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1. INTRODUCTION 
 

We introduced a change-detection and exploitation system for high resolution commercial satellite 

imagery called GeoCDX [1]. In this paper, two multitemporal and multiband images of the same scene are 

ingested and co-registered. Fourteen spectral, linear, and textural features are calculated for each pixel [2][3]. 

Feature differences are found and aggregated to produce the pixel confidence. The pixel confidence values are 

filtered using the stack filter [1] producing the change score. The scene is divided into a tile grid; each tile 

covering 256x256 m area. The sum of all pixel change scores in a tile is defined as the tile change score. The tile 

ranking based on change score is generated as the main product of GeoCDX. Using the relevance feedback (RF) 

tool in GeoCDX, users can re-rank the tiles based on similarity to user-selected tile samples. Although RF is a 

useful tool, it still requires users to find the sample tiles from the tile ranking. Sometimes the first hundreds of 

tiles in the ranking are taken by tiles containing high-degree yet uninteresting changes such as agricultural, cloud 

cover, and seasonal changes. Thus, finding sample tiles of specific type of change can be a time-consuming 

process. Another alternative is to give users groups of tiles where tiles within a group share similar change 

characteristics. This allows users to zero in quickly on the type of change of interest. Here, we propose to utilize 

clustering algorithms to find these tile groups.  

Clustering algorithms have been utilized in a number of prior studies in image change detection. Celik [4] 

employed c-means clustering and principal component analysis (PCA) to perform change detection on multi-

temporal satellite imagery. Gosh, et al. [5] found that change detection on multi-temporal satellite imagery using 

fuzzy c-means (FCM) and Gustafson-Kessel clustering algorithms produced better results than those obtained 

using Markov Random Field and other neural network based algorithms. Carlotto [6] proposed cluster-based 

anomaly detection (CBAD) based on the Gaussian-mixture model to detect man-made objects in multitemporal 

multiband imagery where change pixels are found by detecting significant deviations from the distribution of a 

cluster containing mostly background pixels. Gaussian-mixture is an EM-style algorithm. Another EM-style 

algorithm called the hierarchical modal clustering (HMAC) was also used in a multi-band change detection 



approach proposed in [7]. All of these studies utilized some clustering algorithms to identify change pixels. In our 

case, the change confidence value for each pixel has been calculated using the stack filter, and these confidence 

values are aggregated to produce a tile change score. So we do not utilize the clustering algorithm to detect 

change. Here, propose to find tile clusters where each cluster contains tiles with similar change characteristics.  

 

2. FEATURE VECTOR AND DISTANCE METRIC 
 

For each pixel in the imagery, we extract fourteen features comprising of six spectral features (PAN, R, 

G, B, NIR, and NDVI), four linear features (pixel length, pixel width, length azimuth angle, and angle/width 

angle) [2], and four texture-based features calculated using Shannon’s entropy and skewness measure [3]. 

Therefore, there is a feature vector in IR14 associated with each pixel. Let K be the number of feature (K=14). Since 

the clustering will operate on tiles, we need to define a suitable feature vector for these tiles. Let 1I  and 2I  be the 

two multitemporal images where 1I  is older than 2I . Let T be the number of tiles found in 1I  and 2I  coverage 

area. Let i
tkh  be the histogram of feature k from all pixels in tile t from image i, where Kk ,,1 , 

Tt ,,1  and 2,1i  for 1I  and 2I , respectively. The histogram bins in tkh  are normalized such that the 

sum of distribution density over the range of feature values represented by each bin is equal (16 bins are used). 

The distribution density is derived from the entire coverage area of both imageries. Moreover, i
tkh  is normalized 

to 1 by area. We now define the intersection histogram 21
tktktk hh  for tile t that captures the unchanged 

profile of feature k in tile t of 1I  and 2I . The intersection operator is implemented using the minimum. In 

addition to its features, a pixel in tile t also has a confidence value. This is the raw confidence used by the stack 

filter to calculate the pixel-wise change score. Similarly to i
tkh , we also generate the histogram of pixel confidence 

in tile t defined as thc . We now can define the feature vector for tile t as tKtkttt hc 1 . 

The distance between tiles t  and t  is given by 
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histogram, otherwise d=0, B is the number of histogram bins (B=16). The distance 2D  is simply a Euclidean 

distance whose vector components are the histogram dissimilarity measures. Here, d allows us to calculate a 

distance metric involving a variety of features having different ranges of value because d reduces the histogram 

comparison on each feature to a dissimilarity value bounded in [0, 1]. The minimum dissimilarity d=0 is achieved 

if both histograms are identical, whereas the maximum d=1 is achieved if none of the histogram bins overlap.  

 

 



3. CLUSTERING ALGORITHMS AND INITIAL RESULTS  
 

We need a clustering algorithm that produces a soft partition matrix that allows a tile non-zero 

membership in more than one clusters since a tile may contain more than one type of change. Currently we use 

the fuzzy c-means (FCM) clustering algorithm [8] which observes the cluster membership constraint of 

1
1

C

c tcu . FCM requires users the number of cluster C and the fuzzifier m>1 to be set. As m approaches 1, 

FCM is becoming more crisp in its membership calculation, thus behaving more like the traditional hard c-means 

algorithm. On the other hand, as m  FCM cluster membership degenerates into 1/C. To initialize FCM, we first 

run the agglomerative hierarchical clustering (AHC) algorithm with a user specified C as the stopping criteria. 

The cluster prototype for each cluster produced by AHC is generated by taking the mean of t  from tiles in the 

cluster. These cluster prototypes are used to initialize the FCM. Currently, the clustering process is still supervised 

in that a user determines the initial value for C and m. The user then determines whether these values need to be 

adjusted by visually evaluating the final clusters and the membership values of the tiles in the clusters produced 

by FCM. If tiles containing very different types of change are found in the same cluster and both have rather high 

tcu , then we increase C expecting AHC to find two different clusters for the two types of change. We also found 

that the common m=2 tends to drive tcu 1/C. The high dimensionality and the fact that a tile may contain 

different types of change might have created significant overlaps between clusters. Therefore, we reduce the 

fuzzifier to 1.2. We use an IKONOS (taken 04/30/2000) and a QUICKBIRD (taken 06/28/2006) imagery of 

Columbia, MO, USA as our test data. The pair covers an area of 159 km2 and contains 2538 tiles. We perform the 

clustering on the 615 tiles having change score  1.0 using C=15. Columbia, MO, is a small urban area 

surrounded by agricultural fields with a large number of property developments in the area within the 6 years time 

period. We show two of these clusters in Fig. 1 and 2. Each column shows tile k from 1I , 2I , and the pixel 

change score mapped into a color table (brighter color means higher intensity of change). These tiles are ordered 

based on their cluster membership. As shown in Fig. 1, the tiles contain changes made on previously developed 

areas. GeoCDX detects not only new construction, but also removed structures such as shown in the 5th ranked 

tile. Fig. 2 shows a cluster of tiles of changes made on previously undeveloped rural/agricultural areas. Both 

clusters contain changes in the forms of newly constructed buildings, but the second cluster also contains new 

road constructions which would affect the linear features while building construction or landscaping mostly affect 

spectral and textural features. We are currently moving towards unsupervised clustering where C is determined 

programmatically either by optimizing the cluster validity measures for a specific range of C, or by using 

unsupervised clustering algorithms currently under evaluation. The current clustering process is done offline, but 

the clustering results are available online through the GeoCDX user interface.  



 
Fig. 1 Tile cluster containing changes found in developed areas. 

 
Fig. 2 Tile cluster containing changes found in newly developed areas. 
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