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ABSTRACT

Noise reduction is a necessary and common pre-processing step in remote sensing, especially hyperspectral
image analysis. Until recently, hyperspectral data was modeled using linear stochastic processes and the noise
was assumed to manifest itself in a narrow spatial frequency band. The signal and noise were thus considered
independent and most of the proposed noise reduction algorithms, such as Maximum Noise Fraction (MNF) [14]
and the Wavelet-based algorithms [15, 16], transformed linearly the hyperspectral data from one space to another
for noise and signal separation. Hyperspectral data, however, exhibit nonlinear characteristics making the noise
frequency and signal dependent [1, 2]. Therefore, to accurately reduce the noise in hyperspectral data, a nonlinear
noise reduction algorithm was developed.

Techniques borrowed from the nonlinear and chaotic time series analysis [4, 17], especially Local Geometric
Projection (LGP) [18], were adapted to develop a nonlinear denoising algorithm [1, 2, 6]. As Fig. 1 shows, this
algorithm involves four main steps: 1) constructing state vectors in the phase space, 2) specifying the
neighborhood of these state vectors, 3) finding projection directions and 4) reducing the noise by projecting the
state vectors on these directions. The steps 2), 3) and 4) are executed until no further denoising is possible. The
intuition behind LGP is that a nonlinear data series on a smooth manifold can be approximated linearly at each
point on the manifold.

The nonlinear denoising algorithm was shown to achieve approximately 30% noise reduction and twice the
SNR boost than the classical noise reduction algorithms. Moreover, the algorithm was able to maintain the
spectral absorption features while effectively reducing noise. Fig.2 shows the original, denoised and difference

images of an AVIRIS image (R = band 104 (1503 nm), G = band 35 (750 nm), and B = band 24 (645 nm)).
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Figure 1: The main steps involved in the nonlinear denoising algorithm
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Figure 2: Original image, after denoising, and difference image (denoised - original) (AVIRIS images
with R =1503 nm, G =750 nm, and B = 645 nm). These results were obtained with the nonlinear
denoising algorithm.

Although the nonlinear denoising algorithm demonstrates impressive noise reduction results, it is very
computationally expensive. The iteration over the three steps 2), 3) and 4) can take hours or even days to

complete. In fact, our two implementations of the nonlinear noise reduction, including our C++ TISEAN-based



implementation [7], took five days to denoise a 204MB hyperspectral image. To improve the efficiency of the
algorithms, we introduced a framework that reduced its computational time. This framework did not require
changing the existing code. The framework followed the Single Instruction Multiple Data streams (data
parallelization) approach and required only a pool of computational resources accessible through a job scheduler.
The job scheduler was a cluster scheduler such as PBS (Portable Batch System) [3] or Condor [11] or a
metascheduler such as GridWay [12] and Gavia [8-10]. The computational resources could reside in a grid or
cloud environment as long as a job scheduler that submitted jobs to those resources was available. As a testing
environment, a production cluster composed of 210 IBM blade servers each with a dual Intel or AMD processors
was setup at the University of Victoria. The cluster has a PBS queue and is grid-enabled. A cloud environment
will be added to the cluster soon. This will allow us to test our framework in different environments.

The framework uses a design and a model to achieve its purpose. The design specifies the main components
of the system while the model gives a formal view for it. A brief description of the design is as follows. The
Splitter partitions the hyperspectral image into a set of blocks. The Scatterer generates the necessary scripts and
job descriptions for each block and submits them to the job scheduler, which in turn submits them to a
computational resource for execution. As the blocks are processed, the results are collected by the Gatherer.
Since the blocks are processed independently and in parallel, the Gatherer has to do the necessary bookkeeping to
ensure that all the blocks are processed. The Joiner then combines the processed blocks in the right order and
outputs the denoised image. This brief description of the design leaves some questions unanswered: how many
partitions should the Splitter generate? What’s the optimal strategy for partitioning the image? What’s the policy
for the Gatherer when a block fails or did not finish on time? To formally address these questions, a model for the
system is needed and more testing is required. The model used is based on reinforcement learning model [5, 13].
The beauty of this model is that it does not require a complete knowledge of the environment as is the case for
distributed computational resources across the internet.

A C++ TISEAN-based implementation was completed recently. Preliminary results showed that with two
dedicated processors, we could reduce the execution time by approximately 50%. With N processors, can we
reduce the time to 100/N%? If not, what’s the largest N for which this holds? This paper will present the results

of this development and provide examples of the denoising of AVIRIS, AISA, and Hyperion hyperspectral data.

The operational implementation of the algorithm will be through SAFORAH (www.saforah.org) where the user
will select the denoised product as an output. The user will not need to deal with the parallel processing,
distributed storage, and computational complexities. The denoised product will be delivered to the user using

high bandwidth connectivity over the internet.
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