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ABSTRACT 
 
One of the major problems associated with LIDAR sensing is that significant amounts of data must 
be collected to obtain detailed topographical information about a region. Current efforts to solve 
this problem have focused on designing compression algorithms which operate on the collected 
data. Typical compression algorithms, however, require the collection of large amounts of data only 
to discard most of it in some transformed domain. Instead, the theory of compressive sensing has 
demonstrated that highly accurate signal reconstructions are achievable even when sampling below 
the Nyquist rate. Such sensing is clearly desirable for LIDAR range data compression if it can be 
achieved. One notes, however, that compressive sensing requires a priori knowledge of the 
sparsifying basis of the signal which is a major problem for LIDAR since that basis depends not 
only on the underlying scene complexity but also on the laser spot size and the distance to the 
target. For these reasons, the major goal of this research is to take the first steps in establishing a 
relationship between typical LIDAR scenes of varying complexity and the sparsity of the scene 
compressively sampled. 
 

Index Terms— Compressive sensing, LIDAR, scene complexity, sparsity. 
 

1. INTRODUCTION 
 
Typical LIDAR data contains large amounts of information that impose significant problems in the 
storing, processing and transmitting tasks. While a number of LIDAR compression approaches have 
already been developed and discussed in the literature [2], [6], these assume uniform spatial 
scanning during acquisition, something that rarely occurs in practical applications. The theory of 
compressive sensing in which a signal is sampled with respect to a random basis offers the potential 
of overcoming this problem. Sampling a signal of length n using compressive sensing consists of 
sampling just a few random samples (m << n) using the inner product of the sampling function  
                        ,     k = 1,..., m                    (1) 
Here,  represents the kth signal sample and the  operator denotes the inner product. The 
attractiveness of compressive sensing comes from the fact that the signal  can be fully recovered 
with high probability under the conditions that the signal is sparse in some representation basis  
and sampled in some incoherent basis . The sparsity condition is based on the concept that many 
natural signals can be represented without much perceptual loss by keeping the largest non-zero 
coefficients of the signal expressed in the proper orthonormal basis (e.g., Fourier, wavelets). In 
other words, when ||f – fs|| is small, with ,   and x and xs being the vector of full 
and sparse transformed coefficients, respectively. The incoherence condition is also important to 
compressive sensing because less coherent pairs yield precise reconstructions with fewer m 
measurements. In general, coherence measures the largest correlation between any two elements of 
the sensing basis  and the representation basis . This measure of coherence is given by Candés 
and Wakin [1] 
                           (2) 
 Large incoherence can be achieved with high probability given that a random orthonormal 
basis is selected as the measurement basis. Typically, random matrices are largely incoherent (on 



the order of ) with any fixed representation basis  [1]. In addition to the sparsity and 
incoherence conditions, the number of m samples required for exact signal recovery of f is 
                                              (3) 
for some positive constant  and  number of non-zero coefficients of the signal represented in the 

 basis. Finally, the problem of reconstruction using compressive sensing can be formulated as a 
convex program 
        subject to           (4) 
where the  operator denotes the l1 norm and the  are the estimated coefficients of the signal 
expressed in the  basis. The advantage of using the l1 norm in equation 4 as the minimization 
problem is that it promotes sparsity while being more computationally tractable than the 
theoretically desirable l0 norm. 

One of the major issues in the application of compressive sensing to the problem of LIDAR 
range data compression is that a general basis of sparsity is not known a priori. Instead, it depends 
heavily on the laser pulse spot size, the sampling pattern, and the scene complexity. Thus, we are 
motivated in this paper to develop a model of the target scene within a compressive sensing 
framework in order to characterize the degree of sparsity and to determine the number of 
measurements required to achieve acceptable reconstruction quality. 

 
2. APPROACH 

 
In this research, a LIDAR system that uses random single-point data collection of randomly 
generated surfaces with distinct complexity was simulated in Matlab. Note that this is equivalent to 
using random impulsive sensing basis. Random surfaces were generated by a fractal-based iterative 
algorithm which uses a midpoint displacement in two dimensions to create corner points delimiting 
smaller but geometrically equal shapes (e.g., square facets). The space in between the corner points 
of each corresponding facet is filled using bilinear interpolation [3]. A total of seven surfaces of 
increasing complexity (i.e., facet sizes) which vary between 1 and 7 were generated. For the laser 
pulse simulation we assumed noiseless sampling and we set the laser footprint size equal to the size 
of the smallest facet in the surface of highest complexity. The surface was randomly sampled with 
single pulses; lossless transmission and Lambertian-scattering upon reflection were further 
assumed. Thus, each of the acquisitions was obtained using a set of m random measurements 
defined by the sampling functions . The set of m-random measurements at which surface 
reconstructions were obtained was m = {4, 40, 400, 4000, 8000, 16000}. The reconstruction of the 
surface from an incomplete set of measurements using compressive sensing was achieved with the 
l1 minimization program described in eq. (4) using additional constraints. Estimates of the surface 
sparsity were computed by establishing a relationship between the number of m-measurements 
required and the lowest achievable MSE using the available set of reconstructions.  

