Moving Object Tracking from Airborne Video using Relaxation
Labeling Algorithm on Active SIF'T points

Kyung min Han and G.N. DeSouza
January 11, 2010

1 Introduction

In this research, we are interested in tracking moving ground objects as they are perceived by airborne cameras.
When the motion of the camera increases the dynamic of the background activity and the tasks of target seg-
mentation and tracking become even more daunting. Unfortunately, without such segmentation, the detection,
identification, and geolocation of these same targets would just be impossible.

We developed a simple, but accurate and effective method for segmentation and tracking of a moving target
from dynamic backgrounds. Our method relies on the calculation of a differential sparse SIFT flow, which can
separate the motion of the background (due to the airborne camera) from the moving targets. Once segmented out
from its background, the images of possible targets are handled as independent ROIs (regions of interest). Then,
each ROI undergoes feature based matching based on the relaxation labeling algorithm [2, 6, 3].

2 Proposed Method

The proposed framework is composed of two phases: the detecting phase and the tracking phase. Figure 1 (a)
shows a flow chart of the algorithm.

2.1 Detecting Phase

For given two consecutive images, we can extract a set of SIFT [4] points that matches between two images. Since
these two images are collected with a time difference of “d”, if the camera frame rate is fast as real time, we can
expect a large set of matching points. Also, if either object in the image or the observing camera were moving in the
images, we can create flow vectors that represent the movement of the objects. That is, for two consecutive image
frames with moving objects, we can build sparse SIFT flows on the moving object. Not like dense flow estimation
[7], we consider matching sparse points only as it suggested in [4].

Once the SIFT flows are determined for the given image set, we build a histogram for both magnitude and
phase of the flow. The peak modes found in the magnitude and phase flow of the histogram are considered to be,
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Figure 1: a) A flow chart of the entire algorithm b) Total flow vector created from two consecutive frames. c)
Magnitude histogram of the flow d) Angle histogram of the flow (The modes of histogram represent the background
flow vector) e) The foreground flow vector can be computed by subtracting the background flow vector from the
total flow vectors.



respectively, the magnitude and the phase of the background flow. The moving objects can be segmented out by
subtracting the background vector from the entire flow vectors. Figure 1 depicts the sequence of this procedure.

2.2 Tracking Phase
2.2.1 Probabilistic Relaxation Labeling

The template feature group is composed of a set of feature points A = {aj,as,...,a,}, and their corresponding
labels, A = {A\1,\2,..., A, }. In the mean time, we have an incoming query image patch with a group of feature
points, B = {b1,ba,...,by}. The labeling problem is to assign the best labels, A, to the feature set of the query
image patch, B. Every consistently labeled feature points in B represents the matched target feature points, or
the tracked feature points. In order to achieve this goal, we need set up a good confidence measurement for each
labeling. A confidence in assigning a label «; to b; depends on the strength of interaction with its neighboring
feature points. In each iteration, the algorithm performs the confidence measurement based on the compatibility
function, and it updates the probability table using the new confidence measurement.

2.2.2 The compatibility function

Let’s consider two feature points, b; and b;, from the query image patch. A possible two labels for these feature
points are, A; and \; which are the labels for a; and a; from the template feature points, respectively. If neither
camera nor the object undergo a severe rotation, the distances among all feature points in the template image
should be preserved in the query image. Thus, an important clue is to look at the distance between two features.
That is,

1 —Sm
ds = Tﬂaexp(7) (1)

where, s, is a similarity measurement between two vectors, ITb; and apa; , in the image coordinate frame. Thus,
ds decreases if the position of b; w.r.t b; is similar to the position of a; w.r.t ay.

In addition to the distance relationship between feature points, another important factor is comparing the
similarity between two features. For example, if the two labels, Ay and )\; are the correct labels for query feature
points b; and b;, they should look very similar to a; and a; of the template features. That is,

dm = D(b;,ak) —|—D(bj,al) (2)
where, D(z,y) is a distance between a vector = and y. Since we are using SIFT points, the distance between

two vectors can be computed by their inner product. Given these two different distances:ds and d,,, the final
compatibility function is defined as

Tij()\lca A) = ~vds+ (1 — 'y)dm (3)

where, v is averaging factor with boundary |y| £ 1. Therefore, the support for b; = A\; can be calculated as

¢*(bi=M) = D r( )P (b = \) (4)

where, P%(b; = \j) is the probability that feature b;’s label is A, at the iteration s. Also, it is subject to
> P*(b; = \;) =1 for any i.



Figure 2: a) Template feature points detected at frame number 300 b) Matching points detected in 330th frame
after the labeling. Note that only the red numbers in (b) are successfully matched points.

Algorithm 1 Labeling Process
Iterate

1. Get Support, Q°*(b; = A\x) = Y wi;q;(b; = wy), where g;(b; = w;) is calculated as it is defined in equation 4
J

w;; is distance weight with unit sum, that is proportional to the distance between the i**feature and the j**
j g , prop J
feature.)

2. Compute a new probability P*T1(b; = wy,) = Ps(bi:w’“}{Q(b’:wk), where K = Y_P%(b; = w;)Q%(b; = wy) is a
1

normalizing constant

3 Results

The proposed tracking algorithm has been tested with a number of data sets and with different resolution, using
different target objects, and scenarios. Images from those videos are shown in figure 3. All image sequences are
captured from aerial vehicles.

A square placed on top of the target objects shows when the car is being tracked. Some of the images, for
example the Hollywood sequence shown on the top row of figure 3, contained backgrounds with much clutter, such
as trees, other cars, buildings, and etc. That could cause momentary disruption of the tracking algorithm. However,
as the results show, the two-phase approach of the tracking algorithm could recover the tracking quite well and the
overall performance was consistently high.

The data set shown in the 27, 3! and 4'"rows are collected for geolocation project [5], and they are easily
available in our server, http://vigir.missouri.edu/~gdesouza/TrackAndGeo/. After applying the proposed algorithm
to these data, we have observed similarly good result that we achieved with the Hollywood data sequence.

The last data set shown in the last row of the figure 3 is the DARPA sequence available in the CMU data base.
This sequence was bit harder than others because there are multiple objects moving with similar speed. Moreover,
vehicles frequently undergo severe occlusions. As a result, the tracker jumped around to different targets several
times.

4 Conclusion

In this paper, we addressed a robust tracking method to track moving ground vehicles captured from the aerial
vehicles. The algorithm calculates sparse SIFT flow to represent the motion of feature points. Based on, the
histogram analysis on these flow vectors, we can segment out the moving features only. Later on, these features
are tracked by a labeling algorithm. We used SIFT points in our implementation, but for faster performance, we
can also use different kinds of features such as SURF [1]. In order to validate our method, we tested it with several
challenging airborne video sequences, and the performance of the algorithm was excellent.



Figure 3: Tracking result achieved with different data set
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