Model inversion techniques aim 
to minimize fit error between the data and the model, often using gradient descent [1] or stochastic techniques [2].  
In practice, it is possible for the model inversion process to generate outliers in the parameter space, when the 
model inversion process returns parameter values that result in a low fit error but differ by orders of magnitudes 
from the parameter values for other UXO and non-UXO clutter.  We wish to reduce the occurrence of these 
outlier anomalies, particularly for UXO.  This suggests the need for a more sophisticated metric that relies on 
more than simple metrics such as fit error or L-norm.  
 The standard model fit error measures do not incorporate the spatial distribution of the data used in the 
model inversion.  Recent studies have focused on data quality as an important component in the model inversion 
process and have proposed different figures of merit for quantifying data quality (e.g.  [3, 4]).  These studies 
suggest that the quality of the data can be determined based on particular data collection characteristics such as 
measurement spatial density and signal-to-noise ratio.  This study presents a data-dependent evaluation of the 
model inversion outcomes that uses the Fisher information [5] on the model parameters.  Previous data quality 
metrics have relied primarily on data density and estimates of SNR, and do not directly consider the specific 
phenomenological model.  This study incorporates the Fisher information in a joint metric optimization to assess 
the spatial distribution of data and how well the model parameters are supported by the data used in the model 
inversion.   

2. MODEL INVERSION USING A JOINT METRIC OPTIMIZATION 

The model used in this study was a nonparametric extension of the standard dipole model of Carin et al. [6].  In 
the nonparametric model, the magnetization tensor matrix M is recalculated at each time gate, such that the values 
on the diagonal are functions of time: 

. 

In addition to the  parameters, there are five extrinsic model parameters that define the object’s rotation { , } 
and location {dx,dy,dz} in space.  The standard, baseline model inversion process is based on gradient descent 
procedures that minimize an error norm (typically L2) between the measured data and the model predictions.  Due 
to the presence of many local minima, the final value is dependent on the initial values of the parameters used to 
start the model inversion.  To improve the likelihood of finding the global best-fit parameters, the model inversion 
is restarted with different initializations of the parameters.  The best-fit parameter values are selected from the set 



of restarts according to some metric (often the same squared error measure optimized in the gradient descent 
procedure).   

The parameters  are of primary interest since they will be used to generate the features used for UXO 
classification.  Thus, in the new approach, just these parameters were included in the Fisher information matrix 
while the five extrinsic model parameters were treated as nuisance parameters and excluded from the information 
metric.  In the calculation of the Fisher information metric, the sensor measurements are assumed to be of the 
form Y =  + Z, where  is the dipole model response and Z is white Gaussian noise.  
The dipole model response is a function of the set of intrinsic model parameters INT = {k1,k2} and the set of 
extrinsic model parameters EXT = { , , dx, dy, dz}.  The Fisher information matrix takes the form , 
where  and  is evaluated at the nth measurement location. 
 The Fisher information metric alone is not a sufficient optimization criterion for model inversion, due to 
the assumption in the calculation of the Fisher information matrix that the sensors measurements are based on the 
model with additive white Gaussian noise.  Thus, for a given set of model parameters, the Fisher information 
metric is maximized for a particular pattern of measurement locations; the actual measurements are not used in 
the calculation.  Instead, the Fisher information was included when selecting the best fitting parameters from the 
set of parameters generated by all the restarts of the optimization routine.  Typically, the restarts are sorted by fit 
error, and the parameters corresponding to the lowest fit error are selected.  In the joint metric optimization, the 
restarts are given two scores: the rank when sorted by squared error, and the rank when sorted by Fisher 
information.  In the joint metric optimization, the model parameter set with the minimum sum of the two ranks is 
selected from the set of restarts.   

