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1. INTRODUCTION

Three Dimensional (3D) reconstruction of urban areas is becoming a task of increasing importance in the last years, thanks
to the high resolution of the new SAR sensors (TerraSAR-X, ALOS, CSK, RadarSat-2). The 3D reconstruction is performed
using SAR Interferometry that exploits the phase of two or more SAR complex images.
Interferometric SAR images suffer from two main problems: they are often characterized by strong noise and they are wrapped
in the main interval [−π, π[. Regularizing the phase images and solving the unwrapping problem are mandatory steps to
provide the 3D reconstruction. Many works have been dedicated to the problem of interferometric phase ltering and to the
unwrapping one. An effective way to combine these two problems is provided by the approach of [1]. In the latter, the ltering
is directly incorporated into the unwrapping step, using a multichannel con guration which consists of exploiting more than
two interferograms that are obtained using different frequencies or different baselines (i.e. different channels).
In this paper we are interested in the 3D reconstruction of urban areas using Very High Resolution (VHR) images. We use a
multichannel con guration, as in [1], and we add to the 3D reconstruction chain the information provided by the amplitude
data. We follow an approach similar to the one proposed in [2], where the authors jointly regularize the phase and the amplitude
to provide an improved regularized phase. Differently from [2], in this paper we exploit the amplitude, not only to improve the
phase regularization, but also to improve the phase unwrapping step.
We consider height pro les characterized by an elevation which is not contained within one fringe. The main idea consists
of using the amplitude information to perform the 3D reconstruction, since in urban areas most height discontinuities (i.e.,
interferometric phase discontinuities) are also accompanied by amplitude discontinuities in SAR images and conversely (it is
likely that the edges of one image are also present in the other one). The amplitude data provide useful information to preserve
phase differences when height discontinuities appear and in the same time help to smooth noise in homogeneous areas.
To combine and exploit both amplitude and phase information we use a Markovian approach. The energy function is de ned
through a jointly likelihood statistical model of the amplitude and the interefromteric phase and a joint prior regularization
function that allows us to preserve the edges and encourage their co-location in the restored amplitude and phase images. The
optimization step is performed using a proposed Graph Cut based optimization algorithm.
In section 2, the proposed joint energy model combining both the likelihood and the prior terms is introduced. The algorithm
used for the optimization step is addressed in section 3. Finally, some results on simulated data are shown in section 4.

2. ENERGY MODEL
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m )|2. Given the intensity images and the interferometric phase for M different and independent channels,
we want to jointly estimate the true amplitude image a and the true phase image φ using a Markovian approach. Let us consider
the likelihood and the prior terms of the Markovian energy.
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2.1. Likelihood term

The joint negative multichannel log-likelihood of the intensity and interferometric phase at a given pixel p is a function of the
unknown parameters ap and φp. The expression is given by

Ep

(
I(1)
p,m, I(2)

p,m, I(1,2)
p,m , ϕp,m|ap, φp

)
=

M∑
m=1

(
4 log ap +

I
(1)
p,m + I

(2)
p,m − 2I

(1,2)
p,m · λp,m · cos(φp − ϕp,m)

a2
p · (1− λp,m)

)
, (1)

where λp,m is the coherence value related to the p-th pixel of the m-th channel.

2.2. Prior term

To describe the prior term we use the Total Variation (TV) model. Since we are interested to urban areas that are characterized
by many sharp transitions in both phase and amplitude images, the TV model results to be effective. As a matter of fact, the
main feature of TV model is its effectiveness to preserve discontinuities without excessively penalizing smooth functions.
As stated before, amplitude discontinuities usually have the same location as phase discontinuities and conversely. Thus, we
combine the discontinuities using a disjunctive max operator [2]. The joint prior model is de ned by

Ep,q(ap − aq, φp − φq) = max(βa|ap − aq|, βφ|φp − φq|) , (2)

where q is the index related to one of the 4 nearest pixel of the pixel p, while βa and βφ are two hyperparameters used to balance
the amount of smoothing in the regularized phase and amplitude elds.
For the simplicity of notations, we write the total energy function as

E(x|y) =

N∑
p=1

Ep(xp) +
∑

(p∼q)

