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ABSTRACT
Virtual dimensionality (VD) was originally developed for estimating the number of spectrally distinct signatures

present in hyperspectral data. The effectiveness of the VD is determined by the technique used for VD estimation.
This paper develops an orthogonal subspace projection (OSP) technique to estimate the VD. The idea is derived
from linear spectral mixture analysis. A similar idea was also previously investigated by the signal subspace
estimate (SSE) and later improved by hyperspectral signal subspace identification by minimum error (HySime).
Interestingly, with an appropriate interpretation the proposed OSP technique includes the SSE/HySime as its
special case. In order to demonstrate its utility experiments using synthetic images and real image data sets are

conducted for performance analysis.

1. INTRODUCTION
Due to high spectral resolution provided by a hyperspectral imaging sensor, a hyperspectral image can uncover

many unknown spectral signal sources which cannot be identified a priori. Therefore, it is very challenging and
difficult to determine how many spectral signal sources are present in a hyperspectral image. Recently, virtual
dimensionality (VD) was defined as the number of spectrally distinct signatures in hyperspectral imagery to
address this issue [1] where a technique developed by Harsanyi et al. [2], Harsany-Farrand-Chang (HFC) method
was developed to estimate the VD. Since a spectrally distinct signature is determined by different applications
such as endmember extraction, anomaly detection etc., the VD also varies with how a spectrally distinct signature
is interpreted. While the HFC method is designed based on the observed data properties specified by signatures
that can be discriminated spectrally band-by-band, this paper develops a new approach to VD estimation based on
data representation in a certain form, specifically based on linear spectral mixture analysis (LSMA). With the
LSMA in mind the proposed approach interprets a spectrally distinct signature as an image endmember that can
be used to specify a particular spectral class. Accordingly, the VD is then interpreted as the number of image
endmembers, p to be used to form a linear mixture for unmixing. In order to make this approach work, two issues,
determining the value of p and finding a desired set of p image endmembers, need to be considered together as a
single issue. This is quite different from the HFC method which does not require finding specific spectrally
distinct signatures due to its use of the Neyman-Pearson detection theory where a binary hypothesis testing
problem is formulated to test if a Neyman-Pearosn detector fails and the number of test failures is the VD.

By taking advantage of a recent technique, called Orthogonal Subspace Projection (OSP) develop for LSMA
[3] an OSP-based method can be derived to estimate the VD where spectrally distinct signatures are defined as
virtual endmembers (VEs) that are used for linear spectral unmixing where the mixed error is used as a criterion

to determine the VD. A similar idea to the proposed OSP method was also investigated in [4], called signal



subspace estimation (SSE) and later improved to be called hyperspectral signal subspace identification by
minimum error (HySime) [5] based on minimization of the estimation error caused by signal subspaces spanned
by spectral signal sources. Both the OSP and the SSE/HySime use a growing number of spectral signal sources to
form signal subspaces via a linear mixing model to represent the data. The number of spectral signal sources that
yields the minimal signal subspace estimate error is the desired VD. While both SSE/HySime and the proposed
OSP method share the same concept of using signal subspaces to find best linear representation in some sense of
optimality, i.e., minimum mean squared error for SSE/HySime and the unmixed error for the OSP method, there
are also two prominent differences between these two approaches. One is that the SSE/HySime requires noise
covariance estimation which is not needed in the OSP method. As a result, different noise estimation techniques
will produce different values of the VD. To the contrary, the OSP-estimated VD varies with an algorithm used to
find VEs. Consequently, different algorithms generally result in different values of the VD. This is not the case
for SSE/HySime which uses the singular value decomposition (SVD) to generate signal sources and does not
require a specific algorithm to be used. As a result, the SSE/HySime always produces a constant value of the VD
regardless of applications which generally require various algorithms to be used for specific data processing. So,
if the SVD is used in the OSP method to generate VEs, the SSE/HySime can be treated as its special case.

2. LINEAR SPECTRAL MIXING METHODS
The HFC method works well when the spectrally distinct signatures contribute little to data variances due to its

small sample size in which case only sample mean accounts for its presence. This section considers a rather
different approach. Instead of characterizing the spectral distinct signatures by statistics the proposed approach is
to estimate the VD by seeking a set of spectral distinct signatures that can best represent the entire data in terms of
a linear form. Such an idea can be traced back to linear spectral mixture analysis (LSMA) where a data sample
vector is assumed to be represented by a linear mixture of a finite set of so-called endmembers. One early LSMA-
based method was developed by SSE [4] and HySime [5]. This section presents an LSMA-based OSP method.
Both methods are closely related in context of LSMA.

Suppose that there are p spectral signal sources, {sl,s2,~~~,s p} present in the data and every data sample vector r;

can be expressed by a linear mixture of these p spectral signal sources as follows

r; :Spai+ni (1)

where S, =[s;s, s ] is a signal matrix made up of the p spectral signal sources, {sl,sz,--~,sp} and n; can be
-1

interpreted as noise vector or model error vector. Let P, =S p[SZSp] Si be the p-signal projection matrix which

maps r; into the space spanned by the p spectral signal sources, {sl,sz,-u,s » } From (1) the sample mean vector p

can be expressed by
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where @, = (1/N )Zilai and n=(/N )Zilni with the covariance matrix given by Ry =(1/N )zi]ilninf .

