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1. INTRODUCTION 

Support Vector Data Description (SVDD) methods have been successfully applied to tasks such as 

hyperspectral anomaly detection [1] and spectral unmixing [2] [3].  Unfortunately, the performance of 

SVDD methods suffers when noisy or non-informative bands are present in the data.  If a set of sparse 

bands could be identified for these techniques, the resulting data may improve SVDD performance 

while enjoying the benefits of decreased processing overhead. Although band selection has been 

investigated in previous efforts, this work builds on recent research that has resulted in the development 

of a theoretical framework for signal classification with sparse representation using L1 measures. This 

data-driven approach combines the classification power of the discriminative methods with the 

reconstruction property and a sparse representation that enables one to deal with signal corruptions: 

noise, missing data and outliers.  

2. ALGORITHM DESCRIPTION 

Given the large set of spectral bands present in hyperspectral imagery, a critical challenge is to identify 

those bands that maximize the ability of the SVDD algorithm to separate different classes of materials 

either for detection or unmixing applications.  In this effort, we propose to extend a L1 framework to 

automatically select a sparse set of spectral bands that provides similar or better SVDD performance 

than the entire set of wavelengths.  This is a critical issue for kernel SVDD methods, since they suffer 

from the “curse of dimensionality”, where the presence of noisy or redundant bands can reduce their 

performance.   

Sparse representations of signals over an overcomplete basis (dictionary) for band selection have been 

successfully exploited for applications such as spectral estimation [4] [5]. These approaches also exploit 

the redundancy and correlations of the high-dimensional data, especially when the feature vector is 



sparse in another transform domain.  Hyperspectral imagery is an example of such data and thus can be 

analyzed via overcomplete basis functions. 

Searching for the sparse representation of a signal over an overcomplete dictionary is achieved by 

optimizing an objective function.  In general, the function contains two terms, one that measures the 

signal reconstruction error and another that measures the sparsity.  This objective function works well in 

applications where signals need to be reconstructed, like coding and denoising.

To find a sparse set of spectral bands, we propose to use discriminative criteria, such as Fisher’s 

criterion (or LDA), as they are suited for classification tasks. Recent research [5] [6] has resulted in the 

development of a theoretical framework for signal classification with sparse representation.  The 

approach combines the discrimination power of the discriminative methods with the reconstruction 

property and the sparsity of the sparse representation that enables one to deal with signal corruptions: 

noise, missing data and outliers. The proposed approach is therefore capable of robust classification with 

a sparse representation of signals and may provide a sparse set of bands that reduce the “curse of 

dimensionality” for kernel unmixing methods. 

For signal classification, one can adopt a class separability criterion for the cost function.  Optimizing 

the resulting cost function will produce a sparse subset of spectral bands that maintains similar class 

separation as with the original full spectrum.  For example, given C classes of spectra with mean vectors 

mi , i=1,…,C, define the within-class scatter matrix as  
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and the between-class scatter matrix as  
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where m is the mean spectra of entire set of spectra.  Fisher’s criterion for class separability is then 

defined as 1( ) tr( )B WF S Sx .  The objective function can be re-written as 
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to find a sparse set of bands with good class separability. 



3. EXPERIMENTAL RESULTS 

Using real-world hyperspectral imagery, a set of experiments is provided to show the applicability of the 

proposed algorithm to SVDD anomaly detection.  Based on previous work [1], receiver operating 

characteristic (ROC) curves will be generated for both the full set of bands, set of bands with known 

atmospheric effects removed (e.g. water absorption bands at 1.4 and 1.9 microns), and the set of bands 

chosen using the proposed algorithm.  Results show the ability of the new algorithm to provide 

improved performance while reducing the computational processing overhead.   
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