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1 PROBLEM INTRODUCTION

Several systems exist for performing search operations on large databases of satellite imagery. These
content-based image retrieval (CBIR) systems retrieve imagery via a query-by-example mechanism [1] or
by computationally analyzing pairs of images to detect change that has occurred between images [2, 3].
The results returned by these systems have both spatial and a non-spatial components–each of which are
independently useful to users. However, when performing queries with these systems users may not only be
interested in the content of the results returned but also how these results relate to one another spatially.

Existing clustering algorithms are capable of clustering the results based on their spatial dimensions;
DBSCAN [4] is one of many algorithms that could be applied to this problem. Moreover, a few papers have
addressed the problem of attempting to simultaneously cluster data in its spatial and non-spatial domains
[5, 6]. However, these approaches fail to consider the unique aspects of clustering results in an image
retrieval system. The results returned by these systems are presented sequentially or progressively. For
example, an imagery retrieval system does not rank the entire contents of the database, but instead only
returns the top-k results. The user is frequently given the ability to request additional sets of k results.
Accordingly, the algorithm that we present performs an on-demand clustering of all of the returned search
results as additional sets of k results are retrieved.

2 TECHNICAL METHODOLOGY

The ProgressiveDBSCAN algorithm is an adaptation of the original DBSCAN algorithm [4] that is capable
of progressively clustering data as additional points are added to the dataset. This algorithm clusters data
based on similarity in both a spatial and non-spatial domain. Assuming that the non-spatial measure is
a distance value from a CBIR query, a similarity measure that can be used to compare the two distances
is shown in Eq. 1. A similar function could be defined to compare change scores from a change detection
system.
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Figure 1: Examples that show great circle distances from two given points. Figures 1a and 1b use a localizer
value of 0 and Figures 1c and 1d use a localizer value of 0.5. Darker colors indicate smaller distances while
lighter colors indicate larger distances.

The distance between any two points on Earth can be found using the equation shown in Eq. 2 where
r is, 6371.01 km, the mean radius of Earth, φa and φb are the latitude of the first and second point
respectively, and Δλ is the difference between the longitudes of the two points. This equation calculates
what is known as the Great Circle Distance.
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Equation 2 calculates a distance in km, but the algorithm only needs a relative measure of distance.
Thus, in order to normalize the distance, Eq. 3 will be used. In this equation h is 20015.11 km, the mean
semicircumference of Earth, and l is a localizer in the range [0, 1]. The effect of the localizer is that larger
values emphasize results that are closer to a given point; this effect can be seen in Figure 1. It should also
be noted that the value of Eq. 3 is clamped to the range [0, 1].

g(�x, �y) =
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h · (1− l)
(3)

Finally, an aggregate similarity score can be defined according to Eq. 4. This similarity score allows
the parameter b to be tuned in order to balance the effect of spatial and non-spatial domains.

s(�x, �y) = b · f(�x, �y) + (1− b) · g(�x, �y) (4)

Using the definition of the similarity score in Eq. 4 the ProgressiveDBSCAN algorithm can now be
defined. The basic outline of our algorithm can be found in Alg. 1. For each point that is presented
to the algorithm a list of neighboring points is collected. If the number of points found is greater than
a threshold, then a new cluster is created. Lastly, a function to merge adjacent clusters should be run
occasionally; this is needed during the progressive nature of the algorithm. It does not need to be executed
during every iteration; for example, if results are returned in groups of size k, then it is likely sufficient to
execute this function every k iterations. (Due to space limitations this algorithm does not appear in the
extended abstract, but will appear in the final paper.)

The createCluster function shown in Alg. 2 is the process that actually creates a new cluster and
identifies the neighboring points that should make up that cluster. Based on the DBSCAN algorithm, the
createCluster function evaluates all points in a neighborhood around the point in question. For each of



Algorithm 1 ProgressiveDBSCAN (p, eps, minpts)

Require: eps ≥ 0 ∨minpts > 0
N = getNeighbors(p, eps)
if |N | > minpts then

createCluster(p, N, eps,minpts)
if it’s been a while then

mergeClusters(C, eps, minpts)
end if

end if

these points, their neighborhood will be searched to find additional candidate points. If the neighborhood
around each point is sufficiently dense–has more points than the value of the parameter minpts–then those
points are added to the cluster if they do not already belong to another cluster.

Algorithm 2 createCluster(p, N, eps, minpts)

Require: eps ≥ 0 ∨minpts > 0
V = ∅
i = getNextClusterNumber()
Ci = {p}
for all p′ in N do

if p /∈ V then
V = V ∪ {p′}
N ′ = getNeighbors(P ′, eps)
if |N ′| ≥ minpts then

N = N ∪N ′

end if
end if
if p′ /∈ Ci,∀i then

Ci = Ci ∪ {p}
end if

end for

To illustrate the effect of the algorithm, Figure 2 shows the top 10 results from a CBIR query of satellite
imagery containing a baseball diamond. By applying the above algorithm we are able to cluster our results
into spatially proximate groups of results. An example of clustering results can be seen in Figure 3.

3 CONCLUSIONS

The ProgressiveDBSCAN algorithm allows for the progressive clustering of results from a geospatial infor-
mation retrieval system. Results can be clustered by a combination of both their spatial and non-spatial
attributes. The clustering performed is incremental in nature; as more results are generated and returned
to the user the algorithm either incorporates them into existing clusters or assigned them to new clusters.
The benefit of this clustering is that users are able to sort through the results returned from a geospatial in-
formation retrieval system in a spatial context. No longer are results from disparate locations presented to
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Figure 2: The top-10 CIBR results from a search using the baseball diamond identified in Figure 2a as the
query object. The query object is the top-ranked result found in the database and other baseball diamonds
are returned based on their similarity to the query object.

the user, but instead compact spatial clusters are displayed. This improvement should reduce the analysis
time spent interrogating the results.

Figure 3: The results from Figure 2 clustered using
Algorithm 1. The results are grouped into three
clusters; in the picture each cluster is identified by
a large arrow.
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