Ep,q(xp − xq) , (3)

where x = [aT φT ]T is the unknown vector collecting both restored amplitude and pro le values, y = [I(1)T
I(2)T

I(1,2)T
ϕT ]T

is the observed vector collecting the observed multichannel amplitude data and interferograms, N is the size of the restored
data, (p ∼ q) denotes neighboring sites p and q, Ep(xp) =

∑M

m=1 Ep(yp,m|xp) denoting the likelihood terms de ned in (1)
and Ep,q(xp − xq) = Ep,q(ap − aq, φp − φq) denoting the regularization terms de ned in (2). We will note for the rest of this
paper by La and Lφ respectively the discreete label sets of the reconstructed amplitude and pro le images.
Solving the problem of joint multichannel phase and amplitude regularization consists of nding the optimal vectorial solution
x that minimizes the non-convex multilabel energy function (3).

3. FAST APPROXIMATE MINIMIZATION

3.1. Vectorial expansion move

Minimizing non-convex multilabel energy function is a dif cult task since the algorithm may fall into a local minimum. Classic
algorithms like the Iterated Conditional Modes requires a good initialization and usually obtained results are not satisfying.
Graph-cut based multilabel MRF optimization approaches, proposed rstly in [3], provide a way to explore effectively a com-
binatorial set of con gurations while good local minima are provided. One of the most popular algorithms based on these
approaches is the α-expansion algorithm. This approximate optimization algorithm is iterative and based on the concept of
α-expansion move. The latter consists on changing a current con guration by proposing to any set of image pixels to change
their labels to the label α. It nds a new con guration that minimizes the energy over all labelings within this move by building
a particular graph and computing the s-t minimum cut/maximum ow on it. Expansion moves are iterated for all possible labels
until convergence of the algorithm toward a local minimum. Computing maximum ow on the graph in a polynomial time
needs submodularity condition on the regularization terms [3]. Thus, to be graph representable, the multilabel a priori function
needs to be a metric.
As we are dealing with vectorial data, where the searched optimal con guration consists of two images, the amplitude and
the phase ones, we propose in this work an extension of the α-expansion algorithm to this kind of vectorial data. We de ne a
vectorial α-expansion move as the move from a con guration to another that minimizes the total energy (3) when a vector of
labels α = [αaαφ]T is proposed to current both amplitude and phase con gurations. The minimization algorithm iterates for
all possible couple of labels (αa, αφ) ∈ La × Lφ, until convergence to a local minimum.



An optimal α-expansion move is performed based on the graph-cut technique. Thus, a speci c directed graph is built with
non-negative edge weights, where the s-t minimum cut leads to an optimal labeling of both amplitude and phase images. As
we know, to perform the maximum ow computation, the submodularity of the a priori terms is needed, which is not the case
of the proposed a priori function (2). A rst possible solution that we propose to overcome this problem consists on restricting
the move to submodular con gurations. In this work, the performed expansion move proposes to all couple of pixels (ap, φp)
either to keep their current labels or to change together to the couple of labels (αa, αφ). In other words, the α-expansion
move consists on proposing to the vector x either to keep it current value or to change to the vector α. Then, submodular
con gurations are considered.

3.2. Graph topography

In each single α-expansion move, a graph Gα = (Vα, Eα) is created, where Vα is the set of vertices and Eα is the set of directed
edges. We create a vertice for each site p. All vertices are connected to two special vertices: the source s and the sink t (for
max- ow computation). Two families of directed edges connecting these vertices are de ned: data edges that are related to the
joint multichannel log-likelihood terms and interaction edges that are related to the joint a priori terms. We note with cs,p and
cp,t the capacity of the data edge connecting the vertice p to the source and to the sink respectively and by cp,q the capacity of
the interaction edge connecting neighboring pixels p and q. This graph structure and the edge weights are chosen such that any
cut on Gα has a cost corresponding to the energy to minimize. Then, the s-t minimum cut gives the con guration with minimum
energy. This con guration is obtained by assigning the label αa (resp. αφ) to the amplitude pixels p (resp. the phase pixels p)
having the corresponding data edges connected to the source s in the cut, and for the rest of pixels, the current labeling of both
amplitude and phase data remains unchanged.
In gure 1, a one dimensional (1D) illustration of the graph Gα is presented where the construction for a neighboring pixels p

and q is highlighted and capacity values for the created edges are given.

