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Based on observation satellites, remote-sensing with hyperspectral image analysis has gained wide popularity, with applica-
tions to mineral exploration, environmental monitoring, and military surveillance. With a large number of measured wavelength
bands, each pixel has a complete spectrum. It is usually assumed that each spectrum can be linearly decomposed into spectra,
each provided from some pure materials. For a given image, the hyperspectral unmixing problem involves the extraction of
these pure spectra, the so-called endmembers, and the estimation of their abundances within each pixel. In this paper, we
assume the number of endmembers is known; otherwise methods such as the one presented in [1] can be used to estimate it

The rst step is the endmember extraction problem. Using convex geometry, this problem is equivalent to nding a data-
enclosing simplex, as proposed in [2, 3]. One of the most popular (automated) algorithms for endmember extraction is Winter’s
N-Findr [3]. The main driving forces behind this algorithm is a simple iterative and scalable scheme. With a random initial
set de ning the simplex, it seeks to stretch the simplex in order to maximize its volume by visiting each pixel. The N-Findr
technique gives a fast endmember extraction method with low computational cost, making it one of the most widely used. The
second step involves estimating the abundance of each endmember for a given pixel. Many techniques have been proposed to
estimate the proportions of pure spectra in a given spectrum. The main dif culties reside in constraints on proportions, with the
sum-to-one and the nonnegativity (see [4, 5] and references therein).

In this paper, we give a simple algorithm for extracting the endmembers and their respective adundances, jointly in a single
step. The proposed approach takes advantage of the well-known N-Finder scheme for endmember extraction. In the same spirit,
we show that we can provide an ef cient iterative algorithm for estimating the abundancies. Both the endmember extraction
and the abundancies estimation are done in a single step, using the concept of barycentric coordinates, computed from volumes
of simplices. This is done without any additional computational cost as opposed to classical least square estimation techniques
[5].

In a hyperspectral image, the hypothesis of a linear mixed model is often used. The spectrum of a pixel is given as a linear
combination of some pure spectra, called endmembers. Let x� be the spectrum of the �-th pixel, then the mathematical model
is

x� =

n∑
i=1

αixωi
+ ε, (1)

where endmembers are de ned by spectra xωi
, assumed represented by some pixels {ω1, ω2, . . . , ωn}, and ε corresponds

to the un tness of the model, often treated as a Gaussian noise. In order for the coef cients α1, α2, . . . , αn to represent
the physical abundance fraction associated to each endmember, two constraints must be imposed on theses coef cients: (1)
the sum-to-one constraint

∑n

i=1
αi = 1, called hereafter the equality constraint, and (2) the nonnegativity constraint with

αi ≥ 0 for i = 1, . . . , n. Solving the optimization problem (3) subject to both constraints requires advanced optimization
techniques, as illustrated for instance in [5]. In this paper, we give a direct scheme to solve the equality-constrained optimization
problem, incorporating naturally the endmember extraction procedure, and show a geometric interpretation to the violation of
the nonnegativity constraint.

Unmixing hyperspectral data based on the linear model (3) involves two tasks: extracting the endmembers xωi
and com-

puting the coef cients αi, for i = 1, 2, . . . , n, and for the spectrum of each pixel. We begin next with the extraction method, as
given in the N- nder scheme [3], and then drive in next paragraph the method to estimation the corresponding coef cients. But
before, we give a de nition of the volume of a simplex. Let X = {xω1

, xω2
, . . . ,xωn

} be the set of estimated endmembers,
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Fig. 1. Illustration of the simplex inclusion test in a 2-dimensional Euclidean space, when (left) the current data x� is outside the simplex
(here triangle) de ned by {xω1

, xω1
, xω1

}, or (right) inside the simplex and thus can be removed from the candidates in that case.

with ωi ∈ {1, 2, · · · }. The oriented volume of the simplex de ned by the vertices X is given by

VX =
1

(n − 1)!
det

[
1 1 · · · 1

xω1
xω2

· · · xωn

]
, (2)

where det is the determinant operator. While taking the absolute value of this expression gives the (classical) volume of a
simplex, the virtues of the oriented volume will be demonstrated in estimating the coef cients.

