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ABSTRACT

A method to simulate a two-dimensional (m1, m2)-dependent

random field Y with K-distributed marginals is presented.

The simulation starts with a random field with indepen-

dent and identically standardized normally distributed el-

ements. Then a (m1, m2)-dependent matrix is calculated

using weighted sums. It has identically standardized nor-

mally distributed marginals. From this matrix the desired

random field is computed numerically.

Index Terms— simulation, K-distributed marginals, ran-

dom field, SAR

1. INTRODUCTION

During past years, many different probability density func-

tions have been tried to describe the land clutter reflectivity

statistics analytically, among them the log-normal and the

Weibull pdf. In 1976, Jakeman and Pusey [1] introduced

the K-distribution, originally for sea clutter, which since has

found wide use also to describe the distribution of land clutter

in synthetic aperture radar (SAR) images.

Therefore, the simulation of K-distributed random vari-

ables and random fields is important for example to in-

vestigate different estimators for the two parameters of K-

distributed data. Blacknell [2] proposed a method to simulate

correlated K-distributed clutter. But he restricts his presen-

tation to correlations in one dimension and to small lags

because of the complexity of the necessary calculations.

However, in a former analysis Kurz and Schimpf [3] ex-

plored SAR data regarding their spatial dependences. The

main result was that even those data originating from a ho-

mogenous grassy area are not independent. For each inves-

tigated type of clutter dependences between adjacent pixels

were found. In the case of single–look images, adjacent pix-

els may have a certain degree of correlation due to the way of

SAR processing. Here, ’adjacent’ means, that the two pixels

have at least one common vertex. In the case of multi–look

images, this mutual influence between adjacent pixels occurs

with certainty.

Therefore, it is necessary to simulate two-dimensional

random fields with K-distributed marginals which have a

dependence structure that is not restricted to only one dimen-

sion.

2. MATHEMATICAL PRINCIPLES

2.1. About the K-Distribution

Let Z be the random amplitude (> 0) of an L-dimensional

random vector, with a natural number L. In multi-look SAR

data, the parameter L is two times the number of looks, be-

cause the amplitude of a pixel is calculated from L
2 complex

random vectors. Below, L is treated as predetermined num-

ber.

Z is called K-distributed, if it obeys the following proba-

bility density function

f(x; a, α) =
xα+L/2−1a−α−L/2

2α+L/2−2Γ(α)Γ(L/2)
Kα−L/2

(x

a

)
(1)

with parameters a, α > 0 and the natural number L.

The distribution function corresponding to the density

f(·; a, α) is denoted by K̃(·; a, α).
Details on Kα−L/2, the modified bessel function of the

second kind, can be found in [4].

The mth moment, m ≥ 1, of a K-distributed amplitude is

E(Xm) = am2m Γ(m
2 + α)Γ(m

2 + L
2 )

Γ(α)Γ(L
2 )

. (2)

2.2. (m1, m2)-Dependence

Consider the stochastic process

{Y (k, l)|1 ≤ k ≤ n1, 1 ≤ l ≤ n2} = {Y (k, l)},
say, defined on a two-dimensional grid.

The stationary process {Y (k, l)} is said to be (m1, m2)-
dependent (where m1, m2 are non-negative integers) if for

each (t, u) the two sets of random variables

{Y (k, l)|1 ≤ k ≤ t, 1 ≤ l ≤ u}
and

{Y (k, l)|t + m1 + 1 ≤ k ≤ n1 or u + m2 + 1 ≤ l ≤ n2}



are independent. This is illustrated in Figure 1. The set

mentioned first includes the colored elements of the process,

which are located in the upper left (orange). The second set

is composed of the elements in the lower right (blue).

Fig. 1. Dependence structure of a (3, 2)-dependent process.

One possible description for (m1, m2)-dependent pro-

cesses is as follows. The process Y is (m1, m2)-dependent,

if and only if for indices fulfilling

|k − k′| > m1 or |l − l′| > m2,

the two random variables Y (k, l) and Y (k′, l′) are indepen-

dent.

3. SIMULATION OF (M1, M2)-DEPENDENT
RANDOM FIELDS WITH K-DISTRIBUTED

MARGINALS

A stationary random field Y will be simulated as a N1 × N2

matrix. Y has to be stationary and (m1, m2)-dependent with

identically K̃(·; a, α)-distributed components. The parame-

ters fulfill a, α > 0, m1, m2 are nonnegative integers and

N1, N2 are natural numbers. The elements of the matrix Y
correspond to the points of a grid.

1. In the first step, a random field N with independent

and identically standardized normally distributed com-

ponents is simulated. N is a (2N1+2m1−1)×(2N2+
2m2 − 1) matrix. The elements of N also correspond

to the points of a grid. This is overlapping with the grid

belonging to Y and has twice its resolution, see Figure
2.

To simplify the notation, every matrix will be indexed

on the finer grid. Hence it is

N = [Nk,l]k=1,...,2N1+2m1−1
l=1,...,2N2+2m2−1

and Y = [Y2k,2l]k=1,...,N1
l=1,...,N2

.