(a) Graph structure.
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cs,p = max{0, Ep(α) − Ep(xp)}+ max{0, Ep,q(α− xq)− Ep,q(xp − xq)} ,

cp,t = max{0, Ep(xp)− Ep(α)}+ max{0, Ep,q(xp − xq)− Ep,q(α− xq)} ,

cs,q = Ep,q(α− xq) ,

cq,t = 0 ,

cp,q = max{0, Ep,q(α− xq) + Ep,q(xp −α)− Ep,q(xp − xq)} .

(b) Edge weights for a neighboring vertices p and q.

Fig. 1. A 1D illustration of the part of the graph on two neighboring vertices p and q. To obtain the total graph, we repeat this
construction for all neighboring vertices, according to the neighborhood system.

4. RESULTS

In order to prove the effectiveness and robustness of the proposed method, we present some results obtained on simulated phase
and amplitude data. Results with real data will be presented in the nal version of the paper. We consider in gure 2-(a) a height
pro le (64 × 64 pixels) with a maximum height of 120m exhibiting both smooth and discontinuous areas. A corresponding
amplitude image of the same scene is shown in the gure 2-(b). We used a total of 8 frequencies in the [5GHz, 9GHz]
interval to generate independent interferograms and we added interferometric noise with two different region coherences (γ1 =
0.8, γ2 = 0.4). The low coherence region is at the bottom right corner of the presented pro le. In gure 2-(c), we show the
5GHz noisy interferogram. It is important to note that the pro le is ambiguous for all the working frequencies. In fact, there
are phase jumps of more than π that violate the Itoh condition. For this reason, a classical single frequency phase unwrapping
method would fail and the multichannel approach can overcome this problem. In gure 2-(d), we show the noisy amplitude
corrupted by the speckle. Results of height reconstruction with the multichannel phase unwrapping approach proposed in [1],
with 4 channels (resp. 8 channels), are presented in gure 2-(e) (resp. gure 2-(f)) and the root mean squared reconstruction
errors are respectively 0.37 and 0.12. The 3D reconstruction with the proposed approach is presented in gure 2-(g), where
the root mean squared reconstruction error is 0.10. We see clearly the contribution of the proposed approach to restore pro les



in presence of low coherent interferogram regions and high discontinuities. The approach in [1] requires more channels and
an accurate estimation of the regularization hyperparameter to correctly unwrap the phase. Otherwise, regions with very low
coherence and high discontinuities could not be reconstructed correctly as we see in gure 2-(e). The proposed approach,
instead, requires only a few number of channels to correctly unwrap and regularize the phase, since an additional discontinuity
information is provided by the amplitude data. The restored amplitude is shown in gure 2-(h). We can notice the effectiveness
of the proposed prior when dealing with discontinuities:the obtained reconstructions preserve the discontinuities in both original
phase and amplitude images.
Concerning complexity of our algorithm, since the optimization process is based on graph-cut technique, where max- ow is
computed in polynomial time, our approach is optimal both in time computation and memory occupation. For the presented
experiment, the time needed by our algorithm to converge toward a good local minimum is 2(Mn) : 40(Sec), and the memory
used for graph construction is equivalent to the size of the restored pro le image.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Reconstruction results: (a)True pro le, (b)True amplitude, (c)Interferogram at f = 5Ghz with two region coherences
(γ1, γ2), (d)Noisy amplitude, (e) Pro le reconstruction with 4 frequencies using [1], (f) Pro le reconstruction with 8 frequencies
using [1], (g) and (h) Pro le reconstruction and amplitude regularization with 4 frequencies using the proposed approach.

5. CONCLUSIONS

In this work, we developed a new Markovian 3D urban area reconstruction approach based on a joint multichannel phase and
amplitude model. A graph-cut based optimization algorithm is proposed to solve the energy minimization problem. We tested
this approach on simulated data and we obtained good results both in term of reconstruction error and computational time.
Obtained results also proved the ef ctiveness of the approach when dealing with strong discontinuities and low coherences
areas.
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