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Abstract 
 
We propose a landmine detection algorithm using ground penetrating radar data that is based on an SVM 

classifier. The kernel function for the SVM is constructed using discrete hidden Markov modeling (HMM). The 

kernel matrix could be obtained by defining an adequate similarity measure in the feature space. However, this 

approach is inappropriate as it is not trivial to define a meaningful distance metric for sequence comparison. Our 

proposed approach is based on HMM modeling and has two main steps. First, one HMM is fit to each of the N 

individual sequence. For each fitted model, we evaluate the log-likelihood of each sequence. This will result in an 

N x N log-likelihood similarity matrix that will be adapted to serve as the kernel of the SVM classifier. In the 

second step, we train an SVM classifier to learn a decision boundary between the positive and negative samples. 

Given a new data point, Testing is performed as follows. First we fit an HMM model to the data sample. Then, 

we compute the dot product of this new data point with all the existing training data. Finally, the new data sample 

is classified as positive or negative using the trained SVM classifier. Results on large and diverse ground 

penetrating radar data collections show that the proposed method identifies a meaningful and coherent distance 

between sequences using HMM models. Such distance measure is of paramount importance for the performance 

of the SVM classifier. Our initial experiments indicated that the proposed method outperforms standard HMM 

classifiers and SVM classifiers based on geometric distance. 
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1. INTRODUCTION 
 
Detection, localization and subsequent neutralization of buried antipersonnel and antitank landmines is a world-

wide humanitarian and military problem and has attracted several researchers in recent years. One challenge in 

landmine detection lies in plastic or low metal mines that cannot or are difficult to detect by traditional metal 



detectors. Varieties of sensors have been proposed or are under investigation for landmine detection. The 

research problem for sensor data analysis is to determine how well signatures of landmines can be characterized 

and distinguished from other objects under the ground using returns from one or more sensors. Ground 

penetrating radar (GPR) offers the promise of detecting landmines with little or no metal content.   

Over the past few years, several landmine detection algorithms using GPR have  been proposed.  In general, they 

fall into categories: static data based algorithms and dynamic data based ones. The former category treats the raw 

data and transforms it to a set of static feature vectors. These static vectors are then fed to standard classification 

strategies. Examples include the edge histogram descriptors (EHD) which uses a K-nearest neighbors (K-NN) 

based classifier [1]; an SVM classifier with texture-based features [2], and an RVM classifiers [3]. The second 

category of landmine detection algorithms transforms the signatures into a dynamic structure, i.e., sequences of 

vectors taking  the down-track dimension as the time variable. The underlying classifier used in this case is the 

Hidden Markov Model (HMM) [4].  

The two categories of detection algorithms have their advantages and disadvantages. For instance, the static 

algorithms benefit  from the simple feature representation as well as the rich set of classifiers (SVM, RVM, etc.). 

However, they assume that the target has a fixed shape and position within the signature and cannot tolerate scale 

and shift variations effectively. On the other hand, algorithms that are based on temporal data representation have 

the ability to accommodate for targets of different sizes and shapes. However, only one model is learned for each 

of the mines and clutter classes which may not be sufficient. Moreover, learning has been restricted to the HMM 

classifier. 

In this paper, we propose a hybrid approach that combines the advantages of both categories. We use a dynamic 

feature representation of the alarms and an HMM structure to construct the pair-wise similarity matrix between 

the training alarms. This representation allows for variations in the target size and shape. 

Then the constructed similarity matrix is used as a kernel matrix for an SVM classifier. 

 
2. SVM CLASSIFICATION  WITH HMM-BASED  KERNEL 

 
Let O = {Or; yr}, r=1,…R, be a set of R labeled sequences where yr is the label of sequence Or. If yr = 1 then Or 

represents a mine signature, otherwise, Or represents a clutter signature. The observation sequence Or is the 

sequence of feature vectors extracted from each signature using the edge based feature extraction methodology 

[5]. The proposed SVM detector has the following two main components. 

