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1. Introduction 
The Cross-track Infrared Sensor (CrIS) [1] is one 
of the key instruments for the National Polar-
Orbiting Environmental Satellite System 
(NPOESS) [2]. As a Michelson interferometer, 
CrIS measures atmospheric emission spectrum in 
the infrared, which is to be used to produce the 
vertical temperature and moisture profiles of the 
Earth’s atmosphere. The first Flight Module (FM1) 
of CrIS is to be launched on the NPOESS 
Preparatory Project (NPP) [3] satellite in 2011. As 
a part of prelaunch testing and characterization, the 
CrIS FM1 has undergone several phases of 
Thermal Vacuum tests; the last phase (TVAC3) of 
radiometric performance tests ended in December 
2008. This paper presents the independent analyses 
of the TVAC3 test data of CrIS FM1 sensor by the 
NGAS team for NPP data product Calibration and 
Validation (Cal/Val). In addition to providing 
further verification of the instrument performance 
reported by the sensor manufacturer – ITT, our 
effort constitutes an important part of our 
preparation for the on-orbit Cal/Val of the CrIS 
FM1 data products. In particular, the residual 
radiometric calibration uncertainties, due in part to 
the limitations of TVAC test environment, led to 
our plan for on-orbit monitoring and further 
calibration. Sources of radiometric calibration 
uncertainties include: imperfect characterization of 
Internal Calibration Target (ICT) effective 
emissivity, detector nonlinearity, and the possible 
non-uniformity of the ICT surface brightness 
temperature. Our analyses of the TVAC data 
examine the sensitivity of the radiometric 
performance of CrIS FM1 to these parameters. In 
the remainder of this paper, we shall present the 
basic background information on the CrIS FM1 
and its TVAC tests in Section 2. In  Sections 3 and 
4 we shall discuss the accuracy of the ICT radiance 

modeling and the accuracy of the detector 
nonlinearity correction, and the on-orbit 
monitoring of these issues. Our concluding 
remarks are in Section 5.  
2. Background 
The CrIS FM1 has 3 spectral bands -- Long-
Wavelength IR (LWIR), Mid-Wavelength IR 
(MWIR) and Short-Wavelength IR (SWIR). Their  
characteristics are listed in Table 1 below. 

Table 1. Spectral characteristic of CrIS FM1 
 LWIR MWIR SWIR 
Min Wave-number 650 1210 2155 
Max Wave-number 1095 1750 2550 
IGM Length 20,736 10,560 5,200 
Decimation Factor 24 20 26 
Number of Channels 864 528 200 
SDR Channels 713 433 159 

For each spectral band, a Focal Plane-
Array (FPA) contains a rectangular 3 by 3 array of 
detectors, which provide the 9 Fields of View 
(FOV) of the instrument. During the normal 
operation of CrIS FM1, the Scene Selection Mirror 
(SSM) scans every 8 seconds in the direction 
perpendicular to the satellite velocity over 34 
Fields of Regard (FOR) measuring an 
Interferogram (IGM) at each FOR. Among the 34 
FORs, two IGMs are collected at the ICT and the 
Deep Space (DS) positions, respectively. The 
remaining 30 FORs are Earth Scene (ES) FORs. 
However, during the TVAC test, the instrument 
can also be commanded to stare at a particular 
FOR. The normal operational IGM is generated by 
the on-board digital processor from the full IGM 
after applying a complex pass-band filter and 
coarse sampling (or decimation). The instrument 
can also be commanded to deliver the full IGM by 
bypassing the filtering and decimation. These 
IGMs are referred to as Diagnostic IGMs. 

During the TVAC tests the CrIS FM1 is 
placed in a chamber with two high emissivity 
blackbody calibration targets, the Space Target 
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