3. RESULTS 

The two model inversion methods were tested on a data set from Camp Sibert, Alabama that consisted of 175 
anomalies: 59 UXO and 116 non-UXO clutter.  The data was collected using a Geonics EM-61 MkII towed 
sensor array.  The measured data were modeled using the nonparametric dipole model described above.  In the 
standard inversion process, an iterative trust-region method of gradient descent was used to find the model 
parameters that result in the best fit (L2 norm) to the measured data.  The gradient descent was restarted 500 times, 
each time using a randomly-generated initialization of the model parameters.  In the standard model inversion 
process, the parameter set that resulted in the lowest overall squared error out of the 500 restarts was selected as 
the best fitting parameters.  In the joint fit error / Fisher information model inversion process, the parameter set 
that minimized the joint metric was selected from the 500 restarts as the best fitting model parameters. The model 
parameters were used to calculate a set of features for classification as were processed in Lhomme et al [4].  The 

Figure 1.  Plots of the measured data (solid lines) and model fits (dashed lines) for the two optimization criteria.  The blue 
lines correspond to the first time gate and the red lines correspond to the third time gate.  The left subplot used fit error only
in the model inversion; the right subplot used the joint metric optimization.   
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objects were represented as a two-dimensional feature vector calculated as .  The first 

feature corresponds to the magnetization tensor component fit to the major axis at the first time gate (t = 1).  The 
second feature is related to the decay rate and is calculated as a ratio between the magnetization tensor 
components for the first and third time gates.   
 The benefit of adding the Fisher information metric to the model inversion process is first shown using a 
single target as an example.  The target of interest is a 4.25” mortar at a depth of 37 cm.  The results of the model 
fitting are shown in Figure 1.  The left subplot corresponds to the standard model inversion; the right subplot 
corresponds to the joint metric optimization model inversion.  Visually, both sets of parameter values produce 
model outputs that appear to fit the measured data with similar degrees of error.  The difference in the sum of 
squared errors is less than 2.5%.  However, the set of parameters producing the model fit shown in the right 
subplot has a Fisher information metric that is two orders of magnitude larger than the parameters that produce 
the model fit shown in the left subplot.  This indicates that the data collection for this target provides much 
stronger support for these model parameters.  These parameter values are also more consistent with the majority 
of the UXO targets (shown in Figure 2), which allows for improved classification performance.  In Figure 2, each 
subplot shows the two-dimensional feature space; the x symbols represent UXO and the  symbols represent non-
UXO clutter.  The left subplot shows features generated from model parameters found using fit error only; the 
right subplot used the joint metric optimization.  A square symbol identifies the target plotted in the Figure 1; it 
can be seen that using the standard fit-error-only optimization results in this target appear as an outlier.  However, 
using the joint metric optimization, the occurrence of outliers is reduced.  Classification performance is also 
improved due to the reduction of UXO outliers.  Leave-one-out (LOO) training and testing was used with the 
Distance Likelihood Ratio Test (DLRT) classifier [7] to compare the two feature sets.  Figure 3 shows ROC 
curves produced using the two feature sets (standard fit-error-only and the joint metric optimization).  The feature 
set generated using the joint metric optimization results in substantially better ROC performance at high PD levels 
and reaches the desired PD = 100% level as a significantly lower PFA than when using the features generated by 
the standard model inversion process. 

4. CONCLUSIONS 

Phenomenological models are a component in many of the current strategies for UXO detection, requiring the use 
of numerical optimization techniques for model inversion.  This study considered a joint metric optimization that 
added a Fisher information metric to the standard model fit error metric.  The Fisher information metric provides 
a measure of how well the model parameter values are supported by the measurements used in the model 

Figure 2.  Plots of feature space that result when using fit error only as the optimization metric (left subplot) or when using
the joint metric optimization (right subplot).  The UXO are represented by x symbols; the non-UXO clutter are represented
by  symbols.  The square identifies the UXO example shown in Figure 1.  Note the lack of outlier UXO in the right subplot
when using the joint metric optimization. 
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inversion.  Adding the Fisher information metric to the model inversion process reduces the occurrence of 
anomalous model parameters, resulting in a more robust model inversion process. 

Figure 3.  Comparison of classification performance when using the two feature sets generated from the different 
optimization metrics. 
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