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1. INTRODUCTION 

As an advanced earth observation technology, airborne interferometric synthetic aperture radar (InSAR) 

has become an important tool for rapidly deriving three-dimensional topographic maps, especially in the 

tropics, mountainous and Polar Regions [1-3]. From the early 1990’s, airborne InSAR has been 

increasingly applied for the measurement of the earth’s topography and demonstrated the capability to 

generate high-precision digital elevation models (DEMs) in practice [3-8]. 

Over the last decade, the airborne InSAR systems TOPSAR, EMISAR, DO-SAR, IFSARE, E-SAR, 

AeS-1, STAR-3i and OrbiSAR-1 have demonstrated the capability to derive DEMs of land surface from 

radar images, with high spatial resolution and a height accuracy in an order of magnitude of meters [2][9][10].

In China, the Experimental Airborne InSAR System is the first Chinese single-pass InSAR system 

developed successfully by Institute of Electronics, Chinese Academy of Sciences (IECAS) in 2004 [11]. In 

2005, the airborne X-band dual-antenna InSAR system is designed successfully by East China Research 

Institute of Electronics Engineering (ECRIEE), with a ground resolution up to 1m×1m and a height 

accuracy excelled in 5m in mountain area [12]. As an international advanced airborne InSAR system, the 

system can avoid time de-coherence existing in airborne single-antenna InSAR system or space-borne 

radar system, which has great advantage in topographic mapping. This paper describes how high-precision 

DEMs are derived from the airborne dual-antenna InSAR data, and quantificationally analyses the DEM 

error.  

2. DATA PROCESSING 

In this section, data processing of DEM generation is described (as shown in Figure 1), including 

complex image registration, phase flattening, phase filtering, phase unwrapping, antenna eccentricity 

correction, absolute phase estimation, parameter calibration, height derivation and geo-coding. In order 



to improve the precision, the antenna eccentricity correction and parameter calibration based on Least 

Square Method (LSM) are proposed. 

Fig.1 The data processing flowchart for DEM generation using airborne dual-antenna InSAR data 

3. THEORETICAL ERROR ANALYSIS 

Based on airborne dual-antenna InSAR bore-sight model, section 3 summarizes the main factors which 

affect accuracy of DEM in airborne dual-antenna InSAR data processing, including platform height, 

slant range, phase, baseline length, baseline angle, the center Doppler frequency and carrier aircraft 

attitude (pitch angle, yaw angle, roll angle and carrier aircraft velocity), and analyses the error of those 

factors. Then, the paper mainly analyses the quantitative relationship between the platform height, 

baseline length, baseline angle, look angle and DEM error (height error and point error). As shown in 

Figure 2, the quantitative relationship between the platform height, baseline length, baseline angle, look 

angle and DEM height error is given. 
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