
This research was supported by the National Geospatial-Intelligence Agency through contract HM1582-0601-2036 
 

MODEL-BASED ESTIMATION OF SURFACE GEOMETRY USING PASSIVE
POLARIMETRIC IMAGING

Charles D. Creusere, Ketan Mehta, and David G. Voelz
Klipsch School of Electrical and Computer Engineering

New Mexico State University

1. INTRODUCTION

The polarization signature of the light that reflects from an object contains information about that 
object’s material composition as well as its shape, its roughness, and its surface features. Thus, it 
makes sense to exploit this information in practical image processing applications like scene 
segmentation and object recognition. For remote image sensing in the visible optical band, a 
passive system (i.e., the illumination source is the Sun) is generally required, but capturing 
consistent polarimetric signatures using such a system is challenging because the signature depend 
upon both the target’s material properties and the relative source/target/camera geometry. In 
previous work, we have shown how multiple views of the target object from different positions can 
be used to create a consistent estimate of its index of refraction by fitting a generating model to the 
acquired data [1]. Unlike previous work that focused on exploiting passive polarization in imaging 
systems (e.g., [2, 3, 4, 5, 6, 7, 8]), the model-based approach that we developed in [1] provides us 
with a classification feature vector (the index of refraction) that is highly robust to the relative 
scene geometry [9]. In this paper, we are interested in extracting another parameter from the 
polarimetric signature which is equally robust by fitting the same underlying pBRDF model of the 
generating process that we used in our previous work. This time, however, we are interested in 
estimating the mean surface normal angle of each facet of the object being imaged. As an example, 
knowing these surface normal angles would allow one to determine planes of the roof of a building 
being imaged from above (even if they were all made of the same material) which could facilitate 
identification of that building.

2. POLARIMETRIC BIDIRECTIONAL REFLECTANCE DISTRIBUTION FUNCTION 
(PBRDF) MODEL

Our approach for extracting estimates of the local planar structure of the target requires that 
polarimetric images be captured from multiple known positions relative to the target location. This 
can be easily accomplished from an aerial platform moving towards a target object by logging GPS 
locations and time stamps during each capture and correlating these to the ground position using 
mapping software. It is assumed that each of the captured polarimetric images is generated by the 
same underlying model—in this case, the microfacet pBRDF model for specular reflection 
proposed by Priest and Meier [10]—and that by solving for the parameters which best fit this 



model, one can make progressively better estimates for each image pixel. Figure 1 shows the 
geometry assumed for the estimation process and the associated polarimetric BRDF is given byLLr( , ) = FF( , , ) E( , ) (1)

Fig. 1. Bidirectional reflectance distribution function (BRDF) Geometry

where F is the pBRDF Mueller matrix, Lr is the reflected Stokes vector and E is the incident 
Stokes vector. A Stokes vector is a four element vector that completely characterizes the 
polarization of an optical field. The interested reader is referred to standard optics textbooks [11, 
12] for a detailed treatment of Stokes vectors and Mueller matrices. The Priest and Meier pBRDF 
model used here assumes that a rough surface is composed of a collection of microfacets, each of 
which obeys Fresnel’s equations [11] and that all polarization effects in the reflected image are 
caused by single surface reflection. The expression for the pBRDF Mueller matrix is given by

                          ( , ,  ) = ( 2( )/2 2))2 ×4 2× 4( )× ( ) ( ) × ( , ,  )        (2)

where denotes the element in the row and column of the pBRDF Mueller matrix F, 
denotes the element in the row and column of the Fresnel reflectance Mueller matrix 



M,  is the angle of orientation of the microfacets relative to the object surface normal, is given 
by = and describes the surface roughness [10]. 
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Fig. 2. Reflection for the case of a two surface object

It is the parameter that we are interested in estimating here. To form our estimate, we make 
measurements at multiple with being kept constant. We then find the parameters for (2) 
within the framework of (1) which best fit the observations. The resulting system of nonlinear 
equations is solved using the Levenberg-Marquardt (LM) optimization algorithm [13]. 
Unfortunately, the quality of the resulting solution depends heavily on the initialization of 
algorithm. We consider this aspect of the problem in the next section.

3. SUCCESSIVE REINITIALIZATION

To overcome the problems associated with initialization, we apply a process of successive 
reinitialization. Specifically, we divide the Stokes images (pixels of which correspond to single 
elements of the Stokes vector captured at a given spatial location) into non-overlapping regions 
and apply LM optimization within the region using different random initializations. We then 
evaluate the solutions resulting from each of these different initializations to determine a consensus 
decision—i.e., the most common solution in the region to within some tolerance. An estimate for 
the model parameter is thus calculated for each of the regions individually. The final estimate is an 
average of all these individual estimates. The process is repeated and the optimizations are rerun
over all the regions, by using this mean estimate as the initial optimization condition. If the 
solutions for most of the regions are now consistent, we accept it as the correct solution and output 
the model parameters. If not, we declare that block as being of mixed type containing more than 
one surface orientation, in this case). We note that dynamically adapting the block size would 
almost certainly improve the overall performance as well as make the algorithm more flexible.
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4. RESULTS

We have initially validated our approach using computer-based simulations of in-plane two surface 
scattering as shown in Figure 2 with our ultimate goal here being to determine the angle between 
the two surfaces. The position of the illumination source was varied from 45 to 85 in 5
increments with the reflection angle fixed at 65 , and Gaussian noise of varying power is added to 
simulate measurement errors and volumetric scattering. Table 1 summarizes our results where 100 
Monte Carlo trials have been performed (each an application of the full optimization algorithm) 
with the index of refraction of the target object being assumed to be known (this is not a major 
limitation since we have previously shown that it can be estimated with sufficient accuracy [1]). 
Studying the table, we note that the worst-case error is 1.8 which occurs when the surfaces are 
closest to perpendicular as one would expect. The minimum error of 0.16 is achieved when the 
surfaces are almost parallel.

Table 3. Estimated value of angle 

True value of 
 

Estimated value of 
 

Absolute 
error 

Percentage 
error 

        
95 93.246 1.754 1.846 

100 98.724 1.277 1.277 
110 109.242 0.758 0.690 
120 118.838 1.161 0.968 
130 128.406 1.594 1.226 
140 139.229 0.771 0.551 
160 158.546 1.454 0.909 
150 148.547 1.453 0.969 
170 169.190 0.810 0.477 
175 174.713 0.287 0.164 
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