Using (2) we can obtain
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By virtue of (3) we define

OSP(p) = trace(s ;@ a’s” + PTR,P, |= El(Ppp)T (Ppp,)J 4)
Theoretically, the value of OSP(p) in (4) increases as the value of p increases. For any given error threshold &, VD
can be determined by a stopping rule to OSP(p). The value of p determining the resulting OSP(p) is defined and

denoted by VD", Two criteria are developed to detect the abrupt change of OSP(p) value. One which is based
on the gradient, denoted by “V ”, is defined by

losP(p+1)  OSP(p) |<g} )

OSP.V 1
VDU (2) = argd min
algorithm lspsL OSP(p) OSP(p - 1)|

and the other which is based on the difference, denoted by minus “-”, is defined by

VvDOsP- (€)= arg{minlspSL|OSP(p +1) - OSP(p)| < 6‘}. (6)

algorithm
where the sample mean vector p is normalized before projection so that the values of thresholds €’s for these two
criteria are comparable for analysis. The threshold € in (5) and (6) is generally selected according to a sudden drop
or a clear gap between two consecutive p’s in plots of the gradient in (5) and difference (6) versus the value of p.
It should be noted that (4), (5) or (6) actually involves two key parameters needed to be addressed. One is the
error threshold € which is already included in (5) and (6). The other parameter is the algorithm to be used to

produce the p-signal matrix S,, which is not particularly specified in (5) and (6) but rather the term of “algorithm’

is used in (5) and (6) for a generic expression. Since the OSP method is derived from the linear mixing approach,

the spectral signal sources {sl,sz,m,s p} in (1) determined by VD" is referred to as “virtual endmembers”

instead of image endmembers commonly used in linear spectral unmixing.

3. EXPERIMENTS
For performance evaluation and comparative analysis the image scene shown in Fig. 1 was used for experiments.

It has size of 64 x64 pixel vectors shown in Fig. 1(a) along with its ground truth provided in Fig. 1(b) which
shows the precise spatial locations of these 19 panel pixels where red pixels (R pixels) are the panel center pixels
and the pixels in yellow (Y pixels) are panel pixels mixed with the background.
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Figure 1. (a) A HYDICE panel scene which contains 15 panels; (b) Figure 2. VEs extracted by ATGP and N-FINDR
Ground truth map of spatial locations of the 15 panels
TABLE 1. VD ESTIMATED FOR REAL IMAGE BY HFC AND NWHFC TABLE II. VD ESTIMATED FOR REAL IMAGES BY OSP
Pr 10" 10° 10° 10* OSP-ATGP OSP-NFINDR
HFC 14 11 9 9 gradient 23 (-70) 10 (-50)
NWHFC 20 14 13 13 diff 11 (-70) 10 (-50)




The VD estimated for the HYDICE scene in Fig. 1(a) by SSE and HySime is 10 and 20 respectively compared
to the VD estimated by HFC/NWHEFC Table I. Table II tabulates the VD estimated by OSP using ATGP and N-
FINDR.

Fig. 2 shows VEs extracted by N-FINDR [6] and ATGP [7] according to the VD in Table Il where the OSP-
ATGP was the best which extracted all the five panel signatures in the scene while the N-FINDR could only
extract 3 panel signatures. This experiment further demonstrated a key feature in VD estimation which is the
algorithm used to extract VEs. If an algorithm is not used appropriately, the results will not be expected even the

VD is estimated correctly.

4. CONCLUSIONS
This paper presents a new application of the LSMA in VD estimation. In context of LSMA the VD can be

interpreted as the minimal number of signatures that best represent the data sample vectors in a linear mixing
form. Two methods, SSE/HySime and OSP are investigated to materialize this idea. While both techniques make
an attempt to find a signal subspace with minimum dimensionality to linearly represent data sample vectors with
minimum linear mixing error, they also differ from each other in terms of design rationale. The SSE/HySime
makes Gaussian noise assumption so that noise sample covariance matrix can be estimated by various noise
estimation techniques. As a result, a different noise estimation technique may result in a different value of the VD.
Second, the SSE/HySime produces a single value of the VD which independent of algorithms. Third, the
SSE/HySime does not provide a means of finding the signal sources once the VD is determined. Although the
SSE/HySime uses the singular value decomposition (SVD) to generate signal sources specified by singular
vectors, these singular vectors are not necessarily to represent the desired signal sources. The OSP methods were
developed to address these three issues. They do not need to estimate noise sample covariance matrix. So, no
assumption of Gaussian noise is made. Furthermore, the value of the VD estimated by the OSP methods is also
determined by two parameters, an error threshold € which can be tuned by signal sources of interest and an
algorithm which can be custom-designed to generate the signal sources for a particular application. By specifying
the € and the algorithm to be used to generate signal sources the OSP methods eventually remedy the second and
third issues encountered in the SSE/HySime. Experimental results also demonstrate that the OSP methods are

more flexible than the SSE/HySime in real practical applications.
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