A total of 1000 reconstructions were obtained for each of the m-measurement and generated 
surfaces sets. Combining these, results in a total of 42,000 reconstructions used for the estimation of 
the corresponding MSEs for each m-measurement and surface complexity. The reconstruction 
algorithm used is the total variation (TV) obtained from the l1-magic Matlab collection of 
subroutines developed by Candés and Romberg in 2005 [5]. 

 
Figure 1: Generated surfaces a) Complexity 1, b) Complexity 3, c) Complexity 5, d) Complexity 7. 
 



3. RESULTS 
 
Each of the seven synthetic surfaces of size 129 × 129 was generated with a 100 meter mean level, a 
roughness of 30, and surface complexities ranging from 1 to 7. Examples of various surfaces are 
shown in figure 1. In general, the generated surfaces have a similar shape but distinct levels of 
complexity. Surfaces of lower complexity contain just a few big sized facets which compose the 
total surface area while surfaces of higher complexity contain a large number of small sized facets, 
introducing more detail.  

An example of a compressive sensing reconstruction using m = 4000 random measurements 
of the generated surfaces is shown in figure 2 for a surface of complexity 4. 

 

 
Figure 2: Surface reconstruction a) Original surface, b) Reconstructed surface 

 
 We note from figure 2 that the shape of the reconstructed signal resembles that of the 
original. The algorithm was not capable of recovering sharp edges formed between adjacent facets, 
however. The resulting mean squared error (MSE) of this reconstruction is of 5.713 with an 
approximate compression ratio of 4:1. To illustrate the resulting MSEs of all the reconstructions, the 
mean MSE is computed over the 1000 computed reconstructions for each value of m and each 
surface complexity. Values of m equal to 4, 40, 400, 4000, 8000, and 16000 were used. The results 
are plotted in figure 3 which also includes plots of the mean MSEs of surfaces with distinct 
complexity. Note that the MSEs of the surface complexities are very close to one another for all sets 
of m random measurements, excepting that of the lowest complexity surface. 
 

 
Figure 3: Reconstruction MSE as a function of k measurements. a) Mean MSE across 

reconstructions b) Zoomed plot 
 

4. DISCUSSION 
 
The results show that accurate reconstructions of the generated surfaces can be obtained using 
compressive sensing. Furthermore, figure 3 shows that the number of measurements required to 
obtain small MSEs appears to increase as the complexity of the surfaces increases. To establish this 
relationship more clearly, the Tukey statistical test described in [4] is implemented, evaluating the 
equality of pairs of mean MSEs. For each of the surface complexities, the mean MSE for each m is 
compared with the mean MSE corresponding to m = 16000. The minimum number of 
measurements for which the mean MSE for a given surface complexity is statistically equal to that 
for 16000 measurements is then selected as the minimum m satisfying equation 3. The resulting m’s 
corresponding to each of the surface complexities is given in table 1. 
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Table 1: Single return surface characterizations 
Surface 

Complexity 
Minimum 

m 
Sparsity ratio 

 
1 1232 0.375 
2 1924 0.586 
3 2769 0.844 
4 2919 0.889 
5 3127 0.953 
6 3267 0.995 
7 3282 1 

 
The third column of this table expresses a sparsity ratio relative to the surface of highest 
complexity. This relationship was obtained using equation 3 to construct the ratio given by  

  (5) 
Simplification of this ratio can be achieved by eliminating the  term because the 

generated surfaces are all of the same size as well as the constant . Cancelation of the incoherence 
term is achieved by assuming that the complexity of the surface introduces no changes to the 
sparsifying basis which in this case is true. In general, we found with only a few exceptions that 
increasing surface complexity imposes higher m-measurement requirements and decreasing 
complexity reduces the number of m-measurements necessary for accurate reconstructions. Thus, if 
we can somehow estimate the surface complexity, then we can potentially use this to estimate the 
number of randomly-distributed LIDAR pulses that we need to bounce off that surface in order to 
accurately reconstruct it. 

5. CONCLUSIONS 
 
In this paper we explored the correlation between LIDAR surfaces of distinct complexity and their 
sparsity to establish a complexity-sparsity relationship. In general it was found that the number of 
measurements required for accurate surface reconstruction increases as the complexity of the 
surface increases (i.e., more and smaller facets). We note also that the relative sparsity ratios are 
close to one when one surface is similar in complexity to another which might be advantageous in 
finding the sparsifying basis for the LIDAR range data. 
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