All the additionally needed rows or columns of N are

added at the bottom or at the right side of the grid be-

longing to Y. Otherwise the indices would depend on

m1 or m2.

In the following calculations the row-indices of N will

be treated modulo 2N1 + 2m1 − 1 and the column-

indices of N modulo 2N2 + 2m2 − 1. The row-indices

of Y will be treated modulo 2N1 and the column-

indices of Y modulo 2N2. To simplify the notation

this is not reflected in the indices.

Fig. 2. Blue grid belonging to X and Y, fine black grid be-

longing to N.

2. In the second step the matrix N is used to calculate

the matrix X. It is (m1, m2)-dependent and its compo-

nents correspond to the same grid as them of Y.

X = [X2k,2l]k=1,...,N1
l=1,...,N2

with the same rules of simplification for the indices as

those of Y.

For the calculation of X it is necessary to choose co-

efficients ak′,l′ with k′ = −m1, . . . , m1 and l′ =
−m2, . . . , m2. At least one of these coefficients has to

be nonzero ak′,l′ �= 0.

The elements of X are the weighted sums

X2k,2l =

(
m1∑

k′=−m1

m2∑
l′=−m2

a2
k′,l′

)− 1
2

·
2k+m1∑

k′=2k−m1

2l+m2∑
l′=2l−m2

ak′−2k,l′−2lNk′,l′

for k = 1, . . . , N1 and l = 1, . . . , N2.

This is illustrated in Figure 3.

The elements of X are identically standardized nor-

mally distributed

X2k,2l ∼ N(0, 1) for k = 1, . . . , N1 and l = 1, . . . , N2.

They are even multivariate normally distributed be-

cause X is the linear image of the multivariate normally

distributed matrix N.

Furthermore, X is (m1, m2)-dependent. Regarding

two components X2k,2l and X2k̃,2l̃ with |2k − 2k̃| >



Fig. 3. X2k,2l (red) and the added components of N (yel-

low and red) weighted with the coefficients ak′,l′ with k′ =
−m1, . . . , m1 and l′ = −m2, . . . , m2.

2m1 or |2l − 2l̃| > 2m2. They have a distance greater

than m1 in the direction of a row or greater than m2 in

the direction of a column regarded on the grid corre-

sponding to Y and X. X2k,2l and X2k̃,2l̃ are influenced

by two disjoint blocks of elements of N. The indepen-

dence of these elements implies the independence of

X2k,2l and X2k̃,2l̃.

3. In the third step a (m1, m2)-dependent matrix will be

computed, whose elements are identically K̃(·; a, α)
distributed.

To obtain a K̃(·; a, α)-distributed random variable Y
a continuous random variable U is needed, which is

uniformly distributed on the interval (0, 1). From this

it is possible to calculate the random variable Y using

the quantile function K̃−1(·; a, α) as follows

Y = K̃−1(U ; a, α). (3)

Because of the strict monotonic increase of K̃(·; a, α),
equation (3) is equivalent to

K̃(Y ; a, α) = U.

Using the probability density function f(·; a, α) de-

fined in (1), it results

∫ Y

0

f(u; a, α)du = U. (4)

The left side of equation (4) defines a function G

G(y; a, α)

=
∫ y

0

f(u; a, α)du

=
a−α−L/2

2α+L/2−2Γ(α)Γ(L/2)

·
∫ y

0

uα+L/2−1Kα−L/2

(u

a

)
du

for y > 0.

Hence, Y is the solution of the equation

G(Y ; a, α) = U.

Therefore, each element of the matrix Y can be calcu-

lated from the corresponding element of the matrix X
by solving the equation

G(Y2k,2l; a, α) = Φ(X2k,2l) (5)

for k = 1, . . . , N1 and l = 1, . . . , N2.

Here, Φ denotes the cumulative distribution function

for the standardized normal distribution. Φ(X2k,2l) ∼
U(0, 1) and with the previous argumentation follows

Y2k,2l ∼ K̃(·; a, α)
for k = 1, . . . , N1 and l = 1, . . . , N2.

The (m1, m2)-dependence of X is relayed to Y,

because the function Φ and the quantile function

K̃−1 both are bijections. Therefore, the transfor-

mation (5) transforms independent random variables

X2k,2l, X2k̃,2l̃ into independent Y2k,2l, Y2k̃,2l̃ and it

transforms dependent random variables into dependent

random variables.

4. SUMMARY AND OUTLOOK

In this paper a method to simulate a two-dimensional (m1, m2)-
dependent random field Y with K-distributed marginals is

presented.

First a random field N corresponding to a grid twice as

fine as that of the actually desired random field is simulated.

The elements of N are easy to compute, because they are in-

dependent and identically standardized normally distributed.

Then a matrix X is calculated from N using weighted sums.

X is defined on the desired grid and it has the predetermined

dependence structure. From this the computation of Y is per-

formed element by element as numerical solution of equation

(5).

It has to be investigated how this approach could be trans-

ferred to other structures of dependence.

The influence of the weights ak′,l′ , k
′ = −m1, . . . , m1, l

′ =
−m2, . . . , m2 to the dependence between the elements of Y
will be analyzed as well.
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