We take advantage of the fact that the set of endmembers de nes the vertices of a simplex englobing all spectra of the
image. Thus, this simplex has the largest volume among all simplices constructed from other spectra. Therefore, one seeks
the simplex of largest volume, in an iterative manner by visiting each pixel. At initialization, a random set of pixels is selected
as endmembers. The following process is iterated for each pixel, where x� is its spectrum: One at a time, each endmember is
replaced by the spectrum under investigation, and the oriented volume of the resulting simplex is computed, that is

VX\{xωi
}∪{x�} i = 1, 2, . . . , n,

where \ denotes the set difference, VX\{xωi
}∪{x�} is the simplex (oriented) volume of vertices X\{xωi

} ∪ {x�}, i.e. the set
X with xωi

removed and x� added. Thus, we have n candidate sets, each de ning a simplex, as well as the initial simplex. By
comparing their volumes, two cases are can be distinguished:

• if maxi |VX\{xωi
}∪{x�}| < |VX |, then the initial set of endmembers remains unchanged;

• otherwise, an entry of the initial set is substituted with x� to give the new endmembers set. The outgoing spectrum, i.e.
ωi, is determined such as i = arg max |VX\{xωi

}∪{x�}|.

After extracting the endmembers, we are now in a position to compute the coef cients. This is done at the same iteration,
using the computed oriented volumes. Given the simplex de ned by the vertices xω1

, xω2
, . . . ,xωn

, any x� can be written as a
linear combination of these vertices, i.e.

x� =

n∑
i=1

αixωi
with

n∑
i=1

αi = 1, (3)

To solving this constrained optimization problem, we combine the above expressions into the following incremented1 linear
system [

1 1 · · · 1
xω1

xω2
· · · xωn

] [
α

]
=

[
1
x�

]
,

1Using an incremented system has been previously introduced in the literature, with the xed-point-free transform [6]. To our knowledge, this is the rst
time that barycentric coordinates are applied to provide a simple optimization scheme.
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Fig. 2. Endmember spectra: (left) initial spectra and (right) their noisy versions used in generating the hyperspectral image, including two
random mixed spectra.

where α is the column-vector of coef cients αi. Using Cramer’s rule, the solution of this linear system can be expressed in
terms of the determinants of the above matrix and of matrices obtained from it with one column substituted by the right-hand-
side vector. Therefore, we can write

α1 =

det

[
1 1 · · · 1
x� xω2

· · · xωn

]

det

[
1 1 · · · 1

xω1
xω2

· · · xωn

] · · · αn =

det

[
1 1 · · · 1

xω1
xω2

· · · x�

]

det

[
1 1 · · · 1

xω1
xω2

· · · xωn

] . (4)

Thus, each coef cient αi equals a ratio of the oriented volumes of two simplices, the one with vertices X given by endmembers
and the one resulting from the latter by substituting vertex xωi

with x�. In other words, we have

αi = VX\{xωi
}∪{x�}/VX ,

for i = 1, 2, . . . , n. Since these volumes are initially computed in order to stretch the initial simplex for enclosing most spectra,
no additional computational cost is required to evaluate the coef cients at each iteration. The corresponding simplices are
illustrated in Fig. 1 for two-dimensional data in two case, whether x� lies inside or outside the endmembers simplex.

From the literature of geometry of convex sets, the coef cients computed using (4) are called barycentric coordinates,
de ned by the vertices X of the simplex. It is well known that x� is inside the simplex, if and only if all αi’s are nonnegative;
otherwise, there exists at least one negative coef cient when it is outside. Therefore, when the solution of the optimization
problem (3) gives at least one negative αi, this means that the x� is outside the simplex, and thus cannot be written in terms
of linear combination of its vertices with both equality and nonnegativity constraints. It is worth noting that such limitation is
valid for any simplex-based approach.

In order to illustrate the proposed method, we simulated a synthetic hyperspectral image from a linear combination of three
pure materials. These materials are available from the USGS library [7], and correspond to golden grass, red brick, and cedar,
with spectra illustrated in Fig. 2 (left). A 32-by-32 hyperspectral image is generated from pixels given by the model (3), where
ε corresponds to a white Gaussian noise of variance 0.01. Using the same noisy model with the endmembers are incorporated
in the image with the canonical coef cients {(1, 0, 0); (0, 1, 0); (0, 0, 1)}, as illustrated in Fig. 2 (right).

Most simplex-based methods require a preprocessing dimensionality reduction technique. For this purpose, we apply a clas-
sical PCA as preconised in [3]; however, more dedicated methods such as minimum noise fraction technique can be considered.
We apply the proposed method, by setting the number of endmembers to 3. The resulting largest-volume simplex encloses
71% of the spectra, following from incorporating noise, not only in the coef cients by also in the endmembers. To measure the
performance of the algorithm, we compute the spectral angle error [8] for each pixel, between its initial spectrum and the one



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

80

α (in radians)

Fig. 3. Histogram of the error using the spectral angle between initial and obtained specta.

computed from the obtained coef cients, of the form

α(xi, xj) = cos−1
〈xi, xj〉

‖xi‖‖xj‖
.

The histogram of these errors given in Fig. 3 shows a small angular error for the hyperspectral image.
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