2.1.  Feature extraction and similarity computation 

Each sequence Or  , r=1…R,  is used to learn a discrete HMM (DHMM) model r using the Baum-Welch learning 

algorithm  [6]. Let   = { r , r=1 … R},  be the set of trained models. Even though the use of only one 

observation sequence to form a DHMM might lead to over-fitting, this step is only an intermediate step that aims 



to capture the characteristics of each observation sequence. The formed DHMM model is meant to give a 

maximal description of each sequence and therefore, over-fitting is not an issue in this context. In fact, it is 

desired that the model perfectly fits the observation sequence. It is expected then that the likelihood of each 

sequence with respect to its correspondent model is higher than those with respect to the remaining models.  

To illustrate this step, in Fig. 1 we show the obtained similarity matrix for three groups of mines with 

different strengths. Each group has three signatures. The down-track B-scans (sequences of A-scans from a single 

channel) of the nine alarms are shown in the first row of Fig. 1. It is obvious that grouping all of these signatures 

in a single model (as in the standard HMM classifiers) would lead to poor generalization. Similarly, the false 

alarms could be caused by different clutter objects and under different environments and could have significant 

variations. First, we extract simple edge-based features [5], and fit one HMM for each alarm. Then, we compute 

the log-likelihood of each alarm in each model. The resulting pair-wise similarity matrix is displayed in Fig. 1. 

The bright squares correspond to high degree of similarity between the alarms and the darker ones correspond to 

dissimilar alarms. As it can be seen, alarms that have similar characteristics in the B-scans have high degrees of 

similarity. 

 

Figure 1. Similarity matrix obtained by testing each of the 9 alarms by each of the 9 models 

 
2.2.  SVM Classifier 



Support vector machines (SVMs) are supervised learning algorithms that have been widely and successfully used 

for pattern recognition [7]. The method is also known as a “maximal margin classifier” since it determines a 

hyperplane that separates the two classes with the largest margin between the vectors of the two classes. Most 

problems in real life are however linearly not separable. SVM can deal with such problems using a kernel that 

transforms the feature space into a higher (possibly infinite) dimension feature space. The linearly separable 

hyperplane in the higher dimensional space gives a non-linear decision boundary in the original feature space. 

The decision boundary of the SVM can then be expressed as: 

 
where   is the label of data point ,  indicates whether  is a support vector, and   is the y-intercept of the  

hyperplane described by  . The operator  is a kernel that computes the dot product of the images of  and   in 

a higher dimensional space. Several kernel has been introduced in the literature. Examples include polynomial of 

degree p , sigmoid, and Gaussian radial basis function [7]. 

In this paper we propose using a sequential  kernel that takes into account  the dynamic  nature of the features 

extracted from the GPR data.  In particular,  we use the HMM-based similarity matrix computed in the previous 

section as the kernel operator.  

Preliminary results on large and diverse ground penetrating radar data show that the proposed method 

outperforms the basic DHMM  as well as the basic SVM with Gaussian kernel functions. 

3. REFERENCES 

[1]  H. Frigui and P. Gader, “Detection and Discrimination of Land Mines in Ground-Penetrating Radar Based on Edge Histogram 
Descriptors and a Possibilistic K-Nearest Neighbor Classifier,” IEEE Trans. on Fuzzy Systems, Vol. 17, No.1, 2009. 
[2]  P. A. Torrione and L. M. Collins, "Texture features for antitank landmine detection using ground penetrating radar," IEEE Trans. on 
Geoscience and Remote Sensing, vol. 45, no. 7, pp. 2374-2382, 2007.  
[3]  D. Potin,  P. Vanheeghe, E. Duflos, E., and M. Davy,  “An Abrupt Change Detection Algorithm for Buried Landmines Localization 
“, IEEE Trans. on Geoscience and Remote Sensing, vol. 44, no. 2, pp. 260-272, 2006.  
[4]  H. Frigui, O. Missaoui, and P. Gader, “Landmine Detection with Ground Penetrating Radar using Discrete Hidden Markov Models 

with Symbol Dependent Features,” Proc, SPIE, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIII, 2008.
[5] H. Frigui, A.  Hamdi,   O. Missaoui,  and  P. Gader, "Landmine Detection using Mixture of Discrete Hidden Markov Models",  Proc, 
SPIE, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIV, 2009.  
[6] L. Rabiner, "Tutorial on hidden Markov models and selected applications in speech recognition". Proc. IEEE, 77:257–286, 1989. 
[7] C. Burges, "A Tutorial on Support Vector Machines for Pattern Recognition", Data Mining and Knowledge Discovery, Vol. 2, 1998, 
pages 121--167. 


