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1. INTRODUCTION

A challenging problem in hyperspectral imagery (HSI) is the detection of subpixel materials. Over the 

years, numerous subpixel detection algorithms have been developed. The method of estimating the 

parameters needed by the detectors, however, has not received as much attention. For example, two 

classical statistical-based detectors are the Adaptive Matched Subspace Detector (AMSD) [1] and the 

Adaptive Coherence Estimator (ACE) [2]. The two algorithms differ in their statistical approach to 

modeling the background. ACE is an unstructured detector; that is, it models the background as a 

Gaussian distribution. Although research has consistently shown that ACE is a powerful detector for 

HSI data [3], it has also been shown that Gaussian distributions are inadequate for modeling the

backgrounds typically found in HSI data [4]. Rather than using a purely Gaussian model, the structured 

background detector, AMSD, uses a linear mixing model to obtain endmembers and abundances to 

represent the background.  The resulting endmembers, however, are not physically meaningful. Since 

the endmembers are the eigenvectors of the image correlation matrix, the abundances are really the 

magnitudes along the eigenvector directions. The Hybrid Structured Detector (HSD) [5] was designed 

to combine the benefits of statistical testing while using physically-meaningful parameters obtained

from the linear mixing model. In our previous work on the HSD, the noise estimates were taken from 

the entire raw image causing some redundancy in the algorithm. Our current method, the Noise 

Adjusted Hybrid Subpixel Detector (NAHSD), provides improved estimates of the noise statistics by 

examining the difference between the original image and its linear mixture estimate.



2. ALGORITHM DESCRIPTION

The NAHSD algorithm utilizes the same theoretical foundation as the HSD [5]. This foundation is based 

on a set of hypotheses that differentiate pixels containing a material of interest from pixels containing

background spectra.  A general model for such a hypothesis test is

(1)

where x is the pixel under test, B is an L×Q matrix representing background endmembers where L

represents the number of spectral bands, Q represents the number of endmembers, ab is a vector 

containing the abundances for the associated endmembers, S is an L×P matrix representing desired 

material endmembers, P represents the number of material endmembers, as is a vector containing their 

associated abundances, and n represents the noise in the signal.  The desired material signatures, S, are 

given and the background endmembers, B, are estimated from the data using a variant of the Iterative 

Error Analysis (IEA) algorithm [6]. Typically, Gaussian modeling is used for the noise, n, as it provides 

a good balance between enhanced fitting of the data over simpler models while still retaining

mathematical tractability. It is in the estimation of these Gaussian parameters that HSD and NAHSD 

differ.  HSD uses the entire image to estimate the Gaussian parameters whereas, in the proposed

formulation, the Gaussian parameters only model the noise.  NAHSD addresses this mismatch by 

establishing the noise as the error image between the spectral signature of the original pixels and their

physics-based linear mixing model estimates.  The resulting error pixels capture sensor noise and other 

effects that are not well represented by the linear model.  The Gaussian parameters are then calculated 

over the entire error image which minimize these noise artifacts. This leads to our final detector

(2)

where , is the estimate of the abundances obtained using the FCLS algorithm, and 

is the covariance matrix computed from the error image. Note that the estimated mean of the error 

image is subtracted from x, B, and S before the detection score is computed.

3. RESULTS

Results comparing NAHSD to traditional algorithms AMSD, ACE, and HSD have been obtained on 

real-world data that contain subpixel materials. The images contain various backgrounds that provide 

challenging opportunities for subpixel material detection.  Since reflectance signatures were provided

for materials of interest, atmospheric compensation techniques were used to map the signatures to 

radiance. The MODerate resolution atmospheric TRANsmission (MODTRAN®) model developed by 



the Air Force Research Laboratory [7] was used to generate desired material radiance signatures for all 

images under a variety of illumination conditions. It is also worthwhile to note that the ground truth 

provided was at the object-level meaning that only the centers of the locations of the materials of interest 

were provided. Since subpixel materials can span multiple pixels depending on where they fall within a 

pixel, a clustering threshold was used to combine adjacent pixels into an object. Each object was then 

assigned the maximum detection score from the pixels that made up the object and each object was

identified as a material of interest or as clutter based on its location relative to the object-level ground 

truth. An estimate of the appropriate number of endmembers also needed to be addressed since it 

affected the performances of the AMSD, HSD, and NAHSD algorithms. The Neyman Pearson 

Approach [8] was used to obtain an estimate of the number of endmembers for a given probability of 

false alarm and for each detector / material of interest / image combination. For comparison purposes, 

separability plots [3] were used to depict algorithm performance given different types of materials of 

interest in various environments. Results demonstrate the capability of the NAHSD for improved 

subpixel detection of materials